**TOSHIBA** TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC ## TA8532P, TA8532F ### **BATTERY CHARGER IC** TA8532P, TA8532F is Battery Charger IC for Lead Batterys and applicable to various types from 1 to 6cells. Simple system with minimized external components is available. ### **FEATURES** - Applicable to various types of lead battery from 1 to 6 cells utilizing selectable reference voltage. - Reference voltage can be adjusted by external resistor. - Charging time can be set freely by changing the external current (charging current) with the external resistor. - Charging completion can be indicated by LED utilizing the charge monitor circuit. - This device can be disabled externally. - Battery discharge at power off can be protected by the reverse current protection system. ## DIP16-P-300-2.54A TA8532F SOP18-P-375-1.27 Weight DIP16-P-300-2.54A: 1.0g (Typ.) SOP18-P-375-1.27: 0.5g (Typ.) ### SYSTEM BLOCK DIAGRAM 961001EBA2 ● TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook. ### PIN CONNECTION (TOP VIEW) ### **PIN FUNCTION** | | 1 | | | | | | |-----------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--| | PIN N | o. PIN NAME | FUNCTION | | | | | | 1 (1 | I) DISABLE | To stop charging by L input. | | | | | | 2 (3 | 3) SE4 | Selection terminal for 5cells connecting with V <sub>ref</sub> terminal. | | | | | | 3 (4 | 1) SE3 | Selection terminal for 4cells connecting with V <sub>ref</sub> terminal. | | | | | | 4 (5 | 5) SE2 | Selection terminal for 3cells connecting with V <sub>ref</sub> terminal. | | | | | | 5 (6 | S) SE1 | Selection terminal for 2cells connecting with V <sub>ref</sub> terminal. | | | | | | 6 (7 | 7) V <sub>ref</sub> | Standard Voltage Terminal. | | | | | | 7 (8 | B) ADJ | To adjust the $V_{ref}$ terminal output. And 1cell is selected connecting with $V_{ref}$ terminal through a variable resistor. | | | | | | 8 (9 | ) GND | Ground | | | | | | 9 (1 | 0) LED | For the LED indication during the charging (Output current>I <sub>CL</sub> ). | | | | | | 11 (1 | 2) SENSE | To sense the battery output voltage. | | | | | | 12 (1 | 3) R <sub>L</sub> _ | For connection with the current the limiting resistance. The limiting current is given $(0.7/R_L)$ . | | | | | | 13 (1 | 5) R <sub>L+</sub> | The current limiting resistor is connected between R <sub>L</sub> . | | | | | | 14 (16) CD Conne resistor slope 2 | | Connecting terminal for the current sense resistor and Power transistor. The resistor is to be connected to the internal current sense circuit and makes the slope $\Delta V_{C}/\Delta I_{C}$ . It is also connected to the charge monitor circuit and control lighting LED. | | | | | | 15 (1 | 7) I <sub>OUT</sub> | The charging current output terminal. The emitter of Power transistor to be connected. | | | | | | 16 (1 | 8) V <sub>CC</sub> | Power Supply Voltage Terminal. | | | | | ( ): TA8532F pin No. 961001EBA2' The products described in this document are subject to foreign exchange and foreign trade control laws. The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others. The information contained herein is subject to change without notice. ### **CHARGING PROCESS CHART** | ΙL | Determined