TENTATIVE

TOSHIBA CCD LINEAR IMAGE SENSOR CCD(Charge Coupled Device)

TCD141ARC

The TCD141ARC is a high sensitive and low dark current 5000-elements linear image sensor.

The sensor can be used for facsimile, imagescanner and OCR.

The device is contains a row of 5000 photodiodes, which provide a 16 lines/mm (400 DPI) across a A3 size paper.

FEATURES

Number of Image Sensing Elements: 5000

• Image Sensing Element Size : 7μ m by 7μ m on 7μ m

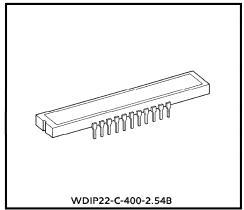
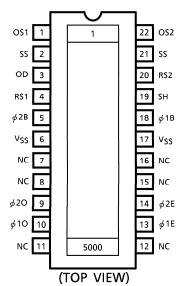

centers

Photo Sensing Region : High sensitive and low dark

current pn photodiode

Clock : 2 phase (12V)
Package : 22 pin DIP

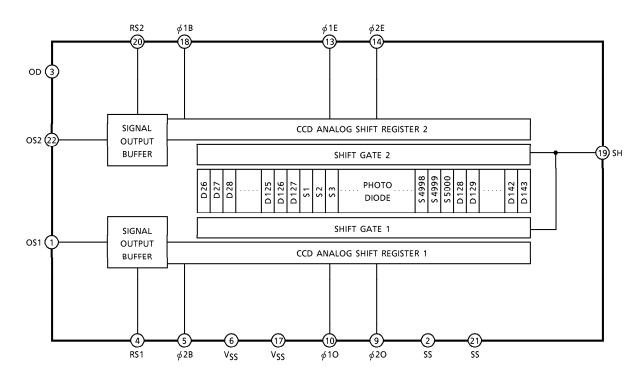
Window Glass : Antireflected coating


Weight: 5.4g (Typ.)

MAXIMUM RATINGS (Note 1)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Clock Pulse Voltage	Vφ		V
Shift Pulse Voltage	V _{SH}	- 0.3~15	V
Reset Pulse Voltage	V _{RS}	-0.3~15	V
Power Supply Voltage	V _{OD}		V
Operating Temperature	T _{opr}	- 25∼60	°C
Storage Temperature	T _{stg}	-40∼100	°C

(Note 1) All voltage are with respect to SS and V_{SS} terminals (Ground).


PIN CONNECTIONS

961001EBA2

[●] TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

CIRCUIT DIAGRAM

PIN NAMES

φ1E, O	Clock (Phase 1)
φ2E, O	Clock (Phase 2)
φ1B	Final Stage Clock (Phase 1)
φ2B	Final Stage Clock (Phase 2)
SH	Shift Gate
RS	Reset Gate
OS1	Signal Output 1
OS2	Signal Output 2
OD	Power
SS	Ground (Analog)
V_{SS}	Ground (Digital)
NC	Non Connection

961001EBA2'

The products described in this document are subject to foreign exchange and foreign trade control laws.
The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
The information contained herein is subject to change without notice.

OPTICAL / ELECTRICAL CHARACTERISTICS

(Ta = 25°C, V_{OD} = 12V, V_{ϕ} = V_{RS} = V_{SH} = 12V (PULSE), f_{ϕ} = 1.0MHz, t_{INT} (INTEGRATION TIME) = 10ms, LIGHT SOURCE = DAYLGIHT FLUORESCENT LAMP, LOAD RESISTANCE = 100k Ω)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
Sensitivity	R	2.0	2.5	3.0	V / lx·s	(Note 2)
Photo Response Non Uniformity	PRNU (1)	_	_	10	%	(Note 3)
	PRNU (3)	_	_	10	mV	(Note 4)
Saturation Output Voltage	VSAT	1.0	1.5	_	V	(Note 5)
Saturation Exposure	SE	0.33	0.6	_	lx·s	(Note 6)
Dark Signal Voltage	V _{DRK}	_	_	5	mV	(Note 7)
Dark Signal Non Uniformity	DSNU	_	_	5	mV	(Note 7)
DC Power Dissipation	PD	_	100	325	mW	
Total Transfer Efficiency	TTE	92	95	_	%	
Output Impedance	ZO		0.5	1.0	kΩ	
Dynamic Range	DR	_	300	_		(Note 8)
DC Signal Output Voltage	V _{OS1}	3.0	4.0	5.5	V	(Note 9)
	V _{OS2}	3.0	4.0	5.5	V	(Note 9)
DC Mismatch Voltage	VOS1-VOS2	_	_	300	mV	

