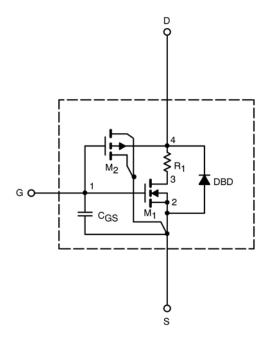


SPICE Device Model Si7802DN Vishay Siliconix

N-Channel 250-V (D-S) MOSFET

CHARACTERISTICS

- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- · Apply for both Linear and Switching Application
- Accurate over the –55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125° C temperature ranges under the pulsed 0 to 10V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

SUBCIRCUIT MODEL SCHEMATIC

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

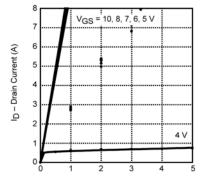
Document Number: 73173 www.vishay.com 07-Oct-04 1

SPICE Device Model Si7802DN

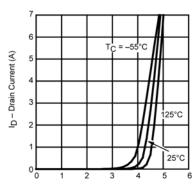
Vishay Siliconix

SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)					
Parameter	Symbol	Test Conditions	Simulated Data	Measured Data	Unit
Static					
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2.8		V
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$	14		Α
Drain-Source On-State Resistance ^a	r	V_{GS} = 10 V, I_{D} = 1.95 A	0.362	0.360	Ω
	r _{DS(on)}	$V_{GS} = 6 \text{ V}, I_{D} = 1.9 \text{ A}$	0.369	0.370	
Forward Transconductance ^a	g _{fs}	V_{DS} = 15 V, I_{D} = 1.95 A	4	8	S
Diode Forward Voltage ^a	V_{SD}	$I_S = 3.2 \text{ A}, V_{GS} = 0 \text{ V}$	0.74	0.80	V
Dynamic ^b					
Total Gate Charge	Qg	V _{DS} = 125 V, V _{GS} = 10 V, I _D = 1.95 A	12	14	nC
Gate-Source Charge	Q_{gs}		2.8	2.8	
Gate-Drain Charge	Q_{gd}		4.4	4.4	

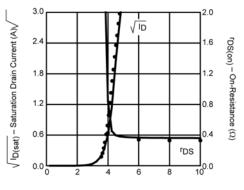
Notes

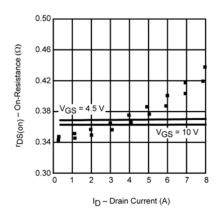

- a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing.

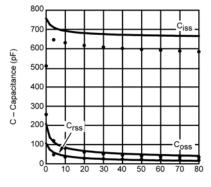
www.vishay.com Document Number: 73173



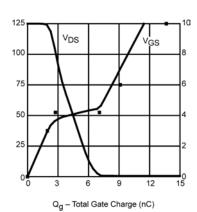
SPICE Device Model Si7802DN Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)


V_{DS} – Drain-to-Source Voltage (V)



V_{GS} – Gate-to-Source Voltage (V)



 V_{GS} – Gate-to-Source Voltage (V)

V_{DS} – Drain-to-Source Voltage (V)

Note: Dots and squares represent measured data