by the external resistor R <sub>L</sub> . | | | | |-----------------|-----------------------------------------------------------------------------------|--|--|--| | ICS | Determined by the external resistor R <sub>C</sub> . | | | | | I <sub>CL</sub> | Almost the center between ICS and OmA. | | | | | lcu | Almost triple of I <sub>CL</sub> . | | | | | V <sub>CU</sub> | Charging Voltage. Dependent on the number of the battery cells. Refer to the | | | | | | chart in the next page. | | | | | V <sub>CL</sub> | Fouging Voltage. Dependent on the number of the battery cells. Refer to the chart | | | | | | in the next page. | | | | ### **OPERATION** - (1) As shown in the above chart, charging starts with maximum current I<sub>L</sub> (given by the formula 0.7 /R<sub>L</sub>) and the battery voltage increases gradually. - (2) When the battery voltage reaches V<sub>CU</sub> (Charging Voltage), the voltage is fixed at V<sub>CU</sub>, that is the constant voltage charging state. And the charging current decreases gradually. - (3) When the charging current decreases to the point of I<sub>CU</sub>, the voltage starts dropping. The voltage dropping continues until the current reaches I<sub>CL</sub>, and is settled at the Focusing Voltage (V<sub>CL</sub>). And the voltage dropping ratio is given by the formula (V<sub>CU</sub> V<sub>CL</sub>) / (I<sub>CU</sub> V<sub>CL</sub>) and it's center is V<sub>CS</sub> and I<sub>CS</sub>. - (4) The center of the voltage dropping curve is I<sub>CS</sub>, which is given by the formula 0.2 (R<sub>C</sub>: External Resistor). - (5) LED indicates as a charging monitor during the charging current is greater than $I_{CL}$ . When it becomes lower than $I_{CL}$ , LED turns off for the indication of charging completion. Internal resistance is $1k\Omega$ and external resistor is needed at $V_{CC} \ge 15V$ . ### **MAXIMUM RATINGS** (Ta = $25^{\circ}$ C) | CHARACTE | RISTIC | SYMBOL | RATING | UNIT | | |-----------------------|--------------|------------------|-----------------|------|--| | Supply Voltage | | Vcc | 24 | V | | | Max. Pre-drive Out | tput Current | lout | 20 | mA | | | Power Dissipation | TA8532P | İ | 1 | w | | | Power Dissipation | TA8532F | PD | 0.9 | | | | Operating Temperating | ature | T <sub>opr</sub> | - 30~75 | °C | | | Storage Temperatu | ıre | T <sub>stg</sub> | <b>- 55∼150</b> | °C | | ### RECOMMENDED OPERATING CONDITION | CHARACTERISTIC | | SYMBOL | MIN. | TYP. | MAX. | UNIT | |----------------|---------------|--------|------|------|------|------| | | 1Cell Charge | | 9 | _ | 20 | V | | | 2Cells Charge | Vcc | 9 | _ | 20 | | | Power Supply | 3Cells Charge | | 11 | _ | 20 | | | Voltage | 4Cells Charge | | 13.5 | | 20 | V | | | 5Cells Charge | | 16 | _ | 20 | | | | 6Cells Charge | | 18.5 | _ | 20 | | ### **ELECTRICAL CHARACTERISTICS** (Unless otherwise specified, $V_{CC} = 9 \sim 20V$ , $Ta = 25^{\circ}C$ ) | CHARACTERISTIC | | SYMBOL | TEST<br>CIR-<br>CUIT | TEST CONDITION | MIN. | TYP. | MAX. | UNIT | |-------------------------------------|-------------------|--------------------|----------------------|---------------------------------------------------------------|-------------|-----------|------|------| | Power