
RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 1

PM7351

S/UNI -
VORTEX

 TM

S/UNI-VORTEX
OCTAL SERIAL LINK MULTIPLEXER

DRIVER MANUAL

RELEASED

ISSUE 2: JULY 2000

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 2

REVISION HISTORY

Issue No. Issue Date Originator Details of Change

Issue 1 July 1999 James
Lamothe

Document created from
S/UNI-VORTEX Device Driver
Design Specification
(PMC-981181 Issue 2)

Issue 2 July 2000 Kevin Murray Added documentation for three
API functions:

- vortexHssSetState

- vortexHssSetLogChnlAddrMap

- vortexSetCtrlChnlBaseAddr

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 3

ABOUT THIS MANUAL

This manual describes the S/UNI-VORTEX device driver. It describes the driver’s
functions, data structures, and architecture. This manual focuses on the driver’s
interfaces to your application, real-time operating system, and to the
S/UNI-VORTEX device. It also describes in general terms how to modify and port
the driver to your software and hardware platform.

Audience

This manual was written for people who need to:

• Evaluate and test the S/UNI-VORTEX device

• Modify and add to the S/UNI-VORTEX driver’s functions

• Port the S/UNI-VORTEX driver to a particular platform.

References

For more information about the S/UNI-VORTEX driver, see the release notes. For
more information about the S/UNI-VORTEX device, see the following documents:

• S/UNI-VORTEX (Octal Serial Link Multiplexer) Datasheet: PMC-980582

• S/UNI-VORTEX (Octal Serial Link Multiplexer) Short Form Datasheet:
PMC-990148)

• S/UNI-VORTEX and S/UNI-VORTEX Technical Overview: PMC-98102

Note: Ensure that you use the document that was issued for your version of the
device and driver.

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 4

TABLE OF CONTENTS

Revision History... 2

About this Manual.. 3

Table of Contents... 4

List of Figures .. 8

List of Tables.. 9

1 Driver Porting Quick Start ... 10

2 Driver Functions and Features.. 11

2.1 Driver Architecture... 12
2.1.1 Driver API Module .. 13
2.1.2 Driver Real-Time-OS Interface Module.. 14
2.1.3 Driver Hardware-Interface Module... 14
2.1.4 Driver Library Module... 14
2.1.5 Device Data-Block Module... 14
2.1.6 Interrupt-Service Routine Module .. 15
2.1.7 Deferred-Processing Routine Module.. 15

2.2 Driver Software States... 15

2.3 Processing Flows .. 16
2.3.1 Device Initialization, Re-initialization, and Shutdown... 17
2.3.2 Cell Extraction .. 18
2.3.3 Interrupt Servicing .. 19
2.3.4 Polling Servicing... 22

3 Driver Data Structures... 24

3.1 Cell Data Structures .. 24
3.1.1 Cell-Header Data Structure.. 24
3.1.2 Cell-Control Data Structure .. 24

3.2 Device-Configuration Data Structures... 25
3.2.1 Initialization Data Structure .. 25
3.2.2 Register Data Structure.. 26

3.3 Device-Context Data Structures.. 28
3.3.1 Global Driver-Database Structure .. 28
3.3.2 Device Data-Block Structure .. 28

3.4 Interrupt Data Structures ... 31
3.4.1 Interrupt-Enable Data Structure ... 31
3.4.2 Interrupt-Context Data Structure .. 32

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 5

3.5 Statistical Count Structure ... 32

4 Application Interface Functions... 35

4.1 Driver Initialization and Shutdown... 36
4.1.1 vortexModuleInit: Initializing Driver Modules ... 36
4.1.2 vortexModuleShutdown: Shutting Down Driver Modules... 37

4.2 Device Addition, Reset, and Deletion.. 37
4.2.1 vortexAdd: Adding Devices .. 37
4.2.2 vortexReset: Resetting Devices... 38
4.2.3 vortexDelete: Deleting Devices.. 39

4.3 Reading from and Writing to Devices.. 39
4.3.1 vortexRead: Reading from Device Registers... 40
4.3.2 vortexWrite: Writing to Device Registers ... 40

4.4 Device Initialization.. 41
4.4.1 vortexInit: Initializing Devices... 41
4.4.2 vortexInstallIndFn: Installing Indication Callback Functions .. 42
4.4.3 vortexRemoveIndFn: Removing Indication Callback Functions 42

4.5 Device Activation and Deactivation... 43
4.5.1 vortexActivate: Activating Devices ... 43
4.5.2 vortexDeactivate: Deactivating Devices .. 44

4.6 Device Diagnostics.. 44
4.6.1 vortexRegisterTest: Verifying Device Register Access .. 45
4.6.2 vortexLoopback: Enabling/Disabling Diagnostic or Line Loopback 45
4.6.3 vortexGetClockStatus: Monitoring Device Clocks.. 46

4.7 HSS Link Configuration... 47
4.7.1 vortexHssGetConfig: Getting HSS-Link Configuration Information 47
4.7.2 vortexHssSetConfig: Modifying HSS-Link Configuration Information.......................... 49
4.7.3 vortexHssSetState: Setting Vortex HSS Configuration Information............................. 50
4.7.4 vortexHssGetLinkInfo: Getting the State of HSS Links.. 51
4.7.5 vortexHssGetLogChnlAddrMap: Getting Logical-Channel Addresses 52
4.7.6 vortexHssSetLogChnlAddrMap: Setting Logical Channel Addresses 53
4.7.7 vortexSetCtrlChnlBaseAddr: Controlling Channel Base Addresses 53

4.8 Cell Insertion and Extraction ... 54
4.8.1 vortexInsertCell: Inserting Cells into HSS Links .. 55
4.8.2 vortexExtractCell: Extracting Cells from HSS Links... 57
4.8.3 vortexCheckExtractFifos: Getting Contents of the Extract-FIFO-Ready Register 58
4.8.4 vortexEnableRxCellInd: Enabling the Received Cell Indicator 59
4.8.5 vortexInstallCellTypeFn: Installing Callback Functions.. 60

4.9 BOC Transmission and Reception .. 61
4.9.1 vortexTxBOC: Transmitting BOC... 61
4.9.2 vortexRxBOC: Reading Received BOC... 62

4.10 Statistics Collection ... 63

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 6

4.10.1 vortexGetHssLnkRxCounts: Accumulating Counts for Received Cells 63
4.10.2 vortexGetHssLnkTxCounts: Accumulating Counts for Transmitted Cells 64
4.10.3 vortexGetAllHssLnkCounts: Accumulating Counts for All Cells 65
4.10.4 vortexGetStatisticCounts: Retrieving Driver Statistical Counts 66
4.10.5 vortexResetStatisticCounts: Resetting Driver Statistical Counts 67

4.11 Indication Callbacks .. 67
4.11.1 indVortexNotify: Notifying the Application of Significant Events 68
4.11.2 indVortexRxBOC: Notifying the Application of Received BOC 68
4.11.3 indVortexRxCell: Notifying the Application of Ready Extract-Cell-FIFOs 69

5 Real-Time-OS Interface Functions ... 71

5.1 Memory Allocation and De-allocation.. 72
5.1.1 sysVortexMemAlloc: Allocating Memory .. 72
5.1.2 sysVortexMemFree: De-allocating Memory... 73

5.2 Buffer Management... 73
5.2.1 vortexGetIndBuf: Getting DPR Buffers .. 73
5.2.2 vortexReturnIndBuf: Returning DPR Buffers ... 74

5.3 Timer Operations... 74
5.3.1 sysVortexDelayFn: Delaying Functions ... 74

5.4 Semaphore Operations ... 74
5.4.1 sysVortexSemCreate: Creating Semaphores .. 75
5.4.2 sysVortexSemDelete: Deleting Semaphores... 75
5.4.3 sysVortexSemTake: Taking Semaphores... 75
5.4.4 sysVortexSemGive: Giving Semaphores... 76

6 Hardware Interface Functions... 77

6.1 Device Register Access .. 77
6.1.1 sysVortexRawRead: Reading from Register Address Locations................................. 78
6.1.2 sysVortexRawWrite: Writing to Register Address Locations.. 78
6.1.3 sysVortexDeviceDetect: Getting Device Base Addresses ... 78

6.2 Interrupt Servicing ... 79
6.2.1 sysVortexIntInstallHandler: Installing Interrupt Service Functions............................... 80
6.2.2 sysVortexIntRemoveHandler: Removing Interrupt Service Functions......................... 80
6.2.3 sysVortexIntHandler: Calling vortexISR... 81
6.2.4 sysVortexDPRTask: Calling vortexDPR... 81

7 Porting the Driver .. 83

7.1 Driver Source Files.. 83

7.2 Driver Porting Procedures... 84
7.2.1 Porting the Driver’s OS Extensions ... 84
7.2.2 Porting the Driver to a Hardware Platform... 86
7.2.3 Porting the Driver’s Application-Specific Elements .. 88
7.2.4 Building the Driver.. 89

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 7

Appendix: Coding Conventions ... 91

Acronyms... 94

Index .. 95

Contacting PMC-Sierra, Inc... 99

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 8

LIST OF FIGURES

Figure 1: Driver Architecture.. 13

Figure 2: Driver Software States.. 16

Figure 3: Device Initialization, Re-initialization, and Shutdown... 18

Figure 4: Cell Extraction .. 19

Figure 5: Interrupt Service Model .. 20

Figure 6: Polling Service Model... 22

Figure 7: Application Interface... 36

Figure 8: Real-Time OS Interface.. 72

Figure 9: Hardware Interface... 77

Figure 10: Driver Source Files... 83

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 9

LIST OF TABLES

Table 1: Driver Functions and Features .. 11

Table 2: Driver Software States ... 16

Table 3: sVTX_CELL_HDR: Cell Header Structure... 24

Table 4: sVTX_CELL_CTRL: Cell Control Structure ... 25

Table 5: sVTX_INIT_VECTOR: Initialization Vector .. 26

Table 6: sVTX_REGS: Device Registers... 27

Table 7: sVTX_HSS_REGS: Device Registers ... 27

Table 8: sVTX_GDD: Global Driver Database... 28

Table 9: sVTX_DDB: Device Data Block ... 29

Table 10: sVTX_INT_ENBLS: Interrupt Enables... 31

Table 11: sVTX_INT_CTXT: Interrupt Context... 32

Table 12: sVTX_STAT_COUNTS: Statistical Counts .. 32

Table 13: Definition of Variable Types ... 91

Table 14: Variable Naming Conventions ... 92

Table 15: Function and Macro Naming Conventions ..93

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 10

1 DRIVER PORTING QUICK START

This section summarizes how to port the S/UNI-VORTEX device driver to your
hardware and operating system (OS) platform.

Note: Because each platform and application is unique, this manual can only
offer guidelines for porting the S/UNI-VORTEX driver.

The code for the S/UNI-VORTEX driver is organized into C source files. You may
need to modify the code or develop additional code. The code is in the form of
constants, macros, and functions. For the ease of porting, the code is grouped
into source files (src) and include files (inc). The src files contain the functions
and the inc files contain the constants and macros.

To port the S/UNI-VORTEX driver to your platform:

1. Port the driver’s OS extensions (page 84):

• Data types

• OS-specific services

• Utilities and interrupt services that use OS-specific services

2. Port the driver to your hardware platform (page 86):

• Port the device detection function.

• Port low-level device read-and-write macros.

• Define hardware system-configuration constants.

3. Port the driver’s application-specific elements (page 88):

• Define the task-related constants.

• Code the callback functions.

4. Build the driver (page 89).

For more information about porting the S/UNI-VORTEX driver, see section 7

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 11

2 DRIVER FUNCTIONS AND FEATURES

The following table lists the main functions and features offered by the
S/UNI-VORTEX driver. You can alter these functions by modifying or adding to
the driver’s code.

Table 1: Driver Functions and Features

Functions Description

Device Addition
and Deletion

(page 37)

These functions perform the following tasks:

• Reset new devices
• Allocate and initialize memory that will store context

information for new devices
• De-allocate device context memory during device

shutdown

Device
Initialization

(page 41)

These functions initialize the S/UNI-VORTEX device and its
associated context structures.

Device
Diagnostics

(page 44)

These functions write values to registers and read them back
to verify the microprocessor’s input and output interface with
the device. They enable and disable internal and external
loopback for the S/UNI-VORTEX device’s high-speed serial
(HSS) links. They also monitor the device’s clocks.

HSS Link
Configuration

(page 47)

These functions configure the HSS links of the
S/UNI-VORTEX device by programming the HSS link
registers according to the parameters specified.

Cell Insertion
and Extraction

(page 53)

These functions insert cells into, and extract cells from, the
S/UNI-VORTEX device control channels by manipulating the
insert and extract FIFO control and status registers.

BOC
Transmission
and Reception

(page 61)

These functions transmit and receive BOC on the HSS links.
Writing to the transmit BOC registers transmits BOC. BOC is
received by monitoring the RECEIVE BOC status-registers.

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 12

Statistics
Collection

(page 63)

These functions retrieve the device counts (including cells
received, cells transmitted, errored cells received) for
accumulation by the application.

Interrupt
Servicing

(page 19)

These functions clear the interrupts raised by the
S/UNI-VORTEX device. Then they store the interrupt status
for later processing by a deferred processing routine (DPR).
The DPR runs in the context of a separate task within the
RTOS and takes appropriate actions based on the interrupt
status retrieved by the Interrupt Servicing Routine (ISR).

In polling mode, the DPR process periodically services the
interrupt status.

Indication
Callbacks

(page 67)

The DPR uses indication callback functions to notify the
application of events in the S/UNI-VORTEX device and
driver. These events include the reception of cells in the
microprocessor extract cell FIFOs and the reception of valid
BOC.

2.1 Driver Architecture

The driver includes seven main modules:

• Driver API module

• Real-time-OS interface module

• Hardware interface module

• Driver library module

• Device data-block module

• Interrupt-service routine module

• Deferred-processing routine module

For more information about these modules, see the following sections.

Figure 1 illustrates the architectural modules of the S/UNI-VORTEX driver.