(Note 2) Sensitivity for 2856K W-lamp is 7.5V/Ix·s (Typ.)

(Note 3) Measured at 50% of SE (Typ.)

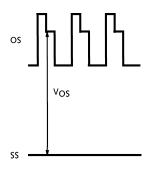
Definition of PRNU : PRNU = $\frac{\Delta \chi}{\overline{\chi}}$ × 100 (%)

Where $\overline{\chi}$ is average of total signal outputs and $\Delta \chi$ is the maximum deviation from $\overline{\chi}$ under uniform illumination. (Channel 1) In the case of 2500 elements (Channel 2), the condition is the same as above too.

(Note 4) PRNU (3) is defined as maximum voltage with next pixel. Where measured 5% of SE (Typ.)

(Note 5) V_{SAT} is defined as minimum saturation output voltage of all effective pixels.

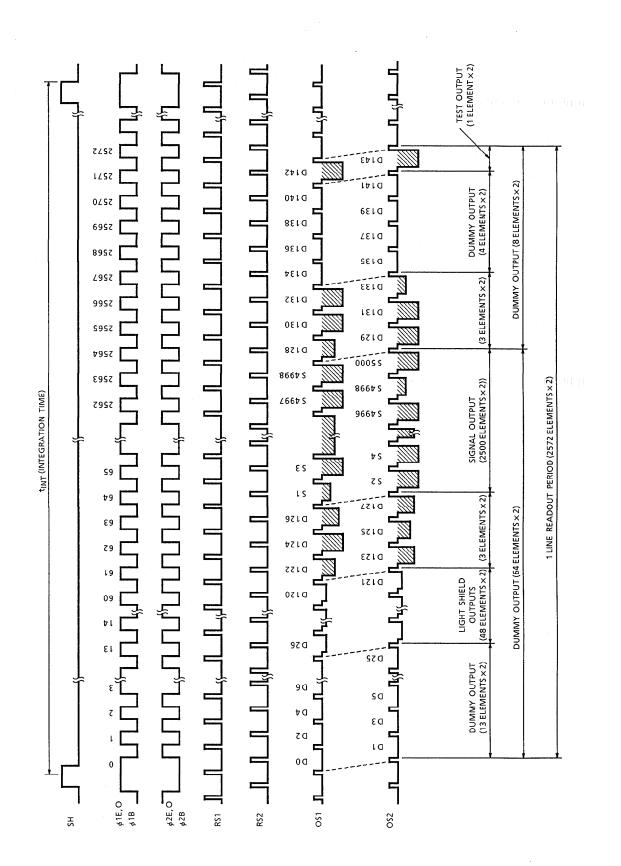
(Note 6) Definition of SE : SE = $\frac{V_{SAT}}{R}$ (Ix·s)


(Note 7) V_{DRK} is defined as average dark signal voltage of all effective pixels. DSNU is defined as different voltage between V_{DRK} and V_{MDK} when V_{MDK} is maximum dark signal voltage.