Supply Current | | lcc | 1 | V <sub>CC</sub> = 9V | | 6.7 | _ | mΑ | | l ower supply | Current | lcc | ' | $V_{CC} = 20V$ | | 7.0 | 10 | IIIA | | Output Curren | t | lout | 2 | _ | 20 | 40 | _ | mA | | LED Output Current | | I <sub>LED</sub> | 3 | $V_{CC} = 20V, V_{LED} = 7V$<br>$V_{CC} = 20V, V_{LED} = 18V$ | <u> </u> | 6.0<br>16 | | mA | | Limiter Output | Detection Voltage | V <sub>Lim</sub> | 4 | —————————————————————————————————————— | _ | 0.7 | | V | | Voltage Switching Detection Voltage | | ٧c | 5 | _ | 1 | 0.2 | _ | ٧ | | Non- | 2Cells Charge | | | $V_{CC} = 20V, V_{CL} = 4.550V$ | -8 | _ | 8 | % | | adjustment | 3Cells Charge | ∆V <sub>CL</sub> | _ | $V_{CC} = 20V, V_{CL} = 6.825V$ | -8 | _ | 8 | | | | 4Cells Charge | | | $V_{CC} = 20V, V_{CL} = 9.100V$ | -8 | _ | 8 | | | Focusting | 5Cells Charge | | | $V_{CC} = 20V, V_{CL} = 11.375V$ | -8 | _ | 8 | | | Voltage Error | 6Cells Charge | | | $V_{CC} = 20V, V_{CL} = 13.650V$ | -8 | _ | 8 | | | Non- | 2Cells Charge | ∆VCU | | $V_{CC} = 20V, V_{CU} = 4.90V$ | <b>–</b> 10 | _ | 10 | | | adjustment | 3Cells Charge | | | $V_{CC} = 20V, V_{CU} = 7.35V$ | - 10 | _ | 10 | | | | 4Cells Charge | | | $V_{CC} = 20V, V_{CU} = 9.80V$ | - 10 | _ | 10 | | | Charging<br>Voltage Error | 5Cells Charge | | | $V_{CC} = 20V, V_{CU} = 12.25V$ | <b>–</b> 10 | _ | 10 | | | | 6Cells Charge | | | $V_{CC} = 20V, V_{CU} = 14.70V$ | <b>– 10</b> | _ | 10 | | | Output Voltage Adjustment<br>Width | | Ara | _ | <del>-</del> | - 10 | _ | 10 | % | | SENSE Terminal Reverse Current | | l rev | 6 | _ | _ | 0.1 | 10 | μΑ | | Disable Terminal "H" Voltage | | V <sub>DIS</sub> H | _ | _ | 2.0 | _ | _ | ĺ۷ | | Disable Terminal "L" Voltage | | VDIS L | _ | _ | | | 0.8 | ٧ | ### STANDARD VOLTAGE ADJUSTMENT | NUMBER | V <sub>CL</sub> (V) | V <sub>CU (V)</sub> | CU (V) V <sub>ref</sub> TERMINAL CONECTION | | |--------|---------------------|---------------------|--------------------------------------------|--| | 1Cell | 2.275 ± 0.025 | 2.45 ± 0.07 | V <sub>ref</sub> -ADJ | | | 2Cells | 4.550 ± 0.050 | 4.90 ± 0.14 | V <sub>ref</sub> -SE1, ADJ | | | 3Cells | 6.825 ± 0.075 | 7.35 ± 0.21 | V <sub>ref</sub> -SE2, ADJ | | | 4Cells | 9.100 ± 0.100 | 9.80 ± 0.28 | V <sub>ref</sub> -SE3, ADJ | | | 5Cells | 11.375 ± 0.125 | 12.25 ± 0.35 | V <sub>ref</sub> -SE4, ADJ | | | 6Cells | 13.650 ± 0.150 | 14.70 ± 0.42 | V <sub>ref</sub> OPEN, ADJ | | (Note 1) The ADJ terminal is to be connected through valuable resistor and controlled. (Note 2) Adjustment is to be done in accordance with the above forcusing voltage. ### **TEST CIRCUIT** (1) I<sub>CC</sub> (2) I<sub>OUT</sub> (3) I<sub>LED</sub> (4) V<sub>Lim</sub> (5) V<sub>C</sub> V<sub>CC</sub>-CD V<sub>CH</sub>: 0.4V V<sub>CL</sub>: 0V - (6) I rev - V<sub>CC</sub> = 24V V<sub>CC</sub> = GND • V<sub>CC</sub> = OPEN ### **APPLICATION** ### (2) 2Cells ### (3) 3Cells (4) 4Cells ( ): TA8532F pin No. ### (7) DISABLE (ex. 1Cell) ( ): TA8532F pin No. ### **OUTLINE DRAWING** DIP16-P-300-2.54A Unit: mm Weight: 1.0g (Typ.) # OUTLINE DRAWING SOP18-P-375-1.27 Unit : mm 18 10 27 99 1.17TYP 1.17TYP 1.27 13.0MAX 12.5±0.2 13.0MAX 12.5±0.2 Weight: 0.5g (Typ.)