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 13

Figure 1: Driver Architecture

 Function
Calls

Register
Access

Hardware
Interrupts

Service
Calls

Application

R
TO

S

S/UNI-VORTEX Device

Driver API

Deferred
Processing

Routine

Interrupt
Servicing
Routine

Driver
Library

Functions

Device
Data Block

Interrupt
Context

S/UNI-
VORTEX

Driver
R

TO
S

In
te

rfa
ce

Hardware Interface

Indication
Callbacks

2.1.1 Driver API Module

The driver’s API is a collection of high level functions that can be called by
application programmers to configure, control, and monitor the S/UNI-VORTEX
device, such as:

• Initializing the device

• Validating device configuration

• Retrieving device status and statistics information.

• Diagnosing the device

The driver API functions use the driver library functions as building blocks to
provide this system level functionality to the application programmer (see below).

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 14

The driver API also consists of callback functions that notify the application of
significant events that take place within the device and driver, including cell and
BOC reception.

2.1.2 Driver Real-Time-OS Interface Module

The driver’s RTOS interface module provides functions that let the driver use
RTOS services. The S/UNI-VORTEX driver requires the memory, interrupt, and
preemption services from the RTOS. The RTOS interface functions perform the
following tasks for the S/UNI-VORTEX device and driver:

• Allocate and de-allocate memory

• Manage buffers for the DPR

• Pause task execution

• Manage semaphores

Note: You must modify this code to suit your RTOS.

2.1.3 Driver Hardware-Interface Module

The S/UNI-VORTEX hardware interface provides functions that read from and
write to S/UNI-VORTEX device-registers. The hardware interface also provides a
template for an ISR that the driver calls when the device raises a hardware
interrupt. You must modify this function based on the interrupt configuration of
your system.

2.1.4 Driver Library Module

The driver library module is a collection of low-level utility functions that
manipulate the device registers and the contents of the driver’s DDB. The driver
library functions serve as building blocks for higher level functions that constitute
the driver API module. Application software does not normally call the driver
library functions.

2.1.5 Device Data-Block Module

The DDB stores context information about the S/UNI-VORTEX device, such as:

• Device state

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 15

• Control information

• Initialization vector

• Callback function pointers

• Statistical counts

The driver allocates context memory for the DDB when the driver registers a new
device.

2.1.6 Interrupt-Service Routine Module

The S/UNI-VORTEX driver provides an ISR called vortexISR that checks if
there are any valid interrupt conditions present for the device. This function can
be used by a system-specific interrupt-handler function to service interrupts
raised by the device.

The low-level interrupt-handler function that traps the hardware interrupt and
calls vortexISR is system and RTOS dependent. Therefore, it is outside the
scope of the driver. An example implementation of such an interrupt handler (see
page 81) as well as installation and removal functions (see page 80 and page 80)
is provided as a reference. You can customize these example implementations to
suit your specific needs.

See page 19 for a detailed explanation of the ISR and interrupt-servicing model.

2.1.7 Deferred-Processing Routine Module

The DPR provided by the S/UNI-VORTEX driver (vortexDPR) clears and
processes interrupt conditions for the device. Typically, a system specific
function, which runs as a separate task within the RTOS, executes the DPR.

See page 19 for a detailed explanation of the DPR and interrupt-servicing model.

2.2 Driver Software States

Figure 2 shows the software state diagram for the S/UNI-VORTEX driver. State
transitions occur on the successful execution of the corresponding transition
functions shown. State information helps maintain the integrity of the driver’s
DDB by controlling the set of device operations allowed in each state. Table 2
describes the software states for the S/UNI-VORTEX device as maintained by
the driver.

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 16

Figure 2: Driver Software States

Present

Init Active

vortexReset

vortexReset vortexReset

vortexActivate

vortexInit

vortexDeactivate

Empty

vortexAdd
vortexDelete

Table 2: Driver Software States

State Description

Empty The S/UNI-VORTEX device is not registered. This is the initial state.

Present The driver has detected the S/UNI-VORTEX device and the drive has
passed power-on self-tests. The driver has allocated memory to store
context information about this device.

Init An initialization vector passed by the application has successfully
initialized the S/UNI-VORTEX device. The initialization parameters
have been validated and the device has been configured by writing
appropriate bits in the control registers of the device.

Active The S/UNI-VORTEX device has been activated. This means that the
device interrupts have been enabled and the device is ready for
normal operation.

2.3 Processing Flows

This section describes some of the main processing flows of the S/UNI-VORTEX
driver:

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 17

• Device initialization, re-initialization, and shutdown

• Cell extraction

• Interrupt servicing

• Polling servicing

The flow diagrams presented here illustrate the sequence of operations that take
place for different driver functions. The diagrams also serve as a guide to the
application programmer by illustrating the sequence in which the driver API must
be invoked.

2.3.1 Device Initialization, Re-initialization, and Shutdown

The following figure shows the functions and process that the driver uses to
initialize, re-initialize, and shutdown the S/UNI-VORTEX device.

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 18

Figure 3: Device Initialization, Re-initialization, and Shutdown

De-activates the device and removes it from normal operation. This
involves disabling the device interrupts. The ISR routine for this device is
removed using sysVortexIntRemoveHandler.

Applies a software reset to the device to put it in its default startup state. It
also resets the context information for that device.

Removes the device from the list of devices being controlled by the
S/UNI-VORTEX driver. This function de-allocates the device context
information for the device being deleted.

In order to re-initialize the device, resets the device using vortexReset and
goes through the initialization sequence again.

Prepares the device for normal operation by enabling interrupts and other
global enables like HSS links transmitter. An ISR function is installed using
sysVortexIntInstallHandler. The device is now operational and all other API
can be invoked.

(OPTIONAL) Install callback functions using these two functions if
necessary. These callbacks can also be installed by passing them in the
initialization vector argument of the vortexInit function.

Initializes the device based on an initialization vector provided by the user.
The initialization vector is validated by the user and stored by the driver as
part of device context information. The device registers are then
configured accordingly.

Detects the device being added in the hardware (using
sysVortexDeviceDetect), allocates memory for storing device context
information, and applies a software reset to the device.

vortexInstallIndFn
vortexInstallCellTypeFn

vortexInit

vortexAdd

vortexActivate

vortexReset

vortexDeactivate

vortexReset

vortexDelete

END

START

2.3.2 Cell Extraction

The following figure shows the functions and process that the driver uses to
extract cells from the S/UNI-VORTEX device.

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 19

Figure 4: Cell Extraction

After extracting all the cells from the Extract FIFOs of the S/UNI-VORTEX device, the cell
reception task re-enables the RX indication for the device.

Cells are now dequeued by repeatedly invoking vortexExtractCell till the Extract FIFOs are
empty. The message completion is detected by an End of Message bit in a cell type flag
output from pCellTypeFn function. The funcion is installed by the user as a callback
function. The Extract FIFOs are again checked to see if there are any more cells to be
extracted.

The cell reception task now checks the status of the Extract FIFOs of the S/UNI-VORTEX
device. This function determines which extract FIFOs have cells to be dequeued.

The deferred processing routine invokes this indication callback function to inform the user
of a cell reception. The indVortexRxCell function is typically implemented as a message
queuing function that sends a message to another task (referred to henceforth as the cell
reception task) that is dedicated to process received cells. The deferred processing routine
also disables further RX indications.

vortexExtractCell

vortexCheckExtractFifos

indVortexRxCell

vortexEnableRxInd

END

START

2.3.3 Interrupt Servicing

The S/UNI-VORTEX driver services device interrupts using an interrupt service
routine (ISR) that traps interrupts and a deferred processing routine (DPR) that
actually processes the interrupt conditions and clears them. This lets the ISR
execute quickly and exit. Most of the time-consuming processing of the interrupt
conditions is deferred to the DPR by queuing the necessary interrupt-context
information to the DPR task. The DPR function runs in the context of a separate
task within the RTOS.

Note: Since the DPR task processes potentially serious interrupt conditions, you
should set the DPR task’s priority higher than the application task interacting with
the S/UNI-VORTEX driver.

The driver provides system-independent functions, vortexISR and vortexDPR.
You must fill in the corresponding system-specific functions, sysVortexISR and
sysVortexDPR. The system-specific functions isolate the system-specific
communication mechanism (between the ISR and DPR) from the
system-independent functions, vortexISR and vortexDPR.

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 20

Figure 5 illustrates the interrupt service model used in the S/UNI-VORTEX driver
design.

Figure 5: Interrupt Service Model

vortexISR

sysVortexIntHandler

vortexDPR

Interrupt
Context

Information
sysVortexDPRTask Indication

Callbacks
Application

Note: Instead of using an interrupt service model, you can use a polling service
model in the S/UNI-VORTEX driver to process the device’s event-indication
registers (see page 22).

Calling vortexISR

An interrupt handler function, which is system dependent, must call vortexISR.
But first, the low-level interrupt-handler function must trap the device interrupts.
You must implement this function for your system. As a reference, an example
implementation of the interrupt handler (sysVortexIntHandler) appears on
page 81. You can customize this example implementation to suit your needs.

The interrupt handler that you implement (sysVortexIntHandler) is installed
in the interrupt vector table of the system processor. Then it is called when one or
more S/UNI-VORTEX devices interrupt the processor. The interrupt handler then
calls vortexISR for each device in the active state. vortexISR reads from the
HSS interrupt-status register and the miscellaneous interrupt-status register of
the S/UNI-VORTEX.

Then vortexISR returns with the status information if a valid status bit is set. If a
valid status bit is set, vortexISR also disables that device’s interrupts. The
sysVortexIntHandler then sends a message to the DPR task that consists of
the device handles of all the S/UNI-VORTEX devices that had valid interrupt
conditions.

Note: Normally you should save the status information for deferred processing by
implementing a message queue. The interrupt handler uses
sysVortexIntHandler to send the status information to the queue.

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 21

Calling vortexDPR

sysVortexDPRTask is a system specific function that runs as a separate task
within the RTOS. You should set the DPR task’s priority higher than the
application task(s) interacting with the S/UNI-VORTEX driver. In the
message-queue implementation model, this task has an associated message
queue. The task waits for messages from the ISR on this message queue. When
a message arrives, sysVortexDPRTask calls the DPR (vortexDPR). Then
vortexDPR processes the status information and takes appropriate action based
on the specific interrupt condition detected. The nature of this processing can
differ from system to system. Therefore, vortexDPR calls different indication
callbacks for different interrupt conditions.

Typically, you should implement these callback functions as simple message
posting functions that post messages to an application task. However, you can
implement the indication callback to perform processing within the DPR task
context and return without sending any messages. In this case, ensure that the
indication function does not call any API functions that change the driver’s state,
such as vortexDelete. Also, ensure that the indication function is non-blocking
because the DPR task executes while S/UNI-VORTEX interrupts are disabled.
You can customize these callbacks to suit your system. See page 67 for a
description of the callback functions.

Note: Since the vortexISR and vortexDPR routines themselves do not specify
a communication mechanism, you have full flexibility in choosing a
communication mechanism between the two. A convenient way to implement this
communication mechanism is to use a message queue, which is a service that
most RTOSs provide.

You must implement the two system specific routines, sysVortexIntHandler
and sysVortexDPRTask. When sysVortexIntInstallHandler is called for
the first time, sysVortexIntHandler is installed in the interrupt vector table of
the processor. The sysVortexDPRTask routine is also spawned as a task
during this first time invocation of sysVortexIntInstallHandler.
sysVortexIntInstallHandler also creates the communication channel
between sysVortexIntHandler and sysVortexDPRTask. This
communication channel is most commonly a message queue associated with
sysVortexDPRTask.

Similarly, during removal of interrupts, the sysVortexIntHandler function is
removed from the microprocessor’s interrupt vector table and the task associated
with sysVortexDPRTask is deleted.

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 22

As a reference, this manual provides example implementations of the interrupt
installation and removal functions. For more information about the interrupt
removal function and prototype, see page 80. You can customize these
prototypes to suit your specific needs.

2.3.4 Polling Servicing

Instead of using an interrupt service model, you can use a polling service model
in the S/UNI-VORTEX driver to process the device’s event-indication registers.

Figure 6 illustrates the polling service model used in the S/UNI-VORTEX driver
design.

Figure 6: Polling Service Model

vortexDPR

sysVortexDPRTask Indication
Callbacks

Application

Task Delay

The polling service code includes some system specific code (prefixed by
“sysVortex”), which typically you must implement for your application. The
polling service code also includes some system independent code (prefixed by
“vortex”) provided by the driver that does not change from system to system.

In polling mode, sysVortexIntHandler and vortexISR are not used.
Instead, a sysVortexDPRTask routine is spawned as a task processor when
sysVortexIntInstallHandler is called for the first time.

In sysVortexDPRTask, the driver-supplied DPR (vortexDPR) is periodically
called for each device in the active state. The vortexDPR reads from the HSS
interrupt-status and miscellaneous interrupt-status registers of the
S/UNI-VORTEX. If some valid status bits are set, it processes the status
information and takes appropriate action based on the specific interrupt condition
detected.

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 23

The nature of this processing can differ from system to system. Therefore, the
DPR calls different indication callbacks for different interrupt conditions. You can
customize these callbacks to fit your application’s specific requirements. See
page 67 for a description of these callback functions.

Similarly, during removal of polling service, the task associated with
sysVortexDPRTask is deleted if none of S/UNI-VORTEX devices is activated.

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 24

3 DRIVER DATA STRUCTURES

The S/UNI-VORTEX driver uses several data structures. These structures help
to:

• Control and store cell header information

• Configure the S/UNI-VORTEX device

• Identify the device’s context

• Support interrupt processing

• Store indication callbacks

3.1 Cell Data Structures

This section describes the data structures that the driver uses to help control cell
insertion and extraction. These structures serve as templates for received and
transmitted cells.

3.1.1 Cell-Header Data Structure

The following structure stores cell header data.

Table 3: sVTX_CELL_HDR: Cell Header Structure

Member Name Type Description

u1UsrPrpnd[2] UINT1 2 prepend bytes that you specify

u1Hdr[5] UINT1 H1-H5 cell header bytes

u1UDF UINT1 A field you define

3.1.2 Cell-Control Data Structure

The following structure controls cell insertion and extraction operations.

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 25

Table 4: sVTX_CELL_CTRL: Cell Control Structure

Member Name Type Description

u4Crc32Prev UINT4 The CRC-32 value in the insert and extract
CRC-32 accumulator registers after the previous
cell was inserted or extracted. Used to preset the
accumulator registers before inserting or extracting
the next cell.

u4Crc32 UINT4 The CRC-32 value in the insert and extract
accumulator registers after the current cell is
inserted or extracted.

u1CellType UINT1 A flag used by the driver to indicate that the cell
extracted is the last cell or first cell of a message,
and is CRC protected or not.