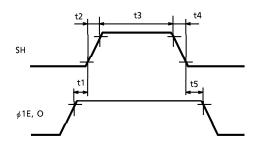
(Note 8) Definition of DR : DR = $\frac{V_{SAT}}{V_{DRK}}$

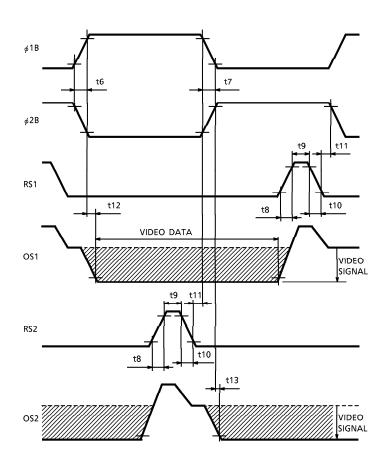
 $V_{\mbox{\footnotesize{DRK}}}$ is proportional to $t_{\mbox{\footnotesize{INT}}}$ (Integration Time). So the shorter $t_{\mbox{\footnotesize{INT}}}$ condition makes wider DR value.

(Note 9) DC signal output voltage (Channel 1, 2).


OPERATING CONDITION

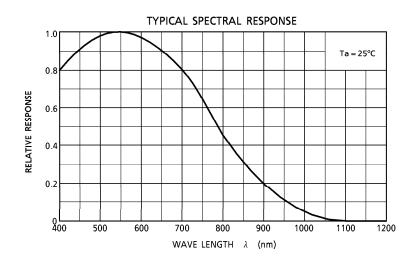
CHARACTERISTIC		SYMBOL	MIN.	TYP.	MAX.	UNIT
Clock Pulse Voltage	"H" Level	V _ø 1E, O	V _{OD} – 1	V _{OD}	V_{OD}	V
	"L" Level	V _φ 2Ε, Ο	0	0.5	0.8	V
Final Stage Clock Pulse Voltage	"H"Level	V _∅ 1B	V _{OD} - 1	V_{OD}	VOD	\ \
	"L" Level	V _∕ 2B	0	0.5	0.8	V
Shift Pulse Voltage	"H"Level	Vari	V _{OD} - 1	V _{OD}	V _{OD}	<
	"L" Level	V _{SH}	0	0.5	0.8	V
Reset Pulse Voltage	"H" Level	V_{RS1}	V _{OD} - 1	V_{OD}	V _{OD}	V
	"L" Level	V_{RS2}	0	0.5	0.8	, v
Power Supply Voltage	·	V _{OD}	11.4	12	13	V

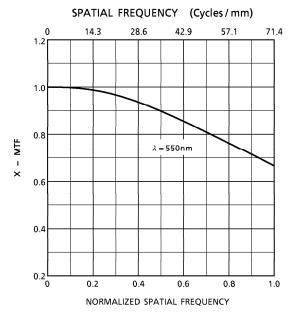

CLOCK CHARACTERISTICS (Ta = 25°C)


CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
Clock Pulse Frequency	f _∳	_	1	10	MHz
Reset Pulse Frequency	f _{RS}	_	1	10	MHz
Clock Capacitance	C _{∉E} ,O	_	450	550	pF
Final Stage Clock Capacitance	C _{ØB}	_	10	20	pF
Shift Gate Capacitance	CSH	_	250	350	pF
Reset Gate Capacitance	C _{RS}	_	10	20	pF

