RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL
PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PM7351

S/UNI-VORTEX

OCTAL SERIAL LINK MULTIPLEXER

DRIVER MANUAL

RELEASED

ISSUE 2: JuLy 2000

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 1

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL
PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

REVISION HISTORY

Issue No. | Issue Date Originator Details of Change
Issue 1 July 1999 James Document created from
Lamothe S/UNI-VORTEX Device Driver

Design Specification
(PMC-981181 Issue 2)

Issue 2 July 2000 Kevin Murray | Added documentation for three
API functions:

- vortexHssSetState
- vortexHssSetLogChnlAddrMap

- vortexSetCtrIChnIiBaseAddr

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 2

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

ABOUT THIS MANUAL

This manual describes the S/UNI-VORTEX device driver. It describes the driver’s
functions, data structures, and architecture. This manual focuses on the driver’s
interfaces to your application, real-time operating system, and to the
S/UNI-VORTEX device. It also describes in general terms how to modify and port
the driver to your software and hardware platform.

Audience

This manual was written for people who need to:

* Evaluate and test the S/UNI-VORTEX device

* Modify and add to the S/UNI-VORTEX driver’s functions
* Port the S/UNI-VORTEX driver to a particular platform.

References

For more information about the S/UNI-VORTEX driver, see the release notes. For
more information about the S/UNI-VORTEX device, see the following documents:

* S/UNI-VORTEX (Octal Serial Link Multiplexer) Datasheet: PMC-980582

* S/UNI-VORTEX (Octal Serial Link Multiplexer) Short Form Datasheet:
PMC-990148)

« S/UNI-VORTEX and S/UNI-VORTEX Technical Overview: PMC-98102

Note: Ensure that you use the document that was issued for your version of the
device and driver.

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 3

RELEASED

DRIVER MANUAL

ra “ A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

TABLE OF CONTENTS

REVISION HISTOIY ...ttt ettt e e oo ettt et e e e e e oo e a bbb et e e e e e e e e aanb bt ae e e e e e e aabeseeeaaeeaeannnbnnnaaaaeas 2
P Yo LU A (VIS =1 41U = T 3
L o] (SN o) A @01 41 (] 01 <= 4
[o) T 0= S 8
IS 0 = o] [9
1 Driver Porting QUICK SEAITccceiiiiiieie et e e e e e s e e e e e e st e e e e e e e e s snnneaeeeeesannrnreees 10
2 Driver FUNCLIONS AN FEALUIES.........ooeeiieieii et e e et e e e e e e s e e b s s e e e e e e aabb s e e eseseeeseeabanas 11
N R B T 1YL= AN (o 11 (=1 (8 [12
N R R B 1 ¢\ V= g N = 1Y, o o 10 | [T 13

2.1.2 Driver Real-Time-OS Interface MOAUIE............oovieeiiiiiie e e 14

2.1.3 Driver Hardware-Interface MOQUIE............uuiiiiriiieieee e 14

2.1.4 Driver LIBrary MOGUIE..........oooeuiiiieeiee et e e e 14

2.1.5 Device Data-BloCK MOQUIE..........oiiieieee e e e e 14

2.1.6 Interrupt-Service RoUtiNe MOAUIEeuiiiiiiiiii e 15

2.1.7 Deferred-Processing RoUting MOAUIE.........coceeiiiiiiiiiieeie e 15

A B LYY Y0 1 10Tz SIS €= L (ST 15

2 T o o Yo =TT o T ol o YOS 16
2.3.1 Device Initialization, Re-initialization, and ShUutdOWN..............coovuiiiieiiiiiiiiiee e 17

G I O | I 41 = o [] o 18

A T B 1 (=1 0 o GRS T=T Vo7 o Vo PR 19

2.3.4 POING SEIVICING. .. ittt e e e et e e e e e e e e bbb a e e e e e e s e e aanbbeeeeaeeeaaanneeees 22

I B 1YY G B L= v W) U o3 0 (T 24
I A O | W DT = S (U T03 (U1 TN 24

3. 1.1 Cell-Header Data StIUCIUIEuue et e e e e e e e e e s et e e e et s e s saaaseesaaas 24

3.1.2 Cell-CONtrol Data SITUCTUIEuuieietiieeeee et e et e e e e e e e et e e s st e e s saa s e s saaaeeseeas 24

3.2 Device-Configuration Data StrUCTUIES..........ceiiiiiiiiiiiiiiie ettt e e e e e siaeee e e e e e e e aans 25
3.2.1 Initialization Data SITUCTUIEcooiieeeieie e e e e e st s e e e s e e eaaba s e e e aeseeens 25

3.2.2 RegiSter Data StrUCIUIE........ccueieeeeee e et e e s e er e e e s e r e e e e e s s s nnenbeneeeaeeeannnnnes 26

3.3 DeVIiCe-CoNtEXt DAtA SITUCTUIMNESu. i iiiieeieie e ee et e e e e e et s e e e s e e e ea e e e e s e s e sebaaaeseeeseresabannes 28
3.3.1 Global Driver-Database StIUCIUIEeiiiiiiiieeiiie e e e e e e e eevaae e e e e eees 28

3.3.2 Device Data-BlOCK SITUCTUIEcoeveiiiie e e e e e e e ee e s e e e s eeaaaes 28

3.4 INErruPt DAt@ STIUCTUIESoeiiiiiieiiiiieieieee ettt ettt ettt et ee e te e ts et s s bs et s et st e bsbsbnbnbnbsbsbnbnbnnes 31
3.4.1 Interrupt-Enable Data StIUCLUIEo.euueiieiiee ettt e e 31

3.4.2 Interrupt-Context Data STIUCTUIEuuuuuiiiiiiiiiiiiiiiiii s 32

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL
3.5 Statistical COUNE SLIUCTUIEoiiiiiiii ettt e et e e s nnb e e s snneeeeneeeees 32
4 Application INterface FUNCHIONS.........iiiiii et e e e e e e e e e e e s se et e e e e e e e e snaeaeeaaeeas 35
4.1 Driver Initialization and SHULOWNuiiiiiiii e 36
4.1.1 vortexModulelnit: Initializing Driver MOAUIESooiiiiiiiiieiee e 36

4.1.2 vortexModuleShutdown: Shutting Down Driver Modules..............ccccceeiiiiiiiiiiiennnnns 37

4.2 Device Addition, Reset, and Deletion.............uuiiiiiiiiiiii e 37
4.2.1 vorteXAdd: AAdiNG DEVICESuuuiiiiiiiie ettt e e e e e eeaae e e 37

4.2.2 vortexReset: RESEtHNG DEVICESuuiiii it ettt a e sieb e ee e e e e 38

4.2.3 vortexDelete: Deleting DEVICESuuuuiiiiiiiiciiieiieee e e et e e s s re e e e e e s ssnrreeeaeaeeeanns 39

4.3 Reading from and Writing 10 DEVICES........cccuuuriiiiee e iiiiiieie e e st e e e e e s s e e e e e e s s nanreeeeeee e e e 39
4.3.1 vortexRead: Reading from DeViCe REQISIEIS.......ccciivuviiiiiiee i ee e e e e e e 40

4.3.2 vortexWrite: Writing t0 DeVIiCe REQISIEISuvviiiieeiiiiiiiieiee e e e s e e e e e 40

4.4 DEVICe INILIALIZALION. ..o teiieiiiiie et sttt e st e e s et e e s s b b e e snnbe e e e e eres 41
4.4.1 vortexInit: INItAlIZING DEVICESuuiiiiie et s s e e e s s e e e e e e s srarrreeeeeesannns 41

4.4.2 vortexInstallindFn: Installing Indication Callback Functionsccccccooiiiiiiiieennnns 42

4.4.3 vortexRemovelndFn: Removing Indication Callback Functionsccccceeeeennnias 42

4.5 Device Activation and DeactiVatiONuuiiiiiiiiiiiie e 43
4.5.1 vortexActivate: ACHVAtiING DEVICEScooiiiiiiiiiiiiee ettt 43