• Bit 0:
• If 1, then CRC-32 on
• If 0, then CRC-32 off

• Bit 1:
• If 1, then first cell
• If 0, then not first cell

• Bit 2:
• If 1, then last cell
• If 0, then not last cell

3.2 Device-Configuration Data Structures

This section describes the data structures that the driver uses to initialize and
configure the S/UNI-VORTEX device.

3.2.1 Initialization Data Structure

The device initialization function initializes the S/UNI-VORTEX device and its
associated context structures. This involves reading an initialization vector. The
driver validates this vector and then configures the S/UNI-VORTEX device
accordingly.

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 26

The application sets the initialization vector before initializing a S/UNI-VORTEX
device. The initialization vector contains configuration parameters that the driver
uses to program the S/UNI-VORTEX device control-registers.

Note: The application must free the initialization vector memory.

Table 5: sVTX_INIT_VECTOR: Initialization Vector

Member Name Type Description

sRegInfo sVTX_REGS Contains the values that the driver
will write to the control registers of
the S/UNI-VORTEX device

indNotify VTX_IND_CB_FN Indication callback function called by
the DPR when a significant event
occurs in the driver software

indRxBOC VTX_IND_CB_FN Indication callback function called by
the DPR to forward a received valid
BOC to the application

indRxCell VTX_IND_CB_FN Indication callback function called by
the DPR when the driver must read
cells from the Extract FIFOs

pCellTypeFn VTX_CELLTYPE_FN A cell-type detector function that is
used by the driver to determine if a
cell extracted is the last or first of a
particular message, and/or if it is
CRC-32 protected

u4Reserved UINT4 Placeholder for future use

3.2.2 Register Data Structure

The register data structure contains the initial values that the driver will write to
the S/UNI-VORTEX device control-registers.

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 27

Table 6: sVTX_REGS: Device Registers

Member Name Type Description

u1MasterCfg UINT1 Master configuration
register

u1CtrlChnlBaseAddr[2] UINT1 Control channel base
address [2 bytes (LSB,
MSB)]

u1DnstrmCellIntfCfg UINT1 Downstream cell interface
configuration

u1UpstrmCellIntfCfg UINT1 Upstream cell interface
configuration

sHssRegs sVTX_HSS_REGS HSS link control registers

sIntEnRegs sVTX_INT_ENBLS Interrupt enable registers

Table 7: sVTX_HSS_REGS: Device Registers

Member Name Type Description

u1RxHssCfg UINT1 Receive HSS configuration

u1RxHssCellFilterCfgStat UINT1 Receive-HSS cell-filtering
configuration and status

u1UpstrmRRWt UINT1 Upstream round-robin weight

u1LogChnlBaseAddrLsb UINT1 Logical-channel base
address

u1LogChnlAddrRngBaseAddrMsb UINT1 Logical-channel
address-range and
logical-channel
base-address MSB

u1DnstrmLogChnlFifoRdyLvl UINT1 Downstream logical-channel
FIFO-ready level

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 28

Member Name Type Description

u1TxHssCfg UINT1 Transmit HSS configuration

3.3 Device-Context Data Structures

This section describes the data structures that the driver uses to store data about
the S/UNI-VORTEX device and related devices.

3.3.1 Global Driver-Database Structure

The Global Driver Database (GDD) stores module level data, such as the number
of devices that the driver controls and an array of pointers to the individual device
context structures (DDBs).

Table 8: sVTX_GDD: Global Driver Database

Member Name Type Description

u1NumDevs UINT1 Number of devices added

pDdb[VTX_MAX_NUM_DEVS] sVTX_DDB* Array of pointers to the
individual DDBs

u4Reserved UINT4 Reserved for future use

3.3.2 Device Data-Block Structure

The DDB contains device context data, such as:

• Device state

• Control data

• Initialization vector

• Callback function pointers

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 29

The driver allocates the DDB memory when the driver registers a new device.
The memory is de-allocated when an existing device is deleted.

Table 9: sVTX_DDB: Device Data Block

Member Name Type Description

usrCtxt VTX_USR_CTXT This variable stores the
device’s role in the context of
your system. The driver
passes it as an input
parameter when the driver
calls an application callback.

pSysInfo VOID * Pointer to system-specific
device information. For
example, in PCI bus
environments, the bus,
device, function numbers,
IRQ assignment etc.

u4BaseAddr UINT4 Base address of the device

eDevState eVTX_STATE Device state, which can be
one of the following
enumerated type values:

• VTX_EMPTY

• VTX_PRESENT

• VTX_INIT

• VTX_ACTIVE

u1IntrProcEn UINT1 1: Interrupt processing
enabled

0: Interrupt processing
disabled

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 30

Member Name Type Description

sInitVector sVTX_INIT_VECTOR Device configuration
information passed by the
application to the driver. The
driver writes the appropriate
S/UNI-VORTEX device
registers based on the
contents of this vector.

sIntEnbls sVTX_INT_ENBLS Maintains a snapshot of the
current interrupt-enables
registers for the
S/UNI-VORTEX device

indNotify VTX_IND_CB_FN Indication callback function
called by the DPR when a
significant event occurs in the
driver software

indRxBOC VTX_IND_CB_FN Indication callback function
called by the DPR to forward
a received valid BOC to the
application

indRxCell VTX_IND_CB_FN Indication callback function
called by the DPR when the
driver must read cells from
the Extract FIFOs

pCellTypeFn VTX_CELLTYPE_FN Indication callback function
called by the driver when
extracting a cell

sLogChnlAddrRng sVTX_CHNL_ADDR_RNG An array of
VTX_NUM_HSS_LNKS
elements. Each element
contains the logical channel
base address and range for a
particular serial link.

sStatCounts sVTX_STAT_COUNTS Interrupt status counts per
event

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 31

Member Name Type Description

lockId VTX_SEM_ID Semaphore for mutually
exclusive access to
sStatCounts

u4Reserved UINT4 Placeholder for future use

3.4 Interrupt Data Structures

This section describes the data structures that the S/UNI-VORTEX driver uses to
store interrupt context data for interrupt-enable bit-setting data.

3.4.1 Interrupt-Enable Data Structure

The interrupt-enable bit-setting data is stored in the following structure.

Table 10: sVTX_INT_ENBLS: Interrupt Enables

Member Name Type Description

u1MasterEn UINT1 Master interrupt enable

u1ROOLEn UINT1 ROOLE bit: Tracks changes in ROOLV
bit. It is located in the clock monitor
register.

u1DnstrmCellIntfEn UINT1 Downstream-cell interface
interrupt-enable

u1UpstrmCellIntfIntEn UINT1 Upstream-cell interface
interrupt-enable (CELLXFERRE bit)

u1MicroCellBufCtrl UINT1 Microprocessor cell-buffer interrupt
control

u1RxHssIntEn[8] UINT1 Receive-HSS interrupt-enables (8
instances)

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 32

u1RxHssFifoOvr[8] UINT1 Receive-HSS FIFO-overflow register
(8 instances)

u1RxHssBocIntEn[8] UINT1 Receive-HSS BOC interrupt-enables
(8 instances)

3.4.2 Interrupt-Context Data Structure

The following structure passes interrupt context data from the interrupt servicing
routine to the DPR.

Table 11: sVTX_INT_CTXT: Interrupt Context

Member Name Type Description

u1NumDevs UINT1 Number of devices for which interrupts have to
be processed

pu4DevHandles UINT4 * Array of size VTX_MAX_NUM_DEVS. The first
u1NumDevs elements of this array contain the
device handles for the devices for which
interrupts have to be processed.

3.5 Statistical Count Structure

This section describes the data structure that the S/UNI-VORTEX driver uses to
store statistical counts.

Table 12: sVTX_STAT_COUNTS: Statistical Counts

Member Name Type Description

CntPllErr UINT4 Register 0x07, bit 3

CntBufFifoOvrRn UINT4 Register 0x10, bit 5

CntBufFifoCrc32Err UINT4 Register 0x10, bit 7

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 33

Member Name Type Description

CntUpStrmCellIfXferErr UINT4 Register 0x0C, bit 7

CntDwnStrmCellIfParityErr UINT4 Register 0x0B, bit 1

CntDwnStrmCellIfTxStCellErr UINT4 Register 0x0B, bit 2

CntTxCellCntOvrnInd[8] UINT4 Register 0x91, 0xB1, 0xD1,
0xF1, 0x111, 0x131, 0x151,
0x171 bit 5

CntTxCellCntUpdInd[8] UINT4 Register 0x91, 0xB1, 0xD1,
0xF1, 0x111, 0x131, 0x151,
0x171 bit 6

CntTxFifoOvrRn[8] UINT4 Register 0x8D, 0xAD, 0xCD,
0xED, 0x10D, 0x12D,
0x14D, 0x16D bit 0

CntRxTransFrmLos[8] UINT4 Register 0x83, 0xA3, 0xC3,
0xE3, 0x103, 0x123, 0x143,
0x163 bit 0

CntRxTransFrmLcd[8] UINT4 Register 0x83, 0xA3, 0xC3,
0xE3, 0x103, 0x123, 0x143,
0x163 bit 1

CntRxTransOfActv[8] UINT4 Register 0x83, 0xA3, 0xC3,
0xE3, 0x103, 0x123, 0x143,
0x163 bit 2

CntRxNonZeroCrc[8] UINT4 Register 0x83, 0xA3, 0xC3,
0xE3, 0x103, 0x123, 0x143,
0x163 bit 3

CntRxCellDelinXSync[8] UINT4 Register 0x83, 0xA3, 0xC3,
0xE3, 0x103, 0x123, 0x143,
0x163 bit 4

CntRxCellHcsErrDetect[8] UINT4 Register 0x83, 0xA3, 0xC3,
0xE3, 0x103, 0x123, 0x143,
0x163 bit 5

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 34

Member Name Type Description

CntRxCellCntsUpd[8] UINT4 Register 0x83, 0xA3, 0xC3,
0xE3, 0x103, 0x123, 0x143,
0x163 bit 6

CntRxHldCntOvr[8] UINT4 Register 0x83, 0xA3, 0xC3,
0xE3, 0x103, 0x123, 0x143,
0x163 bit 7

CntRxCellDatLstFifoOvrFlw[8] UINT4 Register 0x88, 0xA8, 0xC8,
0xE8, 0x108, 0x128, 0x148,
0x168 bit 4

CntRxCellCtlLstFifoOvrFlw[8] UINT4 Register 0x88, 0xA8, 0xC8,
0xE8, 0x108, 0x128, 0x148,
0x168 bit 5

CntRxBocValid[8] UINT4 Register 0x99, 0xB9, 0xD9,
0xF9, 0x119, 0x139, 0x159,
0x179 bit 6

CntRxBocIdle[8] UINT4 Register 0x99, 0xB9, 0xD9,
0xF9, 0x119, 0x139, 0x159,
0x179 bit 7

CountInterrupts UINT4 Number of interrupts

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 35

4 APPLICATION INTERFACE FUNCTIONS

The driver's API is a collection of high level functions that application programmers
can call to configure, control, and monitor S/UNI-VORTEX devices.

Note: These functions are not re-entrant. This means that two application tasks
cannot invoke the same API at the same time. However, the driver protects it’s data
structures from concurrent accesses by the application and the DPR task.

The application interface also consists of callback functions. These callback
functions notify the application of significant events that take place within the device
and driver, such as:

• Occurrence of critical errors

• Reception of cells

• Reception of valid BOCs

The vortexDPR routine invokes the indication callback functions. These execute in
the context of the DPR task. Typically, these callback routines are implemented as
simple message posting routines that post messages to an application task.
However, the user can choose to implement the indication callback to perform
processing within the DPR task context and return without sending any messages. In
this case, ensure that the indication routine does not call any API function that
changes the driver’s state, such as vortexDelete.

The indication routine should be non-blocking because the DPR task executes while
interrupts are disabled. The DPR task is also responsible for re-enabling device
interrupts once the deferred processing is complete.

Many API functions change the device’s state. For information about device
states, see page 15.

Figure 7 illustrates the external interfaces defined for the S/UNI-VORTEX driver.

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 36

Figure 7: Application Interface

RTOS

 Function Calls Indication Callbacks

Register AccessHardware
Interrupts

Service Calls

Application

S/UNI-VORTEX Driver

S/UNI-VORTEX Device

Application
Interface

4.1 Driver Initialization and Shutdown

This section describes the API functions used to initialize and shutdown the
driver’s modules.

4.1.1 vortexModuleInit: Initializing Driver Modules

This function performs module level initialization of the device driver. This
involves allocating memory for the GDD and initializing the data structure.

Valid States Not applicable

Side Effects None

Prototype INT4 vortexModuleInit(VOID)

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 37

Inputs None

Outputs None

Return Codes VTX_SUCCESS

VTX_ERR_MEM_ALLOC (memory allocation failure)

VTX_ERR_MODULE_ALREADY_INIT

4.1.2 vortexModuleShutdown: Shutting Down Driver Modules

This function performs module level shutdown of the driver. This involves deleting
all devices controlled by the driver and de-allocating the GDD.

Valid States All states

Side Effects None

Prototype VOID vortexModuleShutdown(VOID)

Inputs None

Outputs None

Return Codes None

4.2 Device Addition, Reset, and Deletion

When you add a new S/UNI-VORTEX device, the driver’s device-addition
functions allocate memory to store context information for new devices. The
driver also applies a software reset to the device. The device deletion function
de-allocates device context memory during device shutdown.

4.2.1 vortexAdd: Adding Devices

This function detects the new device in the hardware and allocates memory for
the DDB. Then it stores the device’s role (within your system’s context) and
returns the pointer to the DDB as a handle back to your system. You should use
the device handle to identify the device on which the driver will perform the
operation.

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 38

Valid States VTX_EMPTY

Side Effects This function puts the device in the VTX_PRESENT state. The
function applies a software reset to the device.

Prototype INT4 vortexAdd(VTX_USR_CTXT usrCtxt, VORTEX
*pVortex)

Inputs usrCtxt: Pointer to context information (maintained by your
system) for the device being added

Outputs pVortex: Pointer to the S/UNI-VORTEX device handle that
contains context information maintained by the driver. The
variable type, VORTEX, is actually the following type, which
you define:

• #define VORTEX (void *)

This prevents the application from accessing the DDB directly.

Return Codes VTX_SUCCESS

VTX_ERR_INVALID_STATE (invalid device state)

VTX_ERR_DEV_NOT_DETECTED (device was not detected)

VTX_ERR_MEM_ALLOC (memory allocation failure)

VTX_ERR_BAD_REVISION (revision not supported)

4.2.2 vortexReset: Resetting Devices

This function applies a software reset to the S/UNI-VORTEX device. It also
resets all of the device’s context information in the DDB (except for the
initialization vector, which it leaves unmodified). Typically, the driver calls this
function during device shutdown, or before re-initializing the device with an
initialization vector.

Valid States All states except VTX_EMPTY

Side Effects This function puts the device in the VTX_PRESENT state.
Therefore, the driver must initialize the device after a reset.

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 39

Prototype INT4 vortexReset(VORTEX vortex)

Inputs vortex: Pointer to DDB that contains device context
information maintained by the driver.

Outputs None

Return Codes VTX_SUCCESS

VTX_ERR_INVALID_DEVICE (invalid device handle)

4.2.3 vortexDelete: Deleting Devices

This function removes the specified device from the list of devices controlled by
the S/UNI-VORTEX driver. Deleting a device involves de-allocating the DDB for
that device.

Valid States VTX_PRESENT

Side Effects This function changes the device state to VTX_EMPTY.

Prototype INT4 vortexDelete(VORTEX vortex)

Inputs vortex: Pointer to device context information maintained by
the driver

Outputs None

Return Codes VTX_SUCCESS

VTX_ERR_INVALID_DEVICE (invalid device handle)

VTX_ERR_INVALID_STATE (invalid device state)

4.3 Reading from and Writing to Devices

This section describes the API functions used to read from and write to
S/UNI-VORTEX devices. Their tasks include reading from and writing to the
registers of a device.

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 40

4.3.1 vortexRead: Reading from Device Registers

This function can read from a register of a specific S/UNI-VORTEX device by
providing the register identifier. This function derives the actual address location
based on the device handle and register identifier inputs. It then reads the
contents of this address location using the system specific macro,
sysVortexRawRead.

Prototype INT4 vortexRead(VORTEX vortex, UINT2 u2RegId,
UINT1 *pu1Val)

Inputs vortex: Pointer to device context information

u2RegId: Register identifier

Outputs pu1Val: Register value

Return Codes VTX_SUCCESS

VTX_ERR_INVALID_DEVICE (invalid device handle)

VTX_ERR_REG_RANGE (invalid register identifier)

4.3.2 vortexWrite: Writing to Device Registers

This function can write to a register of a specific S/UNI-VORTEX device by
providing the register identifier. This function derives the actual address location
based on the device handle and register identifier inputs. It then writes the
contents of this address location using the system specific macro,
sysVortexRawWrite.

Prototype INT4 vortexWrite(VORTEX vortex, UINT2
u2RegId, UINT1 u1Val)

Inputs vortex: Pointer to device context information

u2RegId: Register identifier

u1Val: Value to be written

Outputs None

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 41

Return Codes VTX_SUCCESS

VTX_ERR_INVALID_DEVICE (invalid device handle)

VTX_ERR_REG_RANGE (invalid register identifier)

4.4 Device Initialization

This section describes the API functions used to initialize S/UNI-VORTEX
devices. Their tasks include initializing the device based on the initialization
vector passed by the application. They also install and remove the indication
callback functions that vortexDPR calls.

4.4.1 vortexInit: Initializing Devices

This function initializes the device based on the initialization vector passed by the
application. The driver validates this initialization vector and then stores it in the
device’s DDB. The driver then configures the device registers accordingly.

Valid States VTX_PRESENT

Side Effects This function puts the device in the VTX_INIT state.

Prototype INT4 vortexInit(VORTEX vortex,
sVTX_INIT_VECT, sInitVector)

Inputs vortex: Pointer to DDB that contains device context
information maintained by the driver

sInitVector: Initialization vector that the driver uses to
program the device registers

Outputs None

Return Codes VTX_SUCCESS

VTX_ERR_INVALID_DEVICE (invalid device handle)

VTX_ERR_INVALID_STATE (invalid device state)

VTX_ERR_INVALID_INIT_VECTOR (invalid initialization
vector)

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 42

4.4.2 vortexInstallIndFn: Installing Indication Callback Functions

This function installs the indication callback functions (which you define) that
vortexDPR calls. The function pointer is stored in the device context structure
(the DDB).

Valid States VTX_INIT

Side Effects None

Prototype INT4 vortexInstallIndFn(VORTEX vortex,
eVTX_CB_TYPE eCbType, VTX_IND_CB_FN pCbFn)

Inputs vortex: Pointer to DDB that contains device context
information maintained by the driver

eCbType: Identifies the callback being installed, which can be
one of the following:

• VTX_CB_NOTIFY

• VTX_CB_RX_BOC

• VTX_CB_RX_CELL

pCbFn: Callback function that the driver is installing

Outputs None

Return Codes VTX_SUCCESS

VTX_ERR_INVALID_DEVICE (invalid device handle)

VTX_ERR_INVALID_CB_TYPE (invalid callback function type)

4.4.3 vortexRemoveIndFn: Removing Indication Callback Functions

This function removes the indication callback functions (which you define) that
vortexDPR calls.

Valid States VTX_INIT

Side Effects The driver will no longer report events to the application.

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 43

Prototype INT4 vortexRemoveIndFn(VORTEX vortex,
eVTX_CB_TYPE eCbType)

Inputs vortex: Pointer to DDB that contains device context
information maintained by the driver

eCbType: Identifies the callback being installed, which can be
one of the following:

• VTX_CB_NOTIFY

• VTX_CB_RX_BOC

• VTX_CB_RX_CELL

Outputs None

Return Codes VTX_SUCCESS

VTX_ERR_INVALID_DEVICE (invalid device handle)

VTX_ERR_INVALID_CB_TYPE (invalid callback function type)

4.5 Device Activation and Deactivation

This section describes the API functions used to activate and deactivate
S/UNI-VORTEX devices. These functions set the device interrupts and other
global enables.

4.5.1 vortexActivate: Activating Devices

This function activates the S/UNI-VORTEX device by preparing it for normal
operation. This involves enabling device interrupts and other global enables (for
example, the HSS link transmitter).

Valid States VTX_INIT

Side Effects Puts the device in VTX_ACTIVE state.

Prototype INT4 vortexActivate(VORTEX vortex)

Inputs vortex: Pointer to DDB that contains device context
information maintained by the driver

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 44

Outputs None

Return Codes VTX_SUCCESS

VTX_ERR_INVALID_DEVICE (invalid device handle)

VTX_ERR_INVALID_STATE (invalid device state)

4.5.2 vortexDeactivate: Deactivating Devices

This function de-activates the S/UNI-VORTEX device and removes it from normal
operation. This involves disabling device interrupts and other global disables (for
example, the HSS link transmitter).

Valid States VTX_ACTIVE

Side Effects Puts the device in VTX_INIT state.

Prototype INT4 vortexDeactivate(VORTEX vortex)

Inputs vortex: Pointer to DDB that contains device context
information maintained by the driver

Outputs None

Return Codes VTX_SUCCESS

VTX_ERR_INVALID_DEVICE (invalid device handle)

VTX_ERR_INVALID_STATE (invalid device state)

4.6 Device Diagnostics

This section describes the API functions used to diagnose the S/UNI-VORTEX
device. Their tasks include:

• Verifying the correctness of the microprocessor’s access to the device
registers

• Enabling or disabling a diagnostic or line loopback on the specified HSS link

• Monitoring the activity of the device’s clocks

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 45

4.6.1 vortexRegisterTest: Verifying Device Register Access

This function verifies the correctness of the microprocessor’s access to the
device registers by writing values to the writable registers and reading them
back.

Valid States VTX_PRESENT

Side Effects Puts the device in the VTX_PRESENT state after the test.
Therefore, the device should be re-initialized after calling this
function.

Prototype INT4 vortexRegisterTest(VORTEX vortex)

Inputs vortex: Pointer to DDB that contains device context
information maintained by the driver

Outputs None

Return Codes VTX_SUCCESS

VTX_ERR_INVALID_DEVICE (invalid device handle)

VTX_FAILURE (test failed)

4.6.2 vortexLoopback: Enabling/Disabling Diagnostic or Line Loopback

This function enables or disables a diagnostic or line loopback on the specified
HSS link.

Valid States All states except VTX_EMPTY

Side Effects None

Prototype INT4 vortexLoopback(VORTEX vortex, UINT1
u1HssId, UINT1 u1LpbkType, UINT1 u1Enable)

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 46

Inputs vortex: Pointer to DDB that contains device context
information maintained by the driver

u1HssLnkId: Serial link identifier. Valid identifiers are 0
through (VTX_NUM_HSS_LNKS – 1).

u1LpbkType: Type of loopback. It can be VTX_DIAG_LPBK
or VTX_LINE_LPBK.

u1Enable: Loopback operation requested. It can be
VTX_LPBK_SET or VTX_LPBK_RESET.

Outputs None

Return Codes VTX_SUCCESS

VTX_ERR_INVALID_DEVICE (invalid device handle)

VTX_ERR_INVALID_LPBK_TYPE (invalid loopback type)

VTX_ERR_INVALID_HSS_ID (invalid serial link identifier)

VTX_ERR_INVALID_FLAG (invalid loopback flag)

4.6.3 vortexGetClockStatus: Monitoring Device Clocks

This function monitors the activity of the S/UNI-VORTEX device clocks. It reads
the contents of the clock monitor register and provides the status of each clock in
a bit vector format. Call this function periodically to check if the clock signals are
making low to high transitions.

Valid States All states except VTX_EMPTY

Side Effects None

Prototype INT4 vortexGetClockStatus(VORTEX vortex,
UINT1 *pu1ClkStat)

Inputs vortex: Pointer to DDB that contains device context
information maintained by the driver

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 47

Outputs pu1ClkStat: Contains the following bit vector that indicates
the active/inactive status of the S/UNI-VORTEX device clocks.
A one in the bit position indicates that the clock is active. A
zero indicates that the clock is inactive.

• Bit 0: Transmit FIFO clock input (TCLK)
• Bit 1: Receive FIFO clock input (RCLK)
• Bit 2: Reference clock input (REFCLK)

Return Codes VTX_SUCCESS

VTX_ERR_INVALID_DEVICE (invalid device handle)

4.7 HSS Link Configuration

This section describes the API functions used to configure HSS links. Their tasks
include:

• Retrieving the contents of the specified serial-link’s configuration registers

• Configuring or modifying the contents of the specified serial-link’s
configuration registers

• Getting a snapshot of the state of the eight serial links for the specified device

• Retrieving the logical-channel address information for all serial links of the
specified device

4.7.1 vortexHssGetConfig: Getting HSS-Link Configuration Information

This function retrieves the contents of the specified serial link’s configuration
registers. With one call, this function can retrieve the value of individual
configuration registers as well as the entire configuration register set.

Valid States VTX_INIT, VTX_ACTIVE

Side Effects None

Prototype INT4 vortexHssGetConfig(VORTEX vortex, UINT1
u1HssLnkId, eVTX_HSS_REG eHssRegId,
sVTX_HSS_REGS *psHssRegs)

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 48

Inputs vortex: Pointer to DDB that contains device context
information maintained by the driver

u1HssLnkId: Serial link identifier. Valid identifiers are 0
through (VTX_NUM_HSS_LNKS – 1)

eHssRegId: Specifies the register holding the value the driver
will retrieve. It can be one of the following:

• VTX_RX_HSS_CFG

• VTX_RX_HSS_CELL_FILTER_CFGSTAT

• VTX_UPSTRM_RR_WT

• VTX_LOG_CHNL_BASE_ADDR_RANGE

• VTX_DNSTRM_LOG_CHNL_FIFO_RDY_LVL

• VTX_TX_HSS_CFG

• VTX_ALL_REGS

Note: The logical channel base address and address range
are retrieved together. In addition, the driver can retrieve all
configuration registers at once using VTX_ALL_REGS.

Outputs psHssRegs: Contents of the specified HSS link control
register(s) output by this function. These contents are valid
only if the function returns VTX_SUCCESS. Further, only those
fields of this structure are valid that have been requested
using the input parameter, eHssRegId.

Return Codes VTX_SUCCESS

VTX_ERR_INVALID_DEVICE (invalid device handle)

VTX_ERR_INVALID_STATE (invalid device state)

VTX_ERR_INVALID_HSS_ID (invalid serial link identifier)

VTX_ERR_INVALID_REG_ID (invalid register ID)

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 49

4.7.2 vortexHssSetConfig: Modifying HSS-Link Configuration Information

This function sets up or modifies the contents of the specified serial link’s
configuration registers. With one call, this function can set the value of individual
configuration registers as well as the entire configuration register set.

Valid States VTX_INIT, VTX_ACTIVE

Side Effects None

Prototype INT4 vortexHssSetConfig(VORTEX vortex, UINT1
u1HssLnkId, eVTX_HSS_REG eHssRegId,
sVTX_HSS_REGS *psHssRegs)

Inputs vortex: Pointer to DDB that contains device context
information maintained by the driver

u1HssLnkId: Serial link identifier. Valid identifiers are 0
through (VTX_NUM_HSS_LNKS – 1)

eHssRegId: Specifies the register with the value the driver
will write. It can be one of the following:

• VTX_RX_HSS_CFG

• VTX_RX_HSS_CELL_FILTER_CFGSTAT

• VTX_UPSTRM_RR_WT

• VTX_LOG_CHNL_BASE_ADDR_RANGE

• VTX_DNSTRM_LOG_CHNL_FIFO_RDY_LVL

• VTX_TX_HSS_CFG

• VTX_ALL_REGS

Note: The logical channel base address and address range
have to be set together. In addition, the driver can set all
configuration registers at once using VTX_ALL_REGS.

psHssRegs: Contents of the specified HSS link control
register(s) to be set. The only fields in this structure that will
be set are those that the driver has requested using
eHssRegId.

Outputs None

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 50

Return Codes VTX_SUCCESS

VTX_ERR_INVALID_DEVICE (invalid device handle)

VTX_ERR_INVALID_STATE (invalid device state)

VTX_ERR_INVALID_HSS_ID (invalid serial link identifier)

VTX_ERR_INVALID_REG_ID (invalid register ID)

VTX_ERR_INVALID_CONTENTS (values to be written are
invalid)

4.7.3 vortexHssSetState: Setting Vortex HSS Link State

This function can be used to configure the VORTEX HSS link in a specified state.

Valid States VTX_INIT, VTX_ACTIVE

Side Effects None

Prototype INT4 vortexHssSetState(VORTEX vortex, UINT1
u1HssLnkId, UINT1 u1State)

Inputs vortex : pointer to DDB that contains device context
 information maintained by the driver.

u1HssLnkId : HSS link ID (0-7 valid)

u1State : State for HSS links:

VTX_DISABLE
VTX_ENABLE_INACTIVE
VTX_ENABLE_ACTIVE

Outputs None

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 51

Return Codes VTX_SUCCESS

VTX_ERR_INVALID_DEVICE (invalid device handle)

VTX_ERR_INVALID_STATE (invalid device state)

VTX_ERR_INVALID_HSS_ID (invalid serial link identifier)

VTX_ERR_INVALID_FLAG (invalid HSS link state)

4.7.4 vortexHssGetLinkInfo: Getting the State of HSS Links

This function gets a snapshot of the state (unconfigured, configured, disabled) of
the eight serial links for the specified S/UNI-VORTEX device.

Valid States VTX_INIT, VTX_ACTIVE

Side Effects None

Prototype INT4 vortexHssGetLinkInfo(VORTEX vortex,
eVTX_LNK_CFG_STATE *peLnkCfgState)

Inputs vortex: Pointer to DDB that contains device context
information maintained by the driver

Outputs peLnkCfgState: Pointer to an array of VTX_NUM_HSS_LNKS
elements. Each element contains the status of a serial link.
The status value can be one of the following:

• VTX_LNK_LOOPBACK

• VTX_LNK_DISABLED

• VTX_LNK_ENABLED

Note: It is the responsibility of the calling function to allocate
and free the array to which peLnkState points. The contents
of the array are only valid if this function returns with
VTX_SUCCESS.

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 52

Return Codes VTX_SUCCESS

VTX_ERR_INVALID_DEVICE (invalid device handle)

VTX_ERR_INVALID_STATE (invalid device state)

4.7.5 vortexHssGetLogChnlAddrMap: Getting Logical Channel Addresses

This function can retrieve the logical-channel address information (base address
and address range) for all serial links of the specified device.

Valid States VTX_INIT, VTX_ACTIVE

Side Effects None

Prototype INT4 vortexHssGetLogChnlAddrMap(VORTEX
vortex, sVTX_CHNL_ADDR_RNG *psAddrRng)

Inputs vortex: Pointer to DDB that contains device context
information maintained by the driver

Outputs psAddrRng: Pointer to an array of VTX_NUM_HSS_LNKS
elements. Each element contains the logical-channel base
address and range for a particular serial link.

Note: It is the responsibility of the calling function to allocate
and free the structure to which psAddrRng points. The
contents of this structure are only valid if this function returns
with VTX_SUCCESS.

Return Codes VTX_SUCCESS

VTX_ERR_INVALID_DEVICE (invalid device handle)

VTX_ERR_INVALID_STATE (invalid device state)

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 53

4.7.6 vortexHssSetLogChnlAddrMap: Setting Logical Channel Addresses

This function can be used to set the logical channel address information (base
address and address range) for all serial links of the specified device.

Valid States VTX_INIT, VTX_ACTIVE

Side Effects None

Prototype INT4 vortexHssSetLogChnlAddrMap(VORTEX
vortex,sVTX_CHNL_ADDR_RNG *psAddrRng)

Inputs vortex : pointer to DDB that contains device context
 information maintained by the driver.

psAddrRng : pointer to an array of VTX_NUM_HSS_LNKS
 elements; each element contains the logical
 channel base address and range for a
 particular serial link.

Note: It is the responsibility of the calling routine to allocate,
assign, and free the structure psAddrRng

Outputs None

Return Codes VTX_SUCCESS

VTX_ERR_INVALID_DEVICE (invalid device handle)

VTX_ERR_INVALID_STATE (invalid device state)

4.7.7 vortexSetCtrlChnlBaseAddr: Setting Control Channel Base Addresses

This function can be used to set the control channel base address for the
specified device.

Valid States VTX_INIT, VTX_ACTIVE

Side Effects None

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 54

Prototype INT4 vortexSetCtrlChnlBaseAddr(VORTEX vortex,

UINT2 u2BaseAddr)

Inputs vortex : pointer to DDB that contains device context
 information maintained by the driver.

u2BaseAddr : base address of the control channel.

 bits 0-2: must be 0 or will be ignored

 bits 3-11: programmed into the VORTEX
 register

 bits 12-15: must be 0 or will be ignored

Outputs None

Return Codes VTX_SUCCESS

VTX_ERR_INVALID_DEVICE (invalid device handle)

VTX_ERR_INVALID_STATE (invalid device state)

4.8 Cell Insertion and Extraction

This section describes the API functions used to insert and extract cells. Their
tasks include:

• Transmitting a cell on a specified HSS link ’s control channel

• Extracting a cell received on a specified HSS link ’s control channel

• Returning the contents of the microprocessor extract FIFO ready register

• Enabling the interrupt indication for a cell’s reception

• Installing a callback function that determines the type of cell being extracted

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 55

4.8.1 vortexInsertCell: Inserting Cells into HSS Links

This function transmits a cell on a specified HSS link ’s control channel. This
function can send messages, which you define, over the HSS links. If the
message is longer than the length of a cell’s payload, then the application should
segment the message into 48 byte cells. Call this function repeatedly until all the
cells that constitute the message have been transmitted.

Optionally, a 32-bit CRC can protect messages. The CRC accumulates each time
a cell belonging to the message is sent. For the last cell of the message
(indicated by the application), the CRC is inserted into the last four bytes of the
cell’s payload.

Message interleaving (over different control channels and different circuits on
same control channel) is allowed. For CRC-32 protected messages, message
interleaving requires the application to save the intermediate CRC-32 value
output by this function, if a cell has to be sent out on another control channel or
another circuit on the same control channel.

Valid States VTX_ACTIVE

Side Effects You should give cell reception higher priority than cell
transmission to prevent extract FIFO overflow. In other words,
all cells of a received message should be extracted before
switching context.

Prototype INT4 vortexInsertCell(VORTEX vortex, UINT1
u1HssLnkId, sVTX_CELL_HDR *psCellHdr, UINT1
*pu1CellPyld, sVTX_CELL_CTRL *psCtrl)

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 56

Inputs vortex: Pointer to DDB that contains device context
information maintained by the driver

u1HssLnkId: Serial link identifier. Valid identifiers are 0
through (VTX_NUM_HSS_LNKS – 1).

psCellHdr: Pointer to the cell header structure that contains
the two prepend bytes that you define (optional), H1-H4 bytes,
and the H5 (optional) and UDF (optional) bytes. The driver
uses the optional bytes based on the transmit HSS
configuration register contents.

pu1CellPyld: Pointer to first byte of cell payload (48
contiguous bytes)

psCtrl->u1CellType: Contains three control-flag bits:

• Bit 0:
• 0, no CRC protection required
• 1, CRC protected

• Bit 1:
• 0, non-first cell
• 1, first cell

• Bit 2:
• 0, non-last cell
• 1, last cell

• For bits (2,1):
• 01b, first cell of message
• 10b, last cell of message
• 11b, single cell message
• 00b, intermediate cell

psCtrl->u4Crc32Prev: Used to restore previously saved
CRC-32 value output by this function. Only applicable if bit 0
of psCtrl->u1CrcFlg is set.

Outputs psCtrl->u4Crc32: Used to output CRC-32 value after
writing a cell. The driver then passes this value back as an
input parameter (psCtrl->u4Crc32Prev) for the next cell to
be transmitted on the same control channel connection.

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 57

Return Codes VTX_SUCCESS

VTX_ERR_INVALID_DEVICE (invalid device handle)

VTX_ERR_INVALID_STATE (invalid device state)

VTX_ERR_INVALID_HSS_ID (invalid serial link identifier)

VTX_ERR_CELL_TX_BUSY (cell transmission failed)

4.8.2 vortexExtractCell: Extracting Cells from HSS Links

This function extracts a cell received on a specified HSS link ’s control channel.
This function also receives messages, which you define, that can span multiple
cells. The application must call this function once for each cell that constitutes the
message.

If the incoming message contains a CRC-32 field at the end, then the driver can
perform a CRC check over the body of the message. The function also provides
the header information of the cell to the calling function.

Valid States VTX_ACTIVE

Side Effects You should give cell reception a higher priority than cell
transmission to prevent extract FIFO overflow. In other
words, all cells of a received message should be extracted
before switching context.

Prototype INT4 vortexExtractCell(VORTEX vortex, UINT1
u1HssLnkId, sVTX_CELL_HDR *psCellHdr, UINT1
*pu1CellPyld, sVTX_CELL_CTRL *psCtrl)

Inputs vortex: Pointer to DDB that contains device context
information maintained by the driver

u1HssLnkId: Serial link identifier. Valid identifiers are 0
through (VTX_NUM_HSS_LNKS – 1).

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 58

Outputs psCellHdr: Pointer to the cell header-data received.

pu1CellPyld: Pointer to first byte of cell payload 48
contiguous bytes)

psCtrl->u4Crc32: Used to output CRC-32 value after
reading a cell. The driver then passes this value back as an
input parameter (psCtrl->u4Crc32Prev) for the next cell
to be extracted on the same control channel connection.

psCtrl->u1CrcFlg: This is a control flag. Contains the
following bit vector:

• Bit 0: CRC protection flag
• Bit 1: Flag for first cell of a CRC protected message
• Bit 2: Flag for last cell of a CRC protected message

Return Codes VTX_SUCCESS

VTX_ERR_INVALID_DEVICE (invalid device handle)

VTX_ERR_INVALID_STATE (invalid device state)

VTX_ERR_INVALID_HSS_ID (invalid serial link identifier)

VTX_ERR_CB_FN_NOT_INSTALLED (callback function is
not installed yet)

VTX_ERR_CELL_DISCARDED (cell reception failed)

VTX_ERR_CELL_RX_CRC (cell CRC error)

4.8.3 vortexCheckExtractFifos: Getting Contents of the Extract-FIFO-Ready
Register

This function returns the contents of the microprocessor extract-FIFO-ready
register. This function can check if there are any cells to extract from the extract
FIFOs.

Valid States VTX_ACTIVE

Side Effects None

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 59

Prototype UINT4 vortexCheckExtractFifos(VORTEX vortex,
UINT1 *pu1FifoStat)

Inputs vortex: Pointer to DDB that contains device context
information maintained by the driver

Outputs pu1FifoStat: A bit vector of the status of the eight extract
FIFOs. Each bit corresponds to a link ID. The following bit
vector represents the state of each Extract FIFO.

For bit # (where # is 0 to 7):

• If value = 1, then HSS link # has at least one cell ready
for extraction

• If value = 0, then no cells present at HSS link #

Return Codes VTX_SUCCESS

VTX_ERR_INVALID_DEVICE (invalid device handle)

VTX_ERR_INVALID_STATE (invalid device state)

4.8.4 vortexEnableRxCellInd: Enabling the Received Cell Indicator

This function enables the interrupt indication in the device for the reception of a
cell. The application calls this function after it has responded to a previous
indication by extracting all received cells (using multiple vortexExtractCell
calls). The application task can now re-enable this indication and wait for the
arrival of more cells.

Valid States VTX_ACTIVE

Side Effects None

Prototype INT4 vortexEnableRxCellInd(VORTEX vortex)

Inputs vortex: Pointer to DDB that contains device context
information maintained by the driver

Outputs None

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 60

Return Codes VTX_SUCCESS

VTX_ERR_INVALID_DEVICE (invalid device handle)

VTX_ERR_INVALID_STATE (invalid device state)

4.8.5 vortexInstallCellTypeFn: Installing Callback Functions

This function can install a callback function (which you define) that the driver
uses to determine the type of cell it is extracting. The detector function takes a
cell header as the input argument and returns a cell type bit. It also returns the
accumulated CRC value for the previous cells received for the same message.

Valid States VTX_INIT, VTX_ACTIVE

Side Effects None

Prototype INT4 vortexInstallCellTypeFn(VORTEX vortex,
VTX_CELLTYPE_FN pCellTypeFn)

Inputs vortex: Pointer to DDB that contains device context
information maintained by the driver

pCellTypeFn: pointer to the EOM detector function. The
prototype of this function is:

• UINT1 pCellTypeFn(UINT1 *pu1Hdr, UINT4
*pu4Crc32Prev)

pu1Hdr is the pointer to the first byte of the cell header’s
eight bytes. pu4Crc32Prev is the accumulated CRC for the
previous cells received for the same message.

Outputs None

Return Codes VTX_SUCCESS

VTX_ERR_INVALID_DEVICE (invalid device handle)

VTX_ERR_INVALID_STATE (invalid device state)

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 61

4.9 BOC Transmission and Reception

This section describes the API functions used to transmit and receive bit-oriented
code (BOC). Their tasks include transmitting the specified BOC on the specified
HSS link, and reading the BOC received on a serial link

4.9.1 vortexTxBOC: Transmitting BOC

This function transmits the specified BOC on the specified HSS link.

Valid States VTX_ACTIVE

Side Effects a “u1Code” of 000001b (Loopback activate) is a special
case. When transmitting a loopback activate code. The
RDIDIS bit in the Serial Link Maintenance register is set to
logic 1 to prevent a premature loopback due to a preemptive
remote defect indication (RDI) code being sent when a
loss-of-signal or loss-of-cell-delineation event occurs.

Prototype INT4 vortexTxBOC(VORTEX vortex, UINT1
u1HssLnkId, UINT1 u1Code)

Inputs vortex: Pointer to DDB that contains device context
information maintained by the driver

u1HssLnkId: Serial link identifier. Valid identifiers are 0
through (VTX_NUM_HSS_LNKS – 1).

u1Code: BOC to be transmitted. Valid BOCs are:

• 000000b (RDI)
• 000001b (Loopback activate)
• 000010b (Loopback deactivate)
• 000011b (Remote reset activate)
• 000100b (Remote reset deactivate)
• 010001b to 111110b (defined by you)
• 111111b (idle code)

Outputs None

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 62

Return Codes VTX_SUCCESS

VTX_ERR_INVALID_DEVICE (invalid device handle)

VTX_ERR_INVALID_STATE (invalid device state)

VTX_ERR_INVALID_HSS_ID (invalid serial link identifier)

VTX_ERR_INVALID_BOC (invalid BOC)

4.9.2 vortexRxBOC: Reading Received BOC

This function can read BOC received on a serial link.

Valid States VTX_ACTIVE

Side Effects This function reads from the receive BOC status register.
This function clears the status bits (IDLEI and BOCI) bits in
the BOC status register.

Prototype INT4 vortexRxBOC(VORTEX vortex, UINT1
u1HssLnkId, UINT1 *pu1Code)

Inputs vortex: Pointer to DDB that contains device context
information maintained by the driver

u1HssLnkId: Serial link identifier. Valid identifiers are 0
through (VTX_NUM_HSS_LNKS – 1).

Outputs pu1Code: Pointer to BOC to be received. Valid BOCs are:

• 000000b (RDI)
• 000001b (Loopback activate)
• 000010b (Loopback deactivate)
• 000011b (Remote reset activate)
• 000100b (Remote reset deactivate)
• 010001b to 111110b (defined by you)
• 111111b (idle code)

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 63

Return Codes VTX_SUCCESS

VTX_ERR_INVALID_DEVICE (invalid device handle)

VTX_ERR_INVALID_STATE (invalid device state)

VTX_ERR_INVALID_HSS_ID (invalid serial link identifier)

VTX_ERR_INVALID_BOC (invalid BOC)

4.10 Statistics Collection

This section describes the API functions used to collect statistics about the
device’s HSS links. Their tasks include:

• Accumulating the received-cell count and header-check sequence (HCS)
cell-error count for a specified HSS link

• Accumulating the transmitted-cell count for a specified HSS link

• Reading all the cell counts (transmit and receive) for all the serial links of the
specified device

• Retrieving and resetting the statistical counts maintained by the driver

4.10.1 vortexGetHssLnkRxCounts: Accumulating Counts for Received Cells

This function accumulates the received cell and HCS cell errors counts for a
specified HSS link. This function triggers an update of the receive HSS
cell-counter registers and the receive-HSS HCS error-count register. It then
reads the contents of these registers and returns the values read to the
application.

To maintain a steady count of received cells and HCS cell errors, and to avoid
overflow, the application should call this function at least every 30 seconds.

Valid States VTX_ACTIVE

Side Effects You should not use this function at the same time (in
periodic polling fashion) as vortexGetAllHssLnkCounts
because both functions trigger updates to the receive
counters.

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 64

Prototype INT4 vortexGetHssLnkRxCounts(VORTEX vortex,
UINT1 u1HssLnkId, UINT4 *pu4RxCells, UINT4
*pu4HcsErrs)

Inputs vortex: Pointer to DDB that contains device context
information maintained by the driver

u1HssLnkId: Serial link identifier. Valid identifiers are 0
through (VTX_NUM_HSS_LNKS – 1).

Outputs pu4RxCells: Count of cells received

pu4HcsErrs: Count of HCS errored cells received

Return Codes VTX_SUCCESS

VTX_ERR_INVALID_DEVICE (invalid device handle)

VTX_ERR_INVALID_STATE (invalid device state)

VTX_ERR_INVALID_HSS_ID (invalid serial link identifier)

4.10.2 vortexGetHssLnkTxCounts: Accumulating Counts for Transmitted Cells

This function is accumulates the transmitted cell count for a specified HSS link.
This function triggers an update of the transmit HSS cell-counter registers. It then
reads the contents of these registers and returns the values read to the
application.

To maintain a steady count of transmitted cells and to avoid overflow, the
application should call this function at least every 30 seconds.

Valid States VTX_ACTIVE

Side Effects You should not use this function at the same time (in
periodic polling fashion) as
vortexGetAllHssLnksCounts because both functions
trigger updates to the transmit counter.

Prototype INT4 vortexGetHssLnkTxCounts(VORTEX vortex,
UINT1 u1HssLnkId, UINT4 *pu4TxCells)

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 65

Inputs vortex: Pointer to DDB that contains device context
information maintained by the driver

u1HssLnkId: Serial link identifier. Valid identifiers are 0
through (VTX_NUM_HSS_LNKS – 1).

Outputs pu4TxCells: Count of cells transmitted

Return Codes VTX_SUCCESS

VTX_ERR_INVALID_DEVICE (invalid device handle)

VTX_ERR_INVALID_STATE (invalid device state)

VTX_ERR_INVALID_HSS_ID (invalid serial link identifier)

4.10.3 vortexGetAllHssLnkCounts: Accumulating Counts for All Cells

This function reads all the cell counts (transmit and receive) for all the serial links
of the specified S/UNI-VORTEX device. This function triggers an update to all the
counters of all the HSS links by writing a dummy value to the load performance
meters register. It then reads the counters of all the serial links and returns the
contents to the calling function.

To maintain a steady count of cells received, cells transmitted, and HCS errored
cells on a per-link basis for all the serial links, and to avoid overflow, the
application should call this function at least every 30 seconds.

Valid States VTX_ACTIVE

Side Effects You should not use this function at the same time (in
periodic polling fashion) as vortexGetHssLnkRxCounts
and vortexGetHssLnkTxCounts because both functions
trigger updates to the same counters.

Prototype INT4 vortexGetAllHssLnkCounts(VORTEX vortex,
UINT4 *pu4TxCellsArray UINT4
*pu4RxCellsArray UINT4 *pu4HcsErrsArray)

Inputs vortex: Pointer to DDB that contains device context
information maintained by the driver

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 66

Outputs pu4TxCells: Pointer to first element of an array of
transmitted cell counts

pu4RxCells: Pointer to first element of an array of received
cell counts

pu4HcsErrs: Pointer to first element of an array of HCS
errored cell counts

Notes:

• Each array has VTX_NUM_HSS_LNKS elements.
• It is the responsibility of the calling function to allocate

and free memory for each of these arrays.
• If a link is not configured, the driver will not read its

counts and the value of the counts returned will be
0xffffffff.

Return Codes VTX_SUCCESS

VTX_ERR_INVALID_DEVICE (invalid device handle)

VTX_ERR_INVALID_STATE (invalid device state)

VTX_ERR_INVALID_HSS_ID (invalid serial link identifier)

4.10.4 vortexGetStatisticCounts: Retrieving Driver Statistical Counts

This function retrieves the statistical counts maintained by the driver. It contains
the counts for events and interrupts of the S/UNI-VORTEX device since the last
call to reset statistic counts.

Valid States All states except VTX_EMPTY

Side Effects None

Prototype INT4 vortexGetStatisticCounts(VORTEX vortex,
sVTX_STAT_COUNTS *psStatCounts)

Inputs vortex: Pointer to DDB that contains the count information
maintained by the driver

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 67

Outputs psStatCounts: Contains statistical counts of events and
interrupts

Return Codes VTX_SUCCESS

VTX_ERR_INVALID_DEVICE (invalid device handle)

4.10.5 vortexResetStatisticCounts: Resetting Driver Statistical Counts

This function resets the statistical counts maintained by the driver.

Valid States All states except VTX_EMPTY

Side Effects None

Prototype INT4 vortexResetStatisticCounts(VORTEX vortex)

Inputs vortex: Pointer to DDB that contains the count information
maintained by the driver

Outputs None

Return Codes VTX_SUCCESS

VTX_ERR_INVALID_DEVICE (invalid device handle)

4.11 Indication Callbacks

The DPR uses indication callback functions to notify the application of events in
the S/UNI-VORTEX device and driver. You must implement these functions to
work within the inter-task communication and scheduling capabilities of your
RTOS. Typically, the callback functions will run in the context of the DPR, not in
the context of the application. Therefore, these functions must be non-blocking.
They should use RTOS-based inter-task notification to pass callback information
safely from the DPR to the application task.

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 68

4.11.1 indVortexNotify: Notifying the Application of Significant Events

This indication function notifies the application about the occurrence of a
significant event in the hardware or the driver software. The vortexDPR function
calls this function. This function should be non-blocking. Typically, the indication
function sends a message to another task with the event identifier and other
context information. The task that receives this message can then process this
information according to the system requirements.

Prototype VOID indVortexNotify(USR_CTXT usrCtxt,
sVTX_IND_BUF *pIndBuf)

Inputs usrCtxt: Context information (maintained by your system)
for the device

pIndBuf: Information regarding the indication. It consists of
an event identifier that identifies the reported event. Uniquely
supplemental information about the event. The application
should use vortexReturnIndBuf to free the indication
context structure.

Outputs None

Return Codes None

4.11.2 indVortexRxBOC: Notifying the Application of Received BOC

This indication function notifies the application about the reception of a valid
BOC. The vortexDPR function calls this function. This function should be
non-blocking.

Prototype VOID indVortexRxBOC(USR_CTXT usrCtxt,
sVTX_IND_BUF *pIndBuf)

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 69

Inputs usrCtxt: Context information (maintained by your system)
for the device

pIndBuf: Information regarding the indication. It consists of:

• u1HssLnkId: Serial link that received the BOC
• u1BOC: BOC received. It can be one of the following:

• 000000b (RDI)
• 000001b (loopback activate)
• 000010b (loopback deactivate)
• 000011b (remote reset activate)
• 000100b (remote reset deactivate)
• 010001b to 111110b (defined by you)
• 111111b (idle code)

The application should use vortexReturnIndBuf to free
the indication context structure.

Outputs None

Return Codes None

4.11.3 indVortexRxCell: Notifying the Application of Ready Extract-Cell-FIFOs

This indication function notifies the application of the reception of cells in the
microprocessor extract cell FIFOs. The vortexDPR function calls this function.
This function should be non-blocking. Typically, the indication function sends a
message to another task with the event identifier and other context information.
The task that receives this message can then extract the received cells using
vortexCheckExtractFifos and vortexExtractCell.

Prototype VOID indVortexRxCell(USR_CTXT usrCtxt,
sVTX_IND_BUF *pIndBuf)

Inputs usrCtxt: Context information (maintained by your system)
for the device

pIndBuf: Information regarding the indication. Currently, the
driver does not use it, so the driver passes a null pointer for
now.

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 70

Outputs None

Return Codes None

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 71

5 REAL-TIME-OS INTERFACE FUNCTIONS

The driver’s RTOS interface module provides functions and macros that let the
driver use RTOS services. The S/UNI-VORTEX driver requires the following
RTOS services:

• Memory: Allocate and de-allocate

• Interrupts: Install and remove

• Preemption: Enable and disable

The driver may also require the following additional RTOS services depending on
how you customize the code (for example, the ISR, the DPR, and so on). These
services are:

• Timers: Create, delete, start and abort

• Tasks: Spawn and delete

• Message queues: Create and destroy queues, send and receive messages

Figure 8 illustrates the external interfaces defined for the S/UNI-VORTEX driver.

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 72

Figure 8: Real-Time OS Interface

RTOS

 Function Calls Indication Callbacks

Register AccessHardware
Interrupts

Service Calls

Application

S/UNI-VORTEX Driver

S/UNI-VORTEX Device

RTOS Interface

5.1 Memory Allocation and De-allocation

This section describes the RTOS interface functions used to allocate and
de-allocate memory.

5.1.1 sysVortexMemAlloc: Allocating Memory

This macro allocates a specified number of bytes.

Prototype #define sysVortexMemAlloc(nbytes)
malloc(nbytes)

Inputs nbytes: Number of bytes to be allocated

Outputs None

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 73

Return Codes Pointer to first byte of allocated memory

NULL pointer (memory allocation failed)

5.1.2 sysVortexMemFree: De-allocating Memory

This macro de-allocates memory allocated by sysVortexMemAlloc.

Prototype #define sysVortexMemFree(pu1First)
free(pu1First)

Inputs pu1First: Pointer to first byte of the memory region being
de-allocated

Outputs None

Return Codes None

5.2 Buffer Management

This section describes the RTOS interface functions used to manage buffers for
the DPR. Their tasks include getting a buffer for saving the context information
for the indication callbacks, and returning the buffer after the application has
received the context information.

5.2.1 vortexGetIndBuf: Getting DPR Buffers

This function gets a buffer that saves the context information for the indication
callbacks called by the DPR.

Prototype sVTX_IND_BUF *vortexGetIndBuf(VOID)

Inputs None

Outputs None

Return Codes Pointer to indication context buffer

NULL pointer (buffer unavailable)

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 74

5.2.2 vortexReturnIndBuf: Returning DPR Buffers

This function returns the indication context buffer after the DPR has received the
context information.

Prototype VOID vortexReturnIndBuf(sVTX_IND_BUF *pBuf)

Inputs pBuf: Pointer to indication context structure

Outputs None

Return Codes None

5.3 Timer Operations

This section describes the RTOS interface function used to suspend a task for a
specified period.

5.3.1 sysVortexDelayFn: Delaying Functions

This function suspends execution of the calling function’s task for a specified
number of milliseconds.

Prototype VOID sysVortexDelayFn(UINT4 u4Msecs)

Inputs u4Msecs: Delay (in milliseconds)

Outputs None

Return Codes None

5.4 Semaphore Operations

This section describes the RTOS interface macros used to manage semaphores.
Their tasks include:

• Creating a new mutual-exclusion semaphore

• Deleting a specified semaphore

• Taking and giving semaphores

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 75

5.4.1 sysVortexSemCreate: Creating Semaphores

This macro creates a new mutual-exclusion semaphore.

Prototype #define sysVortexSemCreate() semMCreate()

Inputs None

Outputs None

Return Codes semaphore ID

5.4.2 sysVortexSemDelete: Deleting Semaphores

This macro deletes a specified semaphore.

Prototype #define sysVortexSemDelete(semId)
semDelete(semId)

Inputs semaphore ID

Outputs None

Return Codes None

5.4.3 sysVortexSemTake: Taking Semaphores

This macro takes a semaphore.

Prototype #define sysVortexSemTake(semId)
semTake(semId)

Inputs semaphore ID

Outputs None

Return Codes None

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 76

5.4.4 sysVortexSemGive: Giving Semaphores

This macro gives a semaphore.

Prototype #define sysVortexSemGive(semId) semGive(semId)

Inputs semaphore ID

Outputs None

Return Codes None

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 77

6 HARDWARE INTERFACE FUNCTIONS

The S/UNI-VORTEX hardware interface provides functions and macros that read
from and write to S/UNI-VORTEX device-registers. The hardware interface also
provides a template for an ISR that the driver calls when the device raises a
hardware interrupt. You must modify this function based on the interrupt
configuration of your system.

Figure 9 illustrates the external interfaces defined for the S/UNI-VORTEX driver.

Figure 9: Hardware Interface

RTOS

 Function Calls Indication Callbacks

Register
Access

Hardware
Interrupts

Service Calls

Application

S/UNI-VORTEX Driver

S/UNI-VORTEX Device

Hardware
Interface

6.1 Device Register Access

This section describes the hardware interface functions used to read from and
write to S/UNI-VORTEX device registers. Their tasks include reading and writing
the contents of a specific address. It also includes getting the base address of
the new device so that the driver can access the device register map to control it.

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 78

6.1.1 sysVortexRawRead: Reading from Register Address Locations

This low-level system-specific macro reads the contents of a specific
register-address location. You should define this to reflect your system’s
addressing logic.

Prototype #define sysVortexRawRead(addr, pval)

Inputs addr: Address location to be read

pval: Value read

Outputs None

Return Codes Value read from the address location

6.1.2 sysVortexRawWrite: Writing to Register Address Locations

This low-level system-specific macro writes the contents to a specific
register-address location. You should define this macro to reflect your system’s
addressing logic.

Prototype #define sysVortexRawWrite(addr, val)

Inputs addr: Address location to write

val: Value to be written

Outputs None

6.1.3 sysVortexDeviceDetect: Getting Device Base Addresses

This function gets the base address of the new device so that the driver can
access it. The vortexAdd API function calls it.

Prototype INT4 sysVortexDeviceDetect(VTX_USR_CTXT
usrCtxt, VOID **ppSysInfo, UINT4 *pu4BaseAddr)

Inputs usrCtxt: Context information (maintained by your system) for
the device

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 79

Outputs pu4BaseAddr: Base address of device

ppsysinfo: Pointer to the sysinfo structure

Return Codes VTX_SUCCESS

VTX_DEVICE_NOT_DETECTED

6.2 Interrupt Servicing

This section describes the hardware interface functions used to provide hardware
interrupt servicing. They install and remove the interrupt handlers and DPRs for
the S/UNI-VORTEX devices. These functions depend on whether you implement
the driver in interrupt mode or polling mode. In interrupt mode, their tasks
include:

• Installing and removing the system-dependent interrupt-handler function
(sysVortexIntHandler) and the DPR function (sysVortexDPRTask),
creating a communication channel between the two, and adding the device to
a list of devices for which interrupts will be serviced

• Removing the specified device from the list of devices for which interrupt
processing will be done

• Calling vortexISR for each device for which interrupt processing is enabled

• Retrieving interrupt status information saved for it by the
sysVortexIntHandler function, and calling the vortexDPR function for
the appropriate device

In polling mode, these functions’ tasks include:

• Spawning and removing the sysVortexDPRTask function

• Adding the device to a list of devices that need polling

• Polling the S/UNI-VORTEX device for interrupt status information and
processing the interrupt status

The S/UNI-VORTEX driver provides a function called vortexISR that checks if
there are any valid interrupt conditions present for a specified device. This
function can be used by a system-specific interrupt-handler function to service
interrupts raised by S/UNI-VORTEX devices.

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 80

The low-level interrupt handler function that traps the hardware interrupt and calls
vortexISR is system and RTOS dependent. Therefore, it is outside the scope of
the driver. As a reference, this manual provides an example implementation of
such an interrupt handler (see sysVortexIntHandler) as well as installation
and removal functions (see sysVortexIntInstallHandler and
sysVortexIntRemoveHandler). You can customize these example
implementations as per your specific requirements.

6.2.1 sysVortexIntInstallHandler: Installing Interrupt Service Functions

In interrupt mode, this function installs sysVortexIntHandler in the processor
vector table, spawns the sysVortexDPRTask function as a task, and creates a
communication channel (for example, a message queue) between the two. In
addition, it adds the S/UNI-VORTEX device to a list of devices that need interrupt
servicing.

In polling mode, this function spawns the sysVortexDPRTask function. This
function periodically polls the device for interrupts and services the interrupts. It
also adds the S/UNI-VORTEX device to a list of devices that need polling
services.

Prototype INT4 sysVortexIntInstallHandler(VORTEX vortex)

Inputs vortex: Pointer to device context information

Outputs None

Return Codes VTX_SUCCESS

VTX_ERR_INT_ALREADY

VTX_ERR_INT_INSTALL

6.2.2 sysVortexIntRemoveHandler: Removing Interrupt Service Functions

In interrupt mode, this function removes the specified device from the list of
devices that need interrupt processing. If this is the last active device, the
function deletes the sysVortexDPRTask function and the associated message
queue. It also removes the sysVortexIntHandler function from the
processor’s interrupt-vector table.

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 81

In polling mode, this function removes the specified device from the list of
devices that need polling services. If this is the last active device, this function
deletes sysVortexDPRTask.

Prototype VOID sysVortexIntRemoveHandler(VORTEX
vortex)

Inputs vortex: Pointer to device context information

Outputs None

Return Codes None

6.2.3 sysVortexIntHandler: Calling vortexISR

In interrupt mode, this function calls vortexISR for each device with interrupt
processing enabled. The driver calls this function when one or more
S/UNI-VORTEX devices interrupt the microprocessor. If vortexISR detects at
least one valid pending interrupt condition, then this function queues the interrupt
context information for later processing by sysVortexDPRTask.

In polling mode, this function is not used.

Prototype VOID sysVortexIntHandler(UINT4 Irq)

Inputs u4IntCtxt: IRQ number of interrupt

Outputs None

Return Codes None

6.2.4 sysVortexDPRTask: Calling vortexDPR

In interrupt mode, the driver spawns this function as a separate task within the
RTOS. It retrieves interrupt status information saved for it by the
sysVortexIntHandler function and calls the vortexDPR function for the
appropriate device.

In polling mode, the driver spawns this function as a separate task within the
RTOS. It periodically calls the vortexDPR function for each active device.

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 82

Prototype VOID sysVortexDPRTask(VOID)

Inputs None

Outputs None

Return Codes None

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 83

7 PORTING THE DRIVER

This section outlines how to port the S/UNI-VORTEX device driver to your
hardware and OS platform.

Note: Because each platform and application is unique, this manual can only
offer guidelines for porting the S/UNI-VORTEX driver.

7.1 Driver Source Files

The C source files listed in Figure 7-1 contain the code for the S/UNI-VORTEX
driver. You may need to modify the code or develop additional code. The code is
in the form of constants, macros, and functions. For the ease of porting, the code
is grouped into source files (src) and include files (inc). The src files contain
the functions and the inc files contain the constants and macros.

Figure 10: Driver Source Files

vtxdrv src

inc

Makefile

vtx_hw.c (contains hardware interface functions)

vtx.c (contains driver internal functions)

vtx_api.c (contains all API functions)

vtx_rtos.c (contains RTOS interface functions)

vtx_test.c (contains sample driver callback functions and
test code)

vtx_hw.h (contains device-interface macro and constant definitions)

vtx.h (contains device register-address and bit-mask definitions)

vtx_api.h (contains data-structure definitions and prototypes)

vtx_rtos.h (contains RTOS-interface macro and constant definitions)

vtx_err.h (contains driver error codes)

vtx_test.h (contains data structure definitions and prototypes of test
code)

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 84

7.2 Driver Porting Procedures

The following steps summarize how to port the S/UNI-VORTEX driver to your
platform. The following sections describe these steps in more detail.

Note: Because each platform and application is unique, this manual can only
offer guidelines for porting the S/UNI-VORTEX driver.

To port the S/UNI-VORTEX driver to your platform:

1. Port the driver’s OS extensions (page 84):

• Data types

• OS specific services

• Utilities and interrupt services that use OS specific services

2. Port the driver to your hardware platform (page 86):

• Port the device detection function.

• Port low-level device read-and-write macros.

• Define hardware system-configuration constants.

3. Port the driver’s application-specific elements (page 88):

• Define the task-related constants.

• Code the callback functions.

4. Build the driver (page 89).

7.2.1 Porting the Driver’s OS Extensions

The OS extensions encapsulate all OS specific services and data types used by
the driver. The vtx_rtos.h file contains data types and compiler-specific
data-type definitions. It also contains macros for OS specific services used by the
OS extensions. These OS extensions include:

• Task management

• Message queues

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 85

• Timers

• Events

• Semaphores

• Memory Management

In addition, you may need to modify functions that use OS specific services, such
as utility and interrupt-event handling functions. The vtx_rtos.c file contains
the utility and interrupt-event handler functions that use OS specific services.

To port the driver’s OS extensions:

1. Modify the data types in vtx_rtos.h. The number after the type identifies
the data-type size. For example, UINT4 defines a 4-byte (32-bit) unsigned
integer. Substitute the compiler types that yield the desired types as defined
in this file.

2. Modify the OS specific services in vtx_rtos.h. Redefine the following
macros to the corresponding system calls that your target system supports:

Service Type Macro Name Description

sysVortexMemAlloc Allocates the memory block

sysVortexMemFree Frees the memory block

Memory

sysVortexMemCopy Copies the memory block from
src to dest

sysVortexSemCreate Creates the mutually exclusive
semaphore

sysVortexSemDelete Frees the mutually exclusive
semaphore

sysVortexSemGive Relinquishes the mutually
exclusive semaphore

Semaphore

sysVortexSemTake Gets the mutually exclusive
semaphore

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 86

3. Modify the utilities and interrupt services that use OS specific services in the
vtx_rtos.c. The vtx_rtos.c file contains the utility and interrupt-event
handler functions that use OS specific services. Refer to the function headers
in this file for a detailed description of each of the functions listed below:

Service Type Function Name Description

sysVortexMemSet Sets each character
in the memory buffer

vortexGetIndBuf Gets a block of
memory for the
indication buffer

Memory

vortexReturnIndBuf Frees the indication
buffer

Timer sysVortexDelayFn Sets the task
execution delay in
milliseconds

sysVortexIntInstallHandler Installs the interrupt
handler for the OS

sysVortexIntRemoveHandler Removes the
interrupt handler from
the OS

sysVortexIntHandler Interrupt handler for
the S/UNI-VORTEX
device

Interrupt

sysVortexDPRTask Deferred process
routine for interrupts

7.2.2 Porting the Driver to a Hardware Platform

This section describes how to modify the S/UNI-VORTEX driver for your
hardware platform.

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 87

Before you build the driver, ensure that you port the driver’s OS extensions (page
84).

To port the driver to your hardware platform:

1. Modify the device detection function in the vtx_hw.c file. The function
sysVortexDeviceDetect is implemented for a PCI platform. Modify it to
reflect your specific hardware interface. Its purpose is to detect a
S/UNI-VORTEX device based on a UsrContext input parameter. It returns
two output parameters:

• The base address of the S/UNI-VORTEX device

• A pointer to the system-specific configuration information

2. Modify the low-level device read/write macros in the vtx_hw.h file. You may
need to modify the raw read/write access macros (sysVortexRawRead and
sysVortexRawWrite) to reflect your system’s addressing logic.

3. Define the hardware system-configuration constants in the vtx_hw.h file.
Modify the following constants to reflect your system’s hardware
configuration:

#define Description Default

VTX_MEM_ADDR_RANGE The assigned address memory
range for each S/UNI-VORTEX
device. Your system’s memory
map determines it.

0x800

VTX_ADAPTER_MAX_UNITS The maximum number of
S/UNI-VORTEX cards allowed in
the system

Note: The DSLAM architecture
allows up to 16 S/UNI-VORTEX
cards.

7

VTX_ADAPTER_MAX_DEVS The maximum number of
S/UNI-VORTEX devices on each
card

2

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 88

7.2.3 Porting the Driver’s Application-Specific Elements

Application specific elements are configuration constants used by the API for
developing an application. This section describes how to modify the application
specific elements in the S/UNI-VORTEX driver.

Before you port the driver’s application-specific elements, ensure that you:

1. Port the driver’s OS extensions (page 84).

2. Port the driver to your hardware platform (page 86).

To port the driver’s application-specific elements:

1. Define the following driver task-related constants for your OS-specific
services in file vtx_rtos.h:

#define Description Default

VTX_DPR_TASK_PRIORITY Deferred Task (DPR) task
priority

85

VTX_DPR_TASK_STACK_SZ DPR task stack size, in bytes 4096

VTX_POLLING_DELAY Constant used in polling task
mode, this constant defines the
interval time in millisecond
between each polling action

10

VTX_TASK_SHUTDOWN_DELAY Delay time in millisecond.
When clearing the DPR loop
active flag in the DPR task, this
delay is used to gracefully
shutdown the DPR task before
deleting it.

10

VTX_MAX_DPR_MSGS The queue message depth of
the queue used for pass
interrupt context between the
ISR task and DPR task

10

VTX_MAX_IND_BUFSZ Maximum indication buffer size
in bytes

53

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 89

VTX_MAX_NUM_DEVS The maximum number of
S/UNI-VORTEX devices in the
system

14

2. Code the callback functions according to your application. There are four
sample callback functions in the vtx_test.c file. You can use these
callback functions or you can customize them before using the driver. The
driver will call these callback functions when an event occurs on the device.
These functions must conform to the following prototypes:

• VOID indVortexNotify(VTX_USR_CTXT usrCtxt,
sVTX_IND_BUF *psIndCtxt)

• VOID indVortexRxBOC(VTX_USR_CTXT usrCtxt, sVTX_IND_BUF
*psIndCtxt)

• VOID indVortexCell(VTX_USR_CTXT usrCtxt, sVTX_IND_BUF
*psIndCtxt)

• UINT1 pCellTypeFn(UINT1 *pu1Hdr, UINT4 *pu4Crc32Prev)

7.2.4 Building the Driver

This section describes how to build the S/UNI-VORTEX driver.

Before you build the driver, ensure that you:

1. Port the driver’s OS extensions (page 84).

2. Port the driver to your hardware platform (page 86).

3. Port the driver’s application-specific elements (page 88).

To build the driver:

1. Modify the makefile’s compile-switch flag VTX_CSW_INTERRUPT_MODE. Set it
to 1 for interrupt mode or 0 for polling mode.

2. Set the makefile’s compile-switch flag CSW_PV_FLAG to 0. This disables the
test code specific to product verification.

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 90

3. Ensure that the directory variable names in the makefile reflect your actual
driver and directory names.

4. Compile the source files and build the S/UNI-VORTEX API driver library using
your make utility.

5. Link the S/UNI-VORTEX API driver library to your application code.

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 91

APPENDIX: CODING CONVENTIONS

This section describes the coding and naming conventions used in the
implementation of the driver software. This section also describes the variable
types.

Definition of Variable Types

The following table describes the variable types used by the S/UNI-VORTEX
driver.

Table 13: Definition of Variable Types

Type Description

UINT1 Unsigned integer, 1 byte

UINT2 Unsigned integer, 2 bytes

UINT4 Unsigned integer, 4 bytes

INT1 Signed integer, 1 byte

INT2 Signed integer, 2 bytes

INT4 Signed integer, 4 bytes

VOID Void

VTX_USR_CTXT Void *, pointer to user maintained device context

VORTEX Void *, pointer to driver maintained device context

Naming Conventions

The names for variables, functions, and macros (but not constants) include
prefixes that indicate their type. Variable, function, and macro names that contain
multiple words have the first letter of each word capitalized.

Variables

The following table describes the prefixes used for the driver’s variables.

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 92

Table 14: Variable Naming Conventions

Variable Type Prefix Example

UINT1

UINT2

UINT4

u1

u2

u4

u1Flag

u2Code

u4Val

INT1

INT2

INT4

i1

i2

i4

i1Flag

i2Code

i4Val

Structure variable s sCellHdr

Enumerated type e eHssRegId

Pointers p pu1Flag

pi4Val

psCellHdr

peHssRegId

Pointer to a pointer pp ppu1Flag

ppi4Val

ppsCellHdr

ppeHssRegId

Functions and Macros

The following table describes the prefixes used for the driver’s functions and
macros.

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 93

Table 15: Function and Macro Naming Conventions

Function Type Prefix Example Name

API functions vortex vortexAdd

Indication functions indVortex indVortexRxCell

System-specific functions and
macros

sysVortex sysVortexIntHandler

Definable Constants

You can define some constants using the “#define” command. These constants
have names that are composed of all uppercase letters with underscores
separating multiple words. An example is VTX_NUM_HSS_LNKS.

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 94

ACRONYMS

API: Application programming interface

DDB: Device data block

BOC: Bit oriented code

DPR: Deferred processing routine

GDD: Global driver database

HCS: Header check sequence

HSS link: High-speed serial link

ISR: Interrupt service routine

RTOS: Real-time operating system

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 95

INDEX
Accessing Registers, 77
Accumulating Counts for All Cells, 65
Accumulating Counts for Received Cells, 63
Accumulating Counts for Transmitted Cells, 64
Acronyms, 94
Activating Devices, 43
Adding Devices, 37
addr, 78
Addresses, 52
Allocating Memory, 72
API Module, 13
Application Interface Functions, 35
Architecture, 12, 13
Base Addresses, 78
BOC, 11, 35, 61, 62
Buffers, 73, 74
Building Drivers, 89
Callbacks, 12, 60, 67
Calling vortexDPR, 21, 81
Calling vortexISR, 20, 79, 81
Cell Data Structures, 24
Cell Extraction, 11, 18, 19, 54
Cell Insertion, 11, 54, 55
Cell-Control Data Structure, 24
Cell-Header Data Structure, 24
CntBufFifoOvrRn, 32
CntDwnStrmCellIfParityErr, 33
CntDwnStrmCellIfTxStCellErr, 33
CntPllErr, 32
CntRxBocIdle, 34
CntRxBocValid, 34
CntRxCellCntsUpd, 34
CntRxCellCtlLstFifoOvrFlw, 34
CntRxCellDatLstFifoOvrFlw, 34
CntRxCellDelinXSync, 33
CntRxCellHcsErrDetect, 33
CntRxHldCntOvr, 34
CntRxNonZeroCrc, 33
CntRxTransFrmLcd, 33
CntRxTransFrmLos, 33
CntRxTransOfActv, 33
CntTxCellCntOvrnInd, 33
CntTxCellCntUpdInd, 33
CntTxFifoOvrRn, 33
CntUpStrmCellIfXferErr, 33
Coding Conventions, 91

Collecting Statistics, 12, 63
Configuration Data Structures, 25
Configuration Information, 47, 49
Contents of the Extract-FIFO-Ready Register,

58
Context Data Structures, 28
Count Structure, 32
CountInterrupts, 34
Counts for All Cells, 65
Counts for Received Cells, 63
Counts for Transmitted Cells, 64
Creating Semaphores, 75
Data Structures, 24, 25, 28, 31, 32
Data-Block, 14, 28
Deactivating Devices, 43, 44
Deallocating Memory, 72, 73
Deferred-Processing Routine Module, 15
Delaying Functions, 74
Deleting Devices, 37, 39
Deleting Semaphores, 75
dest, 85
Device Activation, 43
Device Addition, 37
Device Base Addresses, 78
Device Clocks, 46
Device Data-Block, 14, 28
Device Deactivation, 43
Device Deletion, 37
Device Diagnostics, 11, 44
Device Initialization, 11, 17, 18, 41
Device Interface Functions, 77
Device Register Access, 77
Device Reset, 37
Device-Configuration Data Structures, 25
Device-Context Data Structures, 28
Diagnostic or Line Loopback, 45
Diagnostics, 11, 44
Disabling Diagnostic or Line Loopback, 45
DPR, 79
DPR Buffers, 73, 74
Driver API Module, 13
Driver Architecture, 12, 13
Driver Data Structures, 24
Driver Functions and Features, 11
Driver Hardware-Interface Module, 14
Driver Initialization, 36

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 96

Driver Library Module, 14
Driver Module Initialization, 36
Driver Porting, 10, 84
Driver Real-Time-OS Interface Module, 14
Driver Shutdown, 36, 37
Driver Software States, 15, 16
Driver Source Files, 83
eCbType, 42, 43
eDevState, 29
eHssRegId, 47, 48, 49, 92
Enabling Diagnostic or Line Loopback, 45
Enabling Received Cell Indicators, 59
eVTX_CB_TYPE, 42, 43
eVTX_HSS_REG, 47, 49
eVTX_LNK_CFG_STATE, 51
eVTX_STATE, 29
Extract-FIFO-Ready Registers, 58
Extracting Cells, 11, 18, 19, 54, 57
FIFO, 12, 26, 30, 58, 59, 69
Files, 10, 83, 85, 89, 90
Functions and Features, 11
GDD Structure, 28
Getting Contents of the Extract-FIFO-Ready

Register, 58
Getting Device Base Addresses, 78
Getting DPR Buffers, 73
Getting HSS-Link Configuration Information, 47
Getting Logical-Channel Addresses, 52
Getting States of HSS Links, 51
Giving Semaphores, 76
Global Driver-Database, 28
Hardware Interface Functions, 77
Hardware Interface Module, 14
HSS Links, 11, 47, 51, 55
HSS-Link Configuration, 47, 49
Include Files, 10, 83
Indication Callbacks, 12, 42, 67
indNotify, 26, 30
indRxBOC, 26, 30
indRxCell, 26, 30
indVortex, 93
indVortexCell, 89
indVortexNotify, 68, 89
indVortexRxBOC, 68, 89
indVortexRxCell, 69, 93
Init, 16
Initialization Data Structure, 25
Initializing Devices, 11, 17, 18, 41
Initializing Drivers, 36

Inserting Cells, 11, 54, 55
Installing Callback Functions, 60
Installing Indication Callback Functions, 42
Installing Interrupt Service Functions, 80
Interrupt Data Structures, 31
Interrupt Service Functions, 80
Interrupt Servicing, 12, 19, 79
Interrupt-Context Data Structure, 32
Interrupt-Enable Data Structure, 31
Interrupt-Service Routine Module, 15
ISR, 12, 15, 19, 79
Library Module, 14
Line Loopback, 45
Link Configuration, 11, 47
lockId, 31
Logical-Channel Addresses, 52
loopback, 11, 44, 45, 46, 61, 69
makefile, 89, 90
malloc, 72
Memory, 72, 73
Modifying HSS-Link Configuration Information,

49
Monitoring Device Clocks, 46
nbytes, 72
Notifying the Application, 68, 69
OS Extensions, 84
pBuf, 74
pCbFn, 42
pCellTypeFn, 26, 30, 60, 89
pDdb, 28
peHssRegId, 92
peLnkCfgState, 51
peLnkState, 51
pIndBuf, 68, 69
Polling Servicing, 22
Porting, 83, 84, 86, 88
Porting Procedures, 84
Porting Quick Start, 10
Porting the Driver to a Hardware Platform, 86
Porting the Driver’s Application-Specific

Elements, 88
Porting the Driver’s OS Extensions, 84
ppeHssRegId, 92
ppsCellHdr, 92
ppSysInfo, 78
Processing Flows, 16
psAddrRng, 52
psCellHdr, 55, 56, 57, 58, 92
psCtrl, 55, 56, 57, 58

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 97

psHssRegs, 47, 48, 49
psIndCtxt, 89
psStatCounts, 66, 67
pSysInfo, 29
pval, 78
pVortex, 38
Reading from Device Registers, 39, 40
Reading from Received BOC, 62
Reading from Register Address Locations, 78
Real-Time-OS Interface Functions, 71
Received BOC, 62
Received Cells, 63
Register Access Verification, 45
Register Address Locations, 78
Register Data Structure, 26
Registers, 40, 58, 77
Re-initializing Devices, 17, 18
Removing Indication Callback Functions, 42
Removing Interrupt Service Functions, 80
Resetting Devices, 37, 38
Resetting Driver Statistical Counts, 67
Retrieving Driver Statistical Counts, 66
Returning DPR Buffers, 74
RTOS, 21
RTOS Functions, 71
RTOS Interface Module, 14
sCellHdr, 92
Semaphores, 74, 75, 76
semDelete, 75
semGive, 76
semId, 75, 76
semMCreate, 75
semTake, 75
sHssRegs, 27
Shutting Down Devices, 17, 18
Shutting Down Drivers, 36, 37
sInitVector, 30, 41
sIntEnbls, 30
sIntEnRegs, 27
sLogChnlAddrRng, 30
Software States, 15, 16
Source Files, 10, 83, 85
sRegInfo, 26
sStatCounts, 30, 31
State of HSS Links, 51
States, 15, 16
Statistical Counts, 32, 66, 67
Statistics Collection, 12, 63
sVTX_CELL_CTRL, 25, 55, 57

sVTX_CELL_HDR, 24, 55, 57
sVTX_CHNL_ADDR_RNG, 30, 52
sVTX_DDB, 28, 29
sVTX_GDD, 28
sVTX_HSS_REGS, 27, 47, 49
sVTX_IND_BUF, 68, 69, 73, 74, 89
sVTX_INIT_VECT, 26, 30, 41
sVTX_INIT_VECTOR, 26, 30
sVTX_INT_CTXT, 32
sVTX_INT_ENBLS, 27, 30, 31
sVTX_REGS, 26, 27
sVTX_STAT_COUNTS, 30, 32, 66
sysinfo, 79
sysVortex, 22, 93
sysVortexDelayFn, 74, 86
sysVortexDeviceDetect, 78, 87
sysVortexDPR, 19
sysVortexDPRTask, 21, 22, 23, 79, 80, 81, 82,

86
sysVortexIntHandler, 20, 21, 22, 79, 80, 81, 86,

93
sysVortexIntInstallHandler, 21, 22, 80, 86
sysVortexIntRemoveHandler, 80, 81, 86
sysVortexISR, 19
sysVortexMemAlloc, 72, 73, 85
sysVortexMemCopy, 85
sysVortexMemFree, 73, 85
sysVortexMemSet, 86
sysVortexRawRead, 40, 78, 87
sysVortexRawWrite, 40, 78, 87
sysVortexSemCreate, 75, 85
sysVortexSemDelete, 75, 85
sysVortexSemGive, 76, 85
sysVortexSemTake, 75, 85
Taking Semaphores, 75
Timer Operations, 74
Transmitted Cells, 64
Transmitting BOC, 61
UsrContext, 87
usrCtxt, 29, 38, 68, 69, 78, 89
val, 78
Verifying Device Register Access, 45
vortexActivate, 43
vortexAdd, 37, 38, 78, 93
vortexCheckExtractFifos, 58, 59, 69
vortexDeactivate, 44
vortexDelete, 21, 35, 39
vortexDPR, 15, 19, 21, 22, 35, 41, 42, 68, 69,

79, 81

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 98

vortexEnableRxCellInd, 59
vortexExtractCell, 57, 59, 69
vortexGetAllHssLnkCounts, 63, 65
vortexGetClockStatus, 46
vortexGetHssLnkRxCounts, 63, 64, 65
vortexGetIndBuf, 73, 86
vortexGetStatisticCounts, 66
vortexHssGetConfig, 47
vortexHssGetLinkInfo, 51
vortexHssGetLogChnlAddrMap, 52
vortexHssSetConfig, 49
vortexInsertCell, 55
vortexInstallCellTypeFn, 60
vortexInstallIndFn, 42

vortexISR, 15, 19, 20, 21, 22, 79, 80, 81
vortexLoopback, 45
vortexModuleInit, 36
vortexModuleShutdown, 37
vortexRead, 40
vortexRegisterTest, 45
vortexRemoveIndFn, 42, 43
vortexReset, 38, 39
vortexResetStatisticCounts, 67
vortexReturnIndBuf, 68, 69, 74, 86
vortexRxBOC, 62
vortexTxBOC, 61
vortexWrite, 40
Writing to Registers, 39, 40, 78

RELEASED PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 99

CONTACTING PMC-SIERRA, INC.

PMC-Sierra, Inc.
105-8555 Baxter Place Burnaby, BC
Canada V5A 4V7

Tel: (604) 415-6000
Fax: (604) 415-6200

Document Information: document@pmc-sierra.com
Corporate Information: info@pmc-sierra.com
Application Information: apps@pmc-sierra.com
Web Site: http://www.pmc-sierra.com

mailto:document@pmc-sierra.com
mailto:info@pmc-sierra.com
mailto:apps@pmc-sierra.com