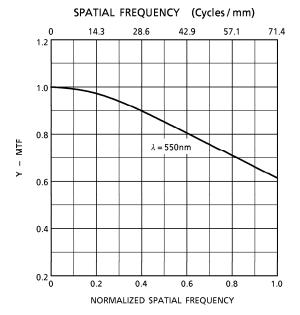
TIMING CHART

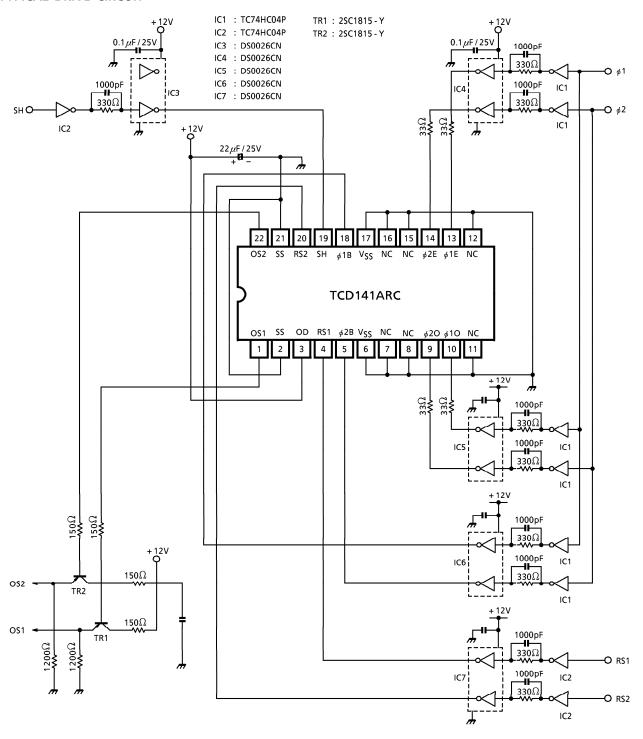
TIMING REQUIREMENTS




CHARACTERISTIC	SYMBOL	MIN.	TYP. (Note 10)	MAX.	UNIT
Pulse Timing of SH and ϕ 1E, O	t1, t5	0	100	_	ns
SH Pulse Rise Time, Fall Time	t2, t4	0	50	_	ns
SH Pulse Width	t3	300	1000	_	ns
ϕ 1B, ϕ 2B Pulse Rise Time, Fall Time	t6, t7	0	100	_	ns
RS Pulse Rise Time, Fall Time	t8, t10	0	20	_	ns
RS Pulse Width	t9	20	250	_	ns
Pulse Timing of ϕ 1B, ϕ 2B, RS	t11	0	250	_	ns
Video Data Delay Timing (Note 11)	t12, t13	_	30	_	ns

(Note 10) TYP, is the case of f_{RS} = 1MHz. (Note 11) Load Resistance is 100k Ω_{\star}


TYPICAL PERFORMANCE CURVES


MODULATION TRANSFER FUNCTION OF X-DIRECTION

MODULATION TRANSFER FUNCTION OF Y-DIRECTION

TYPICAL DRIVE CIRCUIT

CAUTION

1. Window Glass

The dust and stain on the glass window of the package degrade optical performance of CCD sensor.

Keep the glass window clean by saturating a cotton swab in alcohol and lightly wiping the surface, and allow the glass to dry, by blowing with filtered dry N₂.

Care should be taken to avoid mechanical or thermal shock because the glass window is easily to damage.

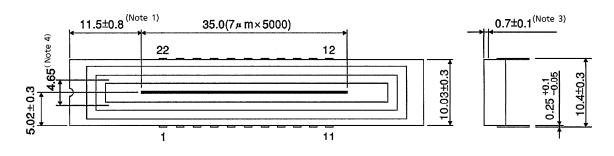
2. Electrostatic Breakdown

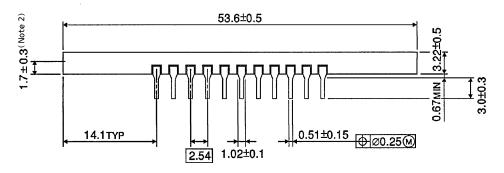
Store in shorting clip or in conductive foam to avoid electrostatic breakdown.

3. Incident Light

CCD sensor is sensitive to infrared light.

Note that infrared light component degrades resolution and PRNU of CCD sensor.


4. Lead Frame Forming


Since this package is not stout against mechanical stress, you should not reform the lead frame. We recommend to use a IC-inserter when you assemble to PCB.

PACKAGE OUTLINE

WDIP22-C-400-2.54B (B)

Unit in mm

- (Note 1) No. 1 SENSOR ELEMENT (S1) TO EDGE OF PACKAGE.
- (Note 2) TOP OF CHIP TO BOTTOM OF PACKAGE.
- (Note 3) GLASS THICKNES (n = 1.5)
- (Note 4) ANTIREFECTED COATING AREA.

Weight: 5.4g (Typ.)