4.5.2 vortexDeactivate: Deactivating DEVICEScciiiiiiiiiiiiiiiiaee et 44

I B LoV [of 3 B I - To [0 1] 102 F PP UOURRPPTRN 44
4.6.1 vortexRegisterTest: Verifying Device RegiSter ACCESScivvevviiiiriiieieeeeeiiiiineeeeeeee s 45

4.6.2 vortexLoopback: Enabling/Disabling Diagnostic or Line Loopback...........ccccccceeennnns 45

4.6.3 vortexGetClockStatus: Monitoring Device ClOCKS..........cccvveiiiiiiiiiiiieee e 46

4.7 HSS LiNK CONfIQUIALIONciiieeiiiiiiiie et e e e e e e e s s e e e e e e s s st eeeeeeesssnnnbeneeeennannns 47
4.7.1 vortexHssGetConfig: Getting HSS-Link Configuration Informationccccccceeeens 47

4.7.2 vortexHssSetConfig: Modifying HSS-Link Configuration Information.............cc........... 49

4.7.3 vortexHssSetState: Setting Vortex HSS Configuration Information..............cccccceeoeee 50

4.7.4 vortexHssGetLinkIinfo: Getting the State of HSS LiNKS........coooiiiiiiiiiiiiiiiiiieeeees 51

4.7.5 vortexHssGetLogChnlAddrMap: Getting Logical-Channel Addressescccccooeueeee 52

4.7.6 vortexHssSetLogChnlAddrMap: Setting Logical Channel Addressesccccccoeueeee. 53

4.7.7 vortexSetCtrIChnlBaseAddr: Controlling Channel Base Addresses..........ccccccceeeeeneee 53

4.8 Cell InsSertion and EXIFACHIONueiiiiiiiiieiie ettt st e e e nnbee e e e e 54
4.8.1 vortexinsertCell: Inserting Cells into HSS LiNKScocviiiiiiie e 55

4.8.2 vortexExtractCell: Extracting Cells from HSS LinKS.......cccccvveeviiiiiiiiiiee e 57

4.8.3 vortexCheckExtractFifos: Getting Contents of the Extract-FIFO-Ready Register 58

4.8.4 vortexEnableRxCelllnd: Enabling the Received Cell Indicatorcc.c.cocccvvveeeeeeinnnns 59

4.8.5 vortexInstallCellTypeFn: Installing Callback FUNCtions............cccccceveeeiicciiieee e, 60

4.9 BOC Transmission and RECEPLIONcoiiiiiiiiiiiiie ettt e e e e e e eeb e e e e e e e e anes 61
4.9.1 vortexTXBOC: Transmitting BOCccooiiiiiiiiiiiiiiae ettt 61

4.9.2 vortexRxBOC: Reading Received BOC...........coiiiiiiiiiiiiieee e 62

4,10 StatiStICS COlBCHIONeeeieiiieeeiee ettt e e et e e e e e s e st e e e e e e e e e saaannbeeaaeeaeannes 63

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 5

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL
4.10.1 vortexGetHssLnkRxCounts: Accumulating Counts for Received Cellsc...cc.... 63
4.10.2 vortexGetHssLnkTxCounts: Accumulating Counts for Transmitted Cells.................... 64
4.10.3 vortexGetAllHssLnkCounts: Accumulating Counts for All Cells.........ccoeovviciieeeeeninnnns 65
4.10.4 vortexGetStatisticCounts: Retrieving Driver Statistical Counts............occcvveeereeeinnnnee. 66
4.10.5 vortexResetStatisticCounts: Resetting Driver Statistical CouNntsocccvvveeieennnnns 67

411 Indication CAlIDACKSueiiiiiiiieie et e e e e e e e e e e 67
4.11.1 indVortexNotify: Notifying the Application of Significant Eventscccccccceiinniis 68
4.11.2 indVortexRxBOC: Notifying the Application of Received BOCccccccoiiiiiieeieennnins 68
4.11.3 indVortexRxCell: Notifying the Application of Ready Extract-Cell-FIFOs 69

5 Real-Time-OS INterface FUNCLONScoiiiiiiiiiiiiec e 71

5.1 Memory Allocation and De-alloCatioN.............ceeiiiiiiiiiiiiiei e e e e e e e e e anns 72
5.1.1 sysVortexMemAlloc: Allocating MEMOIYcoveeeiiiiiriieiiee e e e e e e s e e e e e 72
5.1.2 sysVortexMemFree: De-allocating MEmMOIYcoccuvviiiiiiee i i e e esieee e e e e e s 73

L 2 = 10 (=Y g Vg = Vo [T o 0= o | SRS 73
5.2.1 vortexGetindBuf: Getting DPR BUFfErScoiiiiiiiiiii e 73
5.2.2 vortexReturnindBuf: Returning DPR BUFfersc..oueiiiiiiiiieeeee e 74

5.3 TIMEI OPEBIALIONS.eitieiiiii ettt ettt e e e ettt e e e e e e e s aa b e e et e e e e e e e e aanbbeeeeeaeeesaannbaeaeeaaannes 74
5.3.1 sysVortexDelayFn: Delaying FUNCLIONSoooiiiiiiiiiiiiae e 74

5.4 SemMaphore OPEIatiONScoiiuuuiiiiiia e ettt e e e e ettt e e e e e e e e tbbbe e e e e e e e e aatbbbeeeeaaeesaannbnbeeeaaaeaanne 74
5.4.1 sysVortexSemCreate: Creating Semaphorescc.uvvieiiieriiiiiiiieeee e 75
5.4.2 sysVortexSemDelete: Deleting SemMaphores.........ccccvvevevee i 75
5.4.3 sysVortexSemTake: Taking SEmMaphOres.......cccccoivviivieiiee e 75
5.4.4 sysVortexSemGive: GiVINg SEMAaPNOIEScuviieiiiiiiiiieee e e e 76

6 Hardware INterface FUNCHONScooiiiiiei et 77

6.1 DEVICE REGISIEr ACCESS ..oeieeiiieiiieeieee e e s e ittt e e e e s ss e et e e e e s ass e e e eaeeessasssteeeaeeeessnsnsaneeeeeanannes 77
6.1.1 sysVortexRawRead: Reading from Register Address Locations...........cccccveeeevvevvnnnnn. 78
6.1.2 sysVortexRawWrite: Writing to Register Address LOCations...........ccoouuvieeeeeeeiiininnnen. 78
6.1.3 sysVortexDeviceDetect: Getting Device Base ADAreSSescoeveeviiiiiiieeieeeeeiininieen, 78

(ST 2 (01 (=T ¢ (] o A ST=] Y/ (o o o [P EUP PP PRRPRN 79
6.2.1 sysVortexintinstall[Handler: Installing Interrupt Service Functions.............ccccccoevinnee. 80
6.2.2 sysVortexIntRemoveHandler: Removing Interrupt Service Functions...............cc....... 80
6.2.3 sysVortexintHandler: Calling VOMEXISRoccciiiiiiiiiiieee e 81
6.2.4 sysVortexDPRTask: Calling VOIEXDPRcooviiiiiiiiiiieee e 81

A o1 11T TR LTSI D= OSSPSR 83

7.1 DIIVEr SOUICE FIIES ...ttt nre e s e 83

7.2 Driver POrting PrOoCEAUIESuuiiiiiee ettt sttt e e s e s e e e e e e s e e st ee e e e e e e e e snnnreneeeenannes 84
7.2.1 Porting the Driver's OS EXIENSIONSccuvviiiieeeiiiiiiiieieee e s s erteee e e e e s et ee e e e e s annnanneees 84
7.2.2 Porting the Driver to a Hardware Platform ... 86
7.2.3 Porting the Driver’s Application-Specific EIeMentscccoociiiiiiiiiiiiiiiee e, 88
7.2.4 BUIdING the DIIVEeeiiiiiie ittt e e e e s et e e e e e e e e e anneeees 89

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 6

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL
AppeNndix: CodING CONVENTIONSuuiiiiiie e e ittt e e e s e e e e e e s s s e e e e eeessas e ereaessaassrarereaeeseannrnnereeens 91
o 0])V PSP 94
a0 = G PP 95
(0] gl ez Ted 1T aTo l = Y (ORI 1= = VAN 1 o (o3P URRPUUUPPPRRRRRT 99

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 7

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL
PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

LIST OF FIGURES

FIGQUIE 1: DIIVEE AFCHITECIUIE ...ttt ettt e e e s ettt e e e e e e e s anbbeee e e s e snnnbeeeaaaeeas 13
FIgure 2: DIiVEr SOfIWAIE SEALES.uuiiiiiiiiiiiiiiii ettt e e e e e st e e e e e e s s bbb be e e e e e s e annnbeaeaaaaeas 16
Figure 3: Device Initialization, Re-initialization, and ShutdOWNccooiiiiiiiiiii e 18
o U SR R O =T | I 4= Lo 1o T SRR 19
Figure 5: INterrupt SErviCe MOUEIoeiiiie it e e e a e e e e s st e e e e e s snnreaneeeees 20
Figure 6: POIIING SEIrVICE MOUEL...........uuiiiiieeiiicieie et e e s e e e e e s st e e e e e e s e snnreaeeeeeeas 22
(ST U1 (TN o] o] [Tor=1 i o] T 11 (=Y o - Tod SO 36
Figure 8: REaAI-TIME OS INTEIACE.uuuiiiiiie i e et e e e e e e e s e e e e e e s st ee e e e esnnrnaneeeees 72
Figure 9: HardWare INtEITACE ... ettt e e e e e s et e e e s e snnnbeaeeaae s 77
FIgure 10: DIiVEI SOUICE FlES..... ...ttt e e e e e s e e e e e e e e e s nab b e e e e e s e snnnbsaeaaaeeas 83

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 8

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/IUNI-VORTEX DRIVER MANUAL
LIST OF TABLES

Table 1: Driver FUNCHONS @Nd FEAIUIESoiiiiiiiiiiiiiee ettt 11
Table 2: Driver SOfWAIE SEALESccoiuiiiiiiiiiie ettt e e st e s rb et e e s e e e sneneeesnnneeas 16
Table 3: sVTX_CELL _HDR: Cell Header StrUCLUIE............ociviiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 24
Table 4: SVTX_CELL_CTRL: Cell CoNtrol SIrUCIUIEuvviiieeeiiiiiiieieee ettt e e e st e e e e e snrnaeeeae s 25
Table 5: SVTX_INIT_VECTOR: INitialization VECIONuuiiiiiei i ee e a e e snnnneeee s 26
Table 6: SVTX_REGS: DEVICE REQISIEIS......c.uuiiiiiieeeeiiiiiieiee e e e e s sttt e e e s s s st e e e e e e e s s snraaeeeaeeseesnnrneraaeeas 27
Table 7: SVTX_HSS REGS: DEVICE REQISIEIS ...cuiiieiiiceiiieiieee e e ettt e e e s s sttt ee e e e s s s snraae e e e e e s e e snnnneeeeees 27
Table 8: SVTX_GDD: Global Driver DatabaSe...........cccuuuiieiieeeie it e e e e s s st ee e e e e s s s ee s e e e e e snnnnneeeees 28
Table 9: SVTX_DDB: DeViCe Data BIOCKcceviiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeee ettt e e re e e e e e e e e e aeaea e 29
Table 10: sSVTX_INT_ENBLS: Interrupt ENabDIESoooieiiiieee e 31
Table 11: SVTX_INT_CTXT: INtEITUPE CONEEXL.....ciiiiiiiiiiiiiiiiea ettt e ettt e e e e e e e e e e e e e e snrnaeaae s 32
Table 12: sVTX_STAT_COUNTS: StatistiCal COUNLScuiiiiiiiiiiiiiiiieiiieieeeeeeeeeee e veee e ee e ee e e s e eeeeeeseeeeeeeeeees 32
Table 13: Definition of Variable TYPESooo e e e e eeeaaeeas 91
Table 14: Variable Naming CONVENTIONSuuiiiiiiiiiiiiitie ettt a et e e e e e e s e aabbbe e e e e e e e s s aaeeaaaaeas 92
Table 15: Function and Macro Naming CONVENTIONSuureieeiiiiiniieireeeessiiriteeere e e e s snnrrreeeeeeseesnnrneeeeees 93

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 9

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL
PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

1 DRIVER PORTING QUICK START

This section summarizes how to port the S/JUNI-VORTEX device driver to your
hardware and operating system (OS) platform.

Note: Because each platform and application is unique, this manual can only
offer guidelines for porting the S/UNI-VORTEX driver.

The code for the S/JUNI-VORTEX driver is organized into C source files. You may
need to modify the code or develop additional code. The code is in the form of
constants, macros, and functions. For the ease of porting, the code is grouped

into source files (src) and include files (i nc). The sr c files contain the functions
and the i nc files contain the constants and macros.

To port the S/UNI-VORTEX driver to your platform:

1. Port the driver’'s OS extensions (page 84):
* Data types
* OS-specific services
» Utilities and interrupt services that use OS-specific services
2. Port the driver to your hardware platform (page 86):
» Port the device detection function.
* Port low-level device read-and-write macros.
» Define hardware system-configuration constants.
3. Port the driver’s application-specific elements (page 88):
» Define the task-related constants.
* Code the callback functions.
4. Build the driver (page 89).

For more information about porting the S/UNI-VORTEX driver, see section 7

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 10

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL
PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

2 DRIVER FUNCTIONS AND FEATURES

The following table lists the main functions and features offered by the
S/UNI-VORTEX driver. You can alter these functions by modifying or adding to
the driver’s code.

Table 1: Driver Functions and Features

Functions Description

Device Addition | These functions perform the following tasks:

and Deletion * Reset new devices

(page 37) » Allocate and initialize memory that will store context
information for new devices

» De-allocate device context memory during device

shutdown
Device These functions initialize the S/UNI-VORTEX device and its
Initialization associated context structures.
(page 41)
Device These functions write values to registers and read them back
Diagnostics to verify the microprocessor’s input and output interface with
the device. They enable and disable internal and external
(page 44) loopback for the S/UNI-VORTEX device’s high-speed serial
(HSS) links. They also monitor the device’s clocks.
HSS Link These functions configure the HSS links of the

Configuration S/UNI-VORTEX device by programming the HSS link
registers according to the parameters specified.
(page 47)

Cell Insertion These functions insert cells into, and extract cells from, the
and Extraction | S/UNI-VORTEX device control channels by manipulating the
insert and extract FIFO control and status registers.

(page 53)

BOC These functions transmit and receive BOC on the HSS links.
Transmission Writing to the transmit BOC registers transmits BOC. BOC is
and Reception | received by monitoring the RECEIVE BOC status-registers.

(page 61)

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 11

RELEASED

DRIVER MANUAL
PMC-1990786

ra “ A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

2.1

Statistics These functions retrieve the device counts (including cells

Collection received, cells transmitted, errored cells received) for
accumulation by the application.

(page 63)

Interrupt These functions clear the interrupts raised by the

Servicing S/UNI-VORTEX device. Then they store the interrupt status
for later processing by a deferred processing routine (DPR).

(page 19) The DPR runs in the context of a separate task within the
RTOS and takes appropriate actions based on the interrupt
status retrieved by the Interrupt Servicing Routine (ISR).
In polling mode, the DPR process periodically services the
interrupt status.

Indication The DPR uses indication callback functions to notify the

Callbacks application of events in the S/UNI-VORTEX device and
driver. These events include the reception of cells in the

(page 67) microprocessor extract cell FIFOs and the reception of valid

BOC.

Driver Architecture

The driver includes seven main modules:

Driver APl module

Real-time-0OS interface module

Hardware interface module

Driver library module

Device data-block module

Interrupt-service routine module

Deferred-processing routine module

For more information about these modules, see the following sections.

Figure 1 illustrates the architectural modules of the S/UNI-VORTEX driver.

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 12

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL
PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

Figure 1: Driver Architecture

Application
Function
Calls
Indication 4
Callbacks Driver API
A
A
Deferred Driver @
Processing » Library «—p» 3 |« >
Routine Functions 5 (%)
h 4 Y E Service ,9
8 Calls x
Interrupt Device =
Context Data Block
Interrupt
Servicing
Routine
A S/UNI-
Hardware Interface VORTEX
Driver

Hardware Register
Interrupts y Access

S/UNI-VORTEX Device

2.1.1 Driver APl Module

The driver’'s APl is a collection of high level functions that can be called by
application programmers to configure, control, and monitor the S/UNI-VORTEX
device, such as:

Initializing the device

Validating device configuration

Retrieving device status and statistics information.

Diagnosing the device

The driver API functions use the driver library functions as building blocks to
provide this system level functionality to the application programmer (see below).

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 13

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

2.1.2

2.1.3

2.1.4

2.1.5

The driver API also consists of callback functions that notify the application of
significant events that take place within the device and driver, including cell and
BOC reception.

Driver Real-Time-OS Interface Module

The driver’'s RTOS interface module provides functions that let the driver use
RTOS services. The S/UNI-VORTEX driver requires the memory, interrupt, and
preemption services from the RTOS. The RTOS interface functions perform the
following tasks for the S/UNI-VORTEX device and driver:

* Allocate and de-allocate memory
* Manage buffers for the DPR

» Pause task execution

* Manage semaphores

Note: You must modify this code to suit your RTOS.
Driver Hardware-Interface Module

The S/UNI-VORTEX hardware interface provides functions that read from and
write to S/UNI-VORTEX device-registers. The hardware interface also provides a
template for an ISR that the driver calls when the device raises a hardware
interrupt. You must modify this function based on the interrupt configuration of
your system.

Driver Library Module

The driver library module is a collection of low-level utility functions that
manipulate the device registers and the contents of the driver’s DDB. The driver
library functions serve as building blocks for higher level functions that constitute
the driver API module. Application software does not normally call the driver
library functions.

Device Data-Block Module

The DDB stores context information about the S/UNI-VORTEX device, such as:

+ Device state

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 14

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

2.1.6

2.1.7

2.2

» Control information

» Initialization vector

» Callback function pointers
» Statistical counts

The driver allocates context memory for the DDB when the driver registers a new
device.

Interrupt-Service Routine Module

The S/UNI-VORTEX driver provides an ISR called vor t ex| SR that checks if
there are any valid interrupt conditions present for the device. This function can
be used by a system-specific interrupt-handler function to service interrupts
raised by the device.

The low-level interrupt-handler function that traps the hardware interrupt and
calls vor t exl SRis system and RTOS dependent. Therefore, it is outside the
scope of the driver. An example implementation of such an interrupt handler (see
page 81) as well as installation and removal functions (see page 80 and page 80)
is provided as a reference. You can customize these example implementations to
suit your specific needs.

See page 19 for a detailed explanation of the ISR and interrupt-servicing model.
Deferred-Processing Routine Module

The DPR provided by the S/JUNI-VORTEX driver (vor t exDPR) clears and
processes interrupt conditions for the device. Typically, a system specific
function, which runs as a separate task within the RTOS, executes the DPR.

See page 19 for a detailed explanation of the DPR and interrupt-servicing model.

Driver Software States

Figure 2 shows the software state diagram for the S/UNI-VORTEX driver. State
transitions occur on the successful execution of the corresponding transition
functions shown. State information helps maintain the integrity of the driver’s
DDB by controlling the set of device operations allowed in each state. Table 2
describes the software states for the S/UNI-VORTEX device as maintained by
the driver.

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 15

RELEASED

DRIVER MANUAL
PMC-1990786

ra “ A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

Figure 2: Driver Software States

vortexAdd
vortexDelete
D vortexReset

vortexReset

vortexInit

vortexReset

vortexActivate

vortexDeactivate

Table 2: Driver Software States

State

Description

Empty

The S/UNI-VORTEX device is not registered. This is the initial state.

Present

The driver has detected the S/UNI-VORTEX device and the drive has
passed power-on self-tests. The driver has allocated memory to store
context information about this device.

Init

An initialization vector passed by the application has successfully
initialized the S/UNI-VORTEX device. The initialization parameters
have been validated and the device has been configured by writing
appropriate bits in the control registers of the device.

Active

The S/UNI-VORTEX device has been activated. This means that the
device interrupts have been enabled and the device is ready for
normal operation.

2.3 Processing Flows

This section describes some of the main processing flows of the S/UNI-VORTEX

driver:

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 16

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL
PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

Device initialization, re-initialization, and shutdown

Cell extraction

Interrupt servicing

Polling servicing

The flow diagrams presented here illustrate the sequence of operations that take
place for different driver functions. The diagrams also serve as a guide to the
application programmer by illustrating the sequence in which the driver APl must
be invoked.

2.3.1 Device Initialization, Re-initialization, and Shutdown

The following figure shows the functions and process that the driver uses to
initialize, re-initialize, and shutdown the S/UNI-VORTEX device.

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 17

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL
PMC-1990786 ISSUE 2

S/UNI-VORTEX DRIVER MANUAL

Figure 3: Device Initialization, Re-initialization, and Shutdown

START

\J

vortexAdd

v

—P- vortexInit

J

vortexInstallindFn
vortexinstallCellTypeFn

v

vortexActivate

\

‘ vortexReset ‘

vortexDeactivate

v

vortexReset

v

vortexDelete

\

END

2.3.2 Cell Extraction

Detects the device being added in the hardware (using
sysVortexDeviceDetect), allocates memory for storing device context
information, and applies a software reset to the device.

Initializes the device based on an initialization vector provided by the user.
The initialization vector is validated by the user and stored by the driver as
part of device context information. The device registers are then
configured accordingly.

(OPTIONAL) Install callback functions using these two functions if
necessary. These callbacks can also be installed by passing them in the
initialization vector argument of the vortexInit function.

Prepares the device for normal operation by enabling interrupts and other
global enables like HSS links transmitter. An ISR function is installed using
sysVortexIntinstallHandler. The device is now operational and all other API
can be invoked.

In order to re-initialize the device, resets the device using vortexReset and
goes through the initialization sequence again.

De-activates the device and removes it from normal operation. This
involves disabling the device interrupts. The ISR routine for this device is
removed using sysVortexIntRemoveHandler.

Applies a software reset to the device to put it in its default startup state. It
also resets the context information for that device.

Removes the device from the list of devices being controlled by the
S/UNI-VORTEX driver. This function de-allocates the device context
information for the device being deleted.

The following figure shows the functions and process that the driver uses to
extract cells from the S/UNI-VORTEX device.

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA,

INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

18

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL
PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

Figure 4: Cell Extraction

START
+ The deferred processing routine invokes this indication callback function to inform the user
of a cell reception. The indVortexRxCell function is typically implemented as a message
indVortexRxCell queuing function that sends a message to another task (referred to henceforth as the cell
reception task) that is dedicated to process received cells. The deferred processing routine
+ also disables further RX indications.

The cell reception task now checks the status of the Extract FIFOs of the S/JUNI-VORTEX
—» vortexCheckExtractFifos device. This function determines which extract FIFOs have cells to be dequeued.

+ Cells are now dequeued by repeatedly invoking vortexExtractCell till the Extract FIFOs are
vortexExtractCell empty. The message completion is detected by an End of Message bit in a cell type flag
output from pCellTypeFn function. The funcion is installed by the user as a callback
function. The Extract FIFOs are again checked to see if there are any more cells to be

extracted.
After extracting all the cells from the Extract FIFOs of the S/UNI-VORTEX device, the cell
‘ vortexEnableRxInd ‘ reception task re-enables the RX indication for the device.
END

2.3.3 Interrupt Servicing

The S/UNI-VORTEX driver services device interrupts using an interrupt service
routine (ISR) that traps interrupts and a deferred processing routine (DPR) that
actually processes the interrupt conditions and clears them. This lets the ISR
execute quickly and exit. Most of the time-consuming processing of the interrupt
conditions is deferred to the DPR by queuing the necessary interrupt-context
information to the DPR task. The DPR function runs in the context of a separate
task within the RTOS.

Note: Since the DPR task processes potentially serious interrupt conditions, you
should set the DPR task’s priority higher than the application task interacting with
the S/UNI-VORTEX driver.

The driver provides system-independent functions, vor t exl SRand vor t exDPR.
You must fill in the corresponding system-specific functions, sysVor t exl SRand
sysVor t exDPR. The system-specific functions isolate the system-specific
communication mechanism (between the ISR and DPR) from the
system-independent functions, vor t exl SRand vor t exDPR.

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 19

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL
PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

Figure 5 illustrates the interrupt service model used in the S/UNI-VORTEX driver
design.

Figure 5: Interrupt Service Model

Interrupt
sysVortexIntHandler Context sysVortexDPRTask Indication
Information Callbacks
vortexISR > > vortexDPR > » Application

Note: Instead of using an interrupt service model, you can use a polling service
model in the S/UNI-VORTEX driver to process the device’s event-indication
registers (see page 22).

Calling vortexISR

An interrupt handler function, which is system dependent, must call vor t ex| SR.
But first, the low-level interrupt-handler function must trap the device interrupts.
You must implement this function for your system. As a reference, an example
implementation of the interrupt handler (sysVor t exl nt Handl er) appears on
page 81. You can customize this example implementation to suit your needs.

The interrupt handler that you implement (sysVor t ex| nt Handl er) is installed
in the interrupt vector table of the system processor. Then it is called when one or
more S/UNI-VORTEX devices interrupt the processor. The interrupt handler then
calls vor t exl SRfor each device in the active state. vor t ex| SRreads from the
HSS interrupt-status register and the miscellaneous interrupt-status register of
the S/UNI-VORTEX.

Then vor t exl SRreturns with the status information if a valid status bit is set. If a
valid status bit is set, vor t exl SR also disables that device’s interrupts. The
sysVor t exl nt Handl er then sends a message to the DPR task that consists of
the device handles of all the S/JUNI-VORTEX devices that had valid interrupt
conditions.

Note: Normally you should save the status information for deferred processing by
implementing a message queue. The interrupt handler uses
sysVor t exl nt Handl er to send the status information to the queue.

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 20

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL
PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

Calling vortexDPR

sysVor t exDPRTask is a system specific function that runs as a separate task
within the RTOS. You should set the DPR task’s priority higher than the
application task(s) interacting with the S/UNI-VORTEX driver. In the
message-queue implementation model, this task has an associated message
gueue. The task waits for messages from the ISR on this message queue. When
a message arrives, sysVor t exDPRTask calls the DPR (vor t exDPR). Then

vor t exDPR processes the status information and takes appropriate action based
on the specific interrupt condition detected. The nature of this processing can
differ from system to system. Therefore, vor t exDPR calls different indication
callbacks for different interrupt conditions.

Typically, you should implement these callback functions as simple message
posting functions that post messages to an application task. However, you can
implement the indication callback to perform processing within the DPR task
context and return without sending any messages. In this case, ensure that the
indication function does not call any API functions that change the driver’s state,
such as vort exDel et e. Also, ensure that the indication function is non-blocking
because the DPR task executes while S/JUNI-VORTEX interrupts are disabled.
You can customize these callbacks to suit your system. See page 67 for a
description of the callback functions.

Note: Since the vort exl SRand vor t exDPR routines themselves do not specify
a communication mechanism, you have full flexibility in choosing a
communication mechanism between the two. A convenient way to implement this
communication mechanism is to use a message queue, which is a service that
most RTOSs provide.

You must implement the two system specific routines, sysVor t ex| nt Handl er
and sysVor t exDPRTask. When sysVort exI nt | nst al | Handl er is called for
the first time, sysVor t ex| nt Handl er is installed in the interrupt vector table of
the processor. The sysVort exDPRTask routine is also spawned as a task
during this first time invocation of sysVor t exl nt | nst al | Handl er.
sysVortexl ntlnstal | Handl er also creates the communication channel
between sysVor t exl nt Handl er and sysVor t exDPRTask. This
communication channel is most commonly a message queue associated with
sysVor t exDPRTask.

Similarly, during removal of interrupts, the sysVor t exl nt Handl er function is
removed from the microprocessor’s interrupt vector table and the task associated
with sysVor t exDPRTask is deleted.

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 21

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL
PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

As a reference, this manual provides example implementations of the interrupt
installation and removal functions. For more information about the interrupt
removal function and prototype, see page 80. You can customize these
prototypes to suit your specific needs.

2.3.4 Polling Servicing

Instead of using an interrupt service model, you can use a polling service model
in the S/UNI-VORTEX driver to process the device’s event-indication registers.

Figure 6 illustrates the polling service model used in the S/UNI-VORTEX driver
design.

Figure 6: Polling Service Model

sysVortexDPRTask Indication
Callbacks
vortexDPR » » Application
Task Delay

The polling service code includes some system specific code (prefixed by
“sysVort ex”), which typically you must implement for your application. The
polling service code also includes some system independent code (prefixed by
“vor t ex”) provided by the driver that does not change from system to system.

In polling mode, sysVort exl nt Handl er and vort ex| SR are not used.
Instead, a sysVor t exDPRTask routine is spawned as a task processor when
sysVortexl ntlnstall Handl er is called for the first time.

In sysVor t exDPRTask, the driver-supplied DPR (vor t exDPR) is periodically
called for each device in the active state. The vor t exDPR reads from the HSS
interrupt-status and miscellaneous interrupt-status registers of the
S/UNI-VORTEX. If some valid status bits are set, it processes the status
information and takes appropriate action based on the specific interrupt condition
detected.

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 22

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

The nature of this processing can differ from system to system. Therefore, the
DPR calls different indication callbacks for different interrupt conditions. You can
customize these callbacks to fit your application’s specific requirements. See
page 67 for a description of these callback functions.

Similarly, during removal of polling service, the task associated with
sysVor t exDPRTask is deleted if none of S/TUNI-VORTEX devices is activated.

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 23

RELEASED

DRIVER MANUAL
PMC-1990786

ISSUE 2

ra “ A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

S/UNI-VORTEX DRIVER MANUAL

DRIVER DATA STRUCTURES

The S/UNI-VORTEX driver uses several data structures. These structures help

to:

* Control and store cell header information

» Configure the S/UNI-VORTEX device

» Identify the device’s context
* Support interrupt processing

* Store indication callbacks

3.1 Cell Data Structures

This section describes the data structures that the driver uses to help control cell

insertion and extraction. These structures serve as templates for received and

transmitted cells.

3.1.1 Cell-Header Data Structure

The following structure stores cell header data.

Table 3: sVTX_CELL_HDR: Cell Header Structure

Member Name Type Description

ulUsr Prpnd[2] | U NT1 2 prepend bytes that you specify
ulHdr[5] U NT1 H1-H5 cell header bytes

ulUDF U NT1 A field you define

3.1.2 Cell-Control Data Structure

The following structure controls cell insertion and extraction operations.

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

24

RELEASED

DRIVER MANUAL
PMC-1990786

ra “ A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

ISSUE 2

S/UNI-VORTEX DRIVER MANUAL

Table 4: sVTX_CELL_CTRL: Cell Control Structure

Member Name

Type

Description

ud4Cr c32Pr ev

Ul NT4

The CRC-32 value in the insert and extract
CRC-32 accumulator registers after the previous
cell was inserted or extracted. Used to preset the
accumulator registers before inserting or extracting
the next cell.

u4Crc32

Ul NT4

The CRC-32 value in the insert and extract
accumulator registers after the current cell is
inserted or extracted.

ulCel | Type

U NT1

A flag used by the driver to indicate that the cell
extracted is the last cell or first cell of a message,
and is CRC protected or not.

 BitO:

e [f1, then CRC-32 on

e |f O, then CRC-32 off
 Bitl:

e [f 1, then first cell

e |f O, then not first cell
 Bit2:

e [f 1, then last cell

e |f O, then not last cell

This section describes the data structures that the driver uses to initialize and

3.2 Device-Configuration Data Structures
configure the S/UNI-VORTEX device.
3.2.1 Initialization Data Structure

The device initialization function initializes the S/UNI-VORTEX device and its
associated context structures. This involves reading an initialization vector. The
driver validates this vector and then configures the S/UNI-VORTEX device

accordingly.

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 25

RELEASED

DRIVER MANUAL
PMC-1990786

ra “ A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

ISSUE 2

S/UNI-VORTEX DRIVER MANUAL

The application sets the initialization vector before initializing a S/UNI-VORTEX
device. The initialization vector contains configuration parameters that the driver
uses to program the S/UNI-VORTEX device control-registers.

Note: The application must free the initialization vector memory.

Table 5: sVTX_INIT_VECTOR: Initialization Vector

Member Name

Type

Description

sRegl nfo

SVTX_REGS

Contains the values that the driver
will write to the control registers of
the S/UNI-VORTEX device

i ndNot i fy

VTX_| ND_CB_FN

Indication callback function called by
the DPR when a significant event
occurs in the driver software

I NndRxBOC

VTX_I ND_CB_FN

Indication callback function called by
the DPR to forward a received valid
BOC to the application

I ndRxCel |

VTX_| ND_CB_FN

Indication callback function called by
the DPR when the driver must read
cells from the Extract FIFOs

pCel | TypeFn

VTX_CELLTYPE_FN

A cell-type detector function that is
used by the driver to determine if a
cell extracted is the last or first of a
particular message, and/or if it is
CRC-32 protected

u4Reserved

U NT4

Placeholder for future use

3.2.2 Register Data Structure

The register data structure contains the initial values that the driver will write to
the S/UNI-VORTEX device control-registers.

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 26

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL
PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

Table 6: sSVTX_REGS: Device Registers

Member Name Type Description

ulMast er Cf g U NT1 Master configuration
register

ulCirl Chnl BaseAddr[2] | U NT1 Control channel base
address [2 bytes (LSB,
MSB)]

ulDnstrnCel I IntfCfg U NT1 Downstream cell interface
configuration

ulUpstrnCel | IntfCfg U NT1 Upstream cell interface
configuration

sHssRegs SVIX_HSS_REGS | HSS link control registers

sl nt EnRegs sVTX_| NT_ENBLS | Interrupt enable registers

Table 7: sVTX_HSS REGS: Device Registers

Member Name Type Description

UlRXxHssCf g U NT1 | Receive HSS configuration

UlRxHssCel | Fi | t er Cf gSt at U NT1 | Receive-HSS cell-filtering
configuration and status

ulUpst r MRRW U NT1 | Upstream round-robin weight

ulLogChnl BaseAddr Lsb U NT1 | Logical-channel base
address

ulLogChnl Addr RngBaseAddr Msb | Ul NT1 | Logical-channel
address-range and
logical-channel
base-address MSB

ulDnst r mLogChnl Fi f oRdyLvl U NT1 | Downstream logical-channel
FIFO-ready level

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 27

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL
Member Name Type Description
ulTxHssCf g U NT1 | Transmit HSS configuration

3.3 Device-Context Data Structures

This section describes the data structures that the driver uses to store data about
the S/UNI-VORTEX device and related devices.

3.3.1 Global Driver-Database Structure

The Global Driver Database (GDD) stores module level data, such as the number
of devices that the driver controls and an array of pointers to the individual device
context structures (DDBS).

Table 8: sVTX_GDD: Global Driver Database

Member Name Type Description

ulNunDevs Ul NT1 Number of devices added

pDdb[VTX_NMAX_ NUM DEVS] sVTX_ DDB* Array of pointers to the
individual DDBs

u4Reserved Ul NT4 Reserved for future use

3.3.2 Device Data-Block Structure

The DDB contains device context data, such as:

Device state

Control data

Initialization vector

Callback function pointers

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 28

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL
PMC-1990786 ISSUE 2

S/UNI-VORTEX DRIVER MANUAL

The driver allocates the DDB memory when the driver registers a new device.
The memory is de-allocated when an existing device is deleted.

Table 9: sVTX _DDB: Device Data Block

Member Name

Type

Description

usr Ct xt

VTX_USR_CTXT

This variable stores the
device’s role in the context of
your system. The driver
passes it as an input
parameter when the driver
calls an application callback.

pSysl nfo

va b *

Pointer to system-specific
device information. For
example, in PCI bus
environments, the bus,
device, function numbers,
IRQ assignment etc.

u4BaseAddr

U NT4

Base address of the device

eDevSt at e

eVTX_STATE

Device state, which can be
one of the following
enumerated type values:

« VTX_EMPTY
« VTX_PRESENT
e« VIXINT

« VTX_ACTI VE

ull ntr ProcEn

U NT1

1: Interrupt processing
enabled

O: Interrupt processing
disabled

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 29

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2

S/UNI-VORTEX DRIVER MANUAL

Member Name

Type

Description

sl ni t Vect or

sVTX_| NI T_VECTOR

Device configuration
information passed by the
application to the driver. The
driver writes the appropriate
S/UNI-VORTEX device
registers based on the
contents of this vector.

sl nt Enbl s

sVTX_| NT_ENBLS

Maintains a snapshot of the
current interrupt-enables
registers for the
S/UNI-VORTEX device

i ndNot i fy

VTX_I ND_CB_FN

Indication callback function
called by the DPR when a
significant event occurs in the
driver software

I NndRxBOC

VTX_I ND_CB_FN

Indication callback function
called by the DPR to forward
a received valid BOC to the
application

I NdRxCel |

VTX_I ND_CB_FN

Indication callback function
called by the DPR when the
driver must read cells from
the Extract FIFOs

pCel | TypeFn

VTX_CELLTYPE_FN

Indication callback function
called by the driver when
extracting a cell

sLogChnl Addr Rng

SVTX_CHNL_ADDR RNG

An array of

VTX_NUM HSS LNKS
elements. Each element
contains the logical channel
base address and range for a
particular serial link.

sSt at Count s

SVTX_STAT_COUNTS

Interrupt status counts per
event

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 30

RELEASED

DRIVER MANUAL

PMC-1990786 ISSUE 2

ra “ A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

S/UNI-VORTEX DRIVER MANUAL

Member Name Type Description
| ockl d VIX_SEM | D Semaphore for mutually
exclusive access to
sSt at Count s
u4Reserved Ul NT4 Placeholder for future use

3.4 Interrupt Data Structures

This section describes the data structures that the S/UNI-VORTEX driver uses to
store interrupt context data for interrupt-enable bit-setting data.

3.4.1

Interrupt-Enable Data Structure

The interrupt-enable bit-setting data is stored in the following structure.

Table 10: sVTX_INT_ENBLS: Interrupt Enables

Member Name Type Description

ulMast er En U NT1 | Master interrupt enable

ulROCLEN U NT1 | ROOLE bit: Tracks changes in ROOLV
bit. It is located in the clock monitor
register.

ulDnstrntCel | I ntfEn U NT1 | Downstream-cell interface
interrupt-enable

ulUpstrnCel I IntfintEn | U NT1 | Upstream-cell interface
interrupt-enable (CELLXFERRE bit)

ulM croCel | Buf Ctr U NT1 | Microprocessor cell-buffer interrupt
control

UlRxHssl nt En[8] U NT1 | Receive-HSS interrupt-enables (8

instances)

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 31

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL
PMC-1990786 ISSUE 2

S/UNI-VORTEX DRIVER MANUAL

ulRxHssFi f oOvr [8] U NT1 | Receive-HSS FIFO-overflow register
(8 instances)
ulRxHssBocl nt En[8] U NT1 | Receive-HSS BOC interrupt-enables

(8 instances)

3.4.2 Interrupt-Context Data Structure

The following structure passes interrupt context data from the interrupt servicing

routine to the DPR.

Table 11: sVTX_INT_CTXT: Interrupt Context

Member Name Type

Description

ulNunDevs Ul NT1

Number of devices for which interrupts have to

be processed

pud4DevHandl es | U NT4 *

Array of size VTX_MAX_NUM DEVS. The first

ulNumDevs elements of this array contain the

device handles for the devices for which
interrupts have to be processed.

3.5 Statistical Count Structure

This section describes the data structure that the S/UNI-VORTEX driver uses to

store statistical counts.

Table 12: sVTX_STAT_COUNTS: Statistical Counts

Member Name

Type Description

CntPl | Err

Ul NT4 | Register 0x07, bit 3

Cnt Buf Fi f oOvr Rn

Ul NT4 | Register 0x10, bit 5

Cnt Buf Fi f oCr c32Err

U NT4 | Register 0x10, bit 7

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

32

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL
Member Name Type Description
CntUpStrnCel | | f XferErr U NT4 | Register 0x0C, bit 7
CntDmnStrnCel | | fParityErr U NT4 | Register 0x0B, bit 1

CntDmnStrnCel |1 f TxSt Cel | Err Ul NT4 | Register 0x0B, bit 2

Cnt TxCel | Cnt Ovr nl nd[8] U NT4 | Register 0x91, 0xB1, OxD1,
OxF1, 0x111, 0x131, Ox151,
0x171 bit5

Cnt TxCel | Cnt Updl nd[8] U NT4 | Register 0x91, 0xB1, 0xD1,
OxF1, Ox111, 0x131, 0x151,
0x171 bit 6

Cnt TxFi f oOvr Rn[8] U NT4 | Register 0x8D, OXAD, OxCD,
OxED, 0x10D, 0x12D,
0x14D, 0x16D bit 0

Cnt RxTr ansFr nLos| 8] U NT4 | Register 0x83, 0xA3, 0xC3,
OxE3, 0x103, 0x123, 0x143,
0x163 hit 0

Cnt RxTransFr nicd[8] U NT4 | Register 0x83, 0xA3, OxC3,
OxE3, 0x103, 0x123, 0x143,
0x163 bit 1

Cnt RxTransCOF Act v[8] U NT4 | Register 0x83, 0xA3, OxC3,
O0xE3, 0x103, 0x123, 0x143,
0x163 bit 2

Cnt RxNonZer oCr c[8] U NT4 | Register 0x83, 0xA3, OxC3,
OxE3, 0x103, 0x123, 0x143,
0x163 bit 3

Cnt RxCel | Del i nXSync| 8] U NT4 | Register 0x83, 0xA3, OxC3,
OxE3, 0x103, 0x123, 0x143,
0x163 bit 4

Cnt RxCel | HcsErr Det ect [8] U NT4 | Register 0x83, 0xA3, 0xC3,
OxE3, 0x103, 0x123, 0x143,
0x163 hit 5

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 33

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL
PMC-1990786 ISSUE 2

S/UNI-VORTEX DRIVER MANUAL

Member Name

Type

Description

Cnt RxCel | Cnt sUpd] 8]

U NT4

Register 0x83, 0xA3, 0xC3,
OxE3, 0x103, 0x123, 0x143,
0x163 bit 6

Cnt RxH dCnt Ovr [8]

Ul NT4

Register 0x83, 0xA3, 0xC3,
OxE3, 0x103, 0x123, 0x143,
0x163 bit 7

Cnt RxCel | Dat Lst Fi f oOvr Fl W 8]

Ul NT4

Register 0x88, 0xA8, 0xCS8,
OxE8, 0x108, 0x128, 0x148,
0x168 bit 4

Cnt RxCel | Ct | Lst Fi f oOvr Fl w 8]

U NT4

Register 0x88, 0xA8, 0xCS8,
OxES8, 0x108, 0x128, 0x148,
0x168 bit 5

Cnt RxBocVal i d[8]

Ul NT4

Register 0x99, 0xB9, 0xD9,
OxF9, 0x119, 0x139, 0x159,
0x179 bit 6

Cnt RxBocl dl e[8]

U NT4

Register 0x99, 0xB9, 0xD9,
O0xF9, 0x119, 0x139, 0x159,
0x179 bit 7

Countlnterrupts

Ul NT4

Number of interrupts

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

34

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL
PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

4 APPLICATION INTERFACE FUNCTIONS

The driver's APl is a collection of high level functions that application programmers
can call to configure, control, and monitor S/UNI-VORTEX devices.

Note: These functions are not re-entrant. This means that two application tasks
cannot invoke the same API at the same time. However, the driver protects it's data
structures from concurrent accesses by the application and the DPR task.

The application interface also consists of callback functions. These callback
functions notify the application of significant events that take place within the device
and driver, such as:

e Occurrence of critical errors
* Reception of cells
* Reception of valid BOCs

The vortexDPR routine invokes the indication callback functions. These execute in
the context of the DPR task. Typically, these callback routines are implemented as
simple message posting routines that post messages to an application task.
However, the user can choose to implement the indication callback to perform
processing within the DPR task context and return without sending any messages. In
this case, ensure that the indication routine does not call any API function that
changes the driver’s state, such as vortexDelete.

The indication routine should be non-blocking because the DPR task executes while
interrupts are disabled. The DPR task is also responsible for re-enabling device
interrupts once the deferred processing is complete.

Many API functions change the device’s state. For information about device
states, see page 15.

Figure 7 illustrates the external interfaces defined for the S/UNI-VORTEX driver.

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 35

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

Figure 7: Application Interface

Application
A
Function Calls Indication Callbacks Application
Interface
Y
S/UNI-VORTEX Driver RTOS
A A Service Calls

Hardware
Interrupts

Register Access

Y

S/UNI-VORTEX Device

4.1 Driver Initialization and Shutdown

This section describes the API functions used to initialize and shutdown the
driver’'s modules.

4.1.1 vortexModulelnit: Initializing Driver Modules

This function performs module level initialization of the device driver. This
involves allocating memory for the GDD and initializing the data structure.

Valid States Not applicable
Side Effects None

Prototype I NT4 vortexMdul el nit (VA D)

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 36

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL
Inputs None
Outputs None

Return Codes VTX_ SUCCESS
VTX_ERR_MEM ALLQOC (memory allocation failure)

VTX_ERR_MODULE_ALREADY | NI T

4.1.2 vortexModuleShutdown: Shutting Down Driver Modules

4.2

This function performs module level shutdown of the driver. This involves deleting
all devices controlled by the driver and de-allocating the GDD.

Valid States All states

Side Effects None

Prototype VA D vort exMdul eShut down(VO D)
Inputs None
Outputs None

Return Codes None

Device Addition, Reset, and Deletion

When you add a new S/UNI-VORTEX device, the driver’s device-addition
functions allocate memory to store context information for new devices. The
driver also applies a software reset to the device. The device deletion function
de-allocates device context memory during device shutdown.

4.2.1 vortexAdd: Adding Devices

This function detects the new device in the hardware and allocates memory for
the DDB. Then it stores the device’s role (within your system’s context) and
returns the pointer to the DDB as a handle back to your system. You should use
the device handle to identify the device on which the driver will perform the
operation.

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 37

RELEASED

DRIVER MANUAL
PMC-1990786

ra “ A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

Valid States

Side Effects

Prototype

Inputs

Outputs

Return Codes

VTX_EMPTY

This function puts the device in the VTX_PRESENT state. The
function applies a software reset to the device.

I NT4 vortexAdd(VTX USR CTXT usrCtxt, VORTEX
*pVort ex)

usr Ct xt : Pointer to context information (maintained by your
system) for the device being added

pVor t ex: Pointer to the S/TUNI-VORTEX device handle that
contains context information maintained by the driver. The
variable type, VORTEX, is actually the following type, which
you define:

o #define VORTEX (void *)

This prevents the application from accessing the DDB directly.

VTX_SUCCESS

VTX_ERR_| NVALI D_STATE (invalid device state)
VTX_ERR _DEV_NOT_DETECTED (device was not detected)
VTX_ERR_MEM ALLQOC (memory allocation failure)

VTX_ERR BAD_REVI SI ON (revision not supported)

4.2.2 vortexReset: Resetting Devices

This function applies a software reset to the S/UNI-VORTEX device. It also
resets all of the device’s context information in the DDB (except for the
initialization vector, which it leaves unmodified). Typically, the driver calls this
function during device shutdown, or before re-initializing the device with an
initialization vector.

Valid States

Side Effects

All states except VTX_EMPTY

This function puts the device in the VTX_PRESENT state.
Therefore, the driver must initialize the device after a reset.

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 38

RELEASED

DRIVER MANUAL
PMC-1990786

ra “ A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

4.2.3

4.3

Prototype

Inputs

Outputs

Return Codes

I NT4 vort exReset (VORTEX vort ex)

vor t ex: Pointer to DDB that contains device context
information maintained by the driver.

None
VTX SUCCESS

VTX_ERR | NVALI D_DEVI CE (invalid device handle)

vortexDelete: Deleting Devices

This function removes the specified device from the list of devices controlled by
the S/UNI-VORTEX driver. Deleting a device involves de-allocating the DDB for

that device.

Valid States
Side Effects
Prototype

Inputs

Outputs

Return Codes

VTX_PRESENT
This function changes the device state to VTX_EMPTY.
I NT4 vortexDel et e(VORTEX vort ex)

vor t ex: Pointer to device context information maintained by
the driver

None

VTX_ SUCCESS
VTX_ERR | NVALI D_DEVI CE (invalid device handle)

VTX_ERR | NVALI D_STATE (invalid device state)

Reading from and Writing to Devices

This section describes the API functions used to read from and write to
S/UNI-VORTEX devices. Their tasks include reading from and writing to the
registers of a device.

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

39

RELEASED

DRIVER MANUAL
PMC-1990786

ra “ A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

4.3.1 vortexRead: Reading from Device Registers

This function can read from a register of a specific S/TUNI-VORTEX device by
providing the register identifier. This function derives the actual address location
based on the device handle and register identifier inputs. It then reads the
contents of this address location using the system specific macro,

sysVor t exRawRead.

Prototype

Inputs

Outputs

Return Codes

I NT4 vort exRead(VORTEX vortex, U NT2 u2Regld,
U NT1 *pulVal)

vor t ex: Pointer to device context information
u2Regl d: Register identifier

pulVal : Register value

VTX_SUCCESS
VTX_ERR | NVALI D_DEVI CE (invalid device handle)

VTX_ERR_REG RANGE (invalid register identifier)

4.3.2 vortexWrite: Writing to Device Registers

This function can write to a register of a specific S/TUNI-VORTEX device by
providing the register identifier. This function derives the actual address location
based on the device handle and register identifier inputs. It then writes the
contents of this address location using the system specific macro,
sysVortexRawwvi te.

Prototype

Inputs

Outputs

I NT4 vortexWite(VORTEX vortex, Ul NT2
u2Regl d, U NT1 ulVval)

vor t ex: Pointer to device context information
u2Regl d: Register identifier
ulVal : Value to be written

None

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 40

RELEASED

DRIVER MANUAL
PMC-1990786

ra “ A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

Return Codes

VTX_SUCCESS
VTX_ERR | NVALI D_DEVI CE (invalid device handle)

VTX_ERR_REG RANGE (invalid register identifier)

4.4 Device Initialization

This section describes the API functions used to initialize S/UNI-VORTEX
devices. Their tasks include initializing the device based on the initialization
vector passed by the application. They also install and remove the indication
callback functions that vor t exDDPR calls.

4.4.1 vortexInit: Initializing Devices

This function initializes the device based on the initialization vector passed by the
application. The driver validates this initialization vector and then stores it in the
device’s DDB. The driver then configures the device registers accordingly.

Valid States
Side Effects

Prototype

Inputs

Outputs

Return Codes

VTX_PRESENT

This function puts the device in the VTX_| NI T state.

I NT4 vortexlnit(VORTEX vort ex,
sVTX_I NI T_VECT, slnitVector)

vor t ex: Pointer to DDB that contains device context
information maintained by the driver

sl ni t Vect or : Initialization vector that the driver uses to
program the device registers

None

VTX_SUCCESS
VTX_ERR | NVALI D_DEVI CE (invalid device handle)
VTX_ERR_| NVALI D_STATE (invalid device state)

VTX_ERR I NVALI D_I NI T_VECTOR (invalid initialization
vector)

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 41

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL
PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

4.4.2 vortexinstallindFn: Installing Indication Callback Functions

This function installs the indication callback functions (which you define) that
vor t exDPR calls. The function pointer is stored in the device context structure
(the DDB).

Valid States VIX INIT
Side Effects None

Prototype I NT4 vortexlnstal |l ndFn(VORTEX vort ex,
eVTX _CB TYPE eCbType, VTX I ND CB FN pCbFn)

Inputs vort ex: Pointer to DDB that contains device context
information maintained by the driver

eCbType: Identifies the callback being installed, which can be
one of the following:

« VTX_CB_NOTI FY
« VTX_CB_RX_BCC
« VTX_CB_RX CELL

pCbFn: Callback function that the driver is installing
Outputs None
Return Codes VTX_SUCCESS

VTX_ERR | NVALI D_DEVI CE (invalid device handle)

VTX_ERR | NVALI D_CB_TYPE (invalid callback function type)

4.4.3 vortexRemovelndFn: Removing Indication Callback Functions

This function removes the indication callback functions (which you define) that
vort exDPR calls.

Valid States VIX INIT

Side Effects The driver will no longer report events to the application.

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 42

RELEASED

DRIVER MANUAL
PMC-1990786

ra “ A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

Prototype

Inputs

Outputs

Return Codes

I NT4 vort exRenovel ndFn(VORTEX vort ex,
eVTX CB TYPE eCbType)

vor t ex: Pointer to DDB that contains device context
information maintained by the driver

eCbType: Identifies the callback being installed, which can be
one of the following:

« VTX_CB_NOTI FY
« VTX_CB_RX_BCC
« VTX_CB_RX_CELL

None

VTX_SUCCESS
VTX_ERR | NVALI D_DEVI CE (invalid device handle)

VTX_ERR | NVALI D_CB_TYPE (invalid callback function type)

4.5 Device Activation and Deactivation

This section describes the API functions used to activate and deactivate
S/UNI-VORTEX devices. These functions set the device interrupts and other

global enables.

4.5.1 vortexActivate: Activating Devices

This function activates the S/UNI-VORTEX device by preparing it for normal
operation. This involves enabling device interrupts and other global enables (for
example, the HSS link transmitter).

Valid States
Side Effects
Prototype

Inputs

VIX INT

Puts the device in VTX_ACTI VE state.

I NT4 vortexActivat e(VORTEX vort ex)

vor t ex: Pointer to DDB that contains device context
information maintained by the driver

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 43

RELEASED

DRIVER MANUAL

ra “ A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL
Outputs None
Return Codes VTX_SUCCESS

4.5.2

4.6

VTX_ERR | NVALI D_DEVI CE (invalid device handle)

VTX_ERR | NVALI D_STATE (invalid device state)

vortexDeactivate: Deactivating Devices

This function de-activates the S/UNI-VORTEX device and removes it from normal
operation. This involves disabling device interrupts and other global disables (for
example, the HSS link transmitter).

Valid States
Side Effects
Prototype

Inputs

Outputs

Return Codes

VTX_ACTI VE
Puts the device in VTX_| NI T state.
I NT4 vortexDeacti vat e(VORTEX vort ex)

vor t ex: Pointer to DDB that contains device context
information maintained by the driver

None

VTX_ SUCCESS
VTX_ERR | NVALI D_DEVI CE (invalid device handle)

VTX_ERR | NVALI D_STATE (invalid device state)

Device Diagnostics

This section describes the API functions used to diagnose the S/UNI-VORTEX
device. Their tasks include:

» Verifying the correctness of the microprocessor’s access to the device

registers

» Enabling or disabling a diagnostic or line loopback on the specified HSS link

* Monitoring the activity of the device’s clocks

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 44

RELEASED

DRIVER MANUAL
PMC-1990786

ra “ A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

4.6.1 vortexRegisterTest: Verifying Device Register Access

This function verifies the correctness of the microprocessor’s access to the
device registers by writing values to the writable registers and reading them

back.

Valid States

Side Effects

Prototype

Inputs

Outputs

Return Codes

VTX_PRESENT

Puts the device in the VTX_PRESENT state after the test.
Therefore, the device should be re-initialized after calling this
function.

I NT4 vortexRegi sterTest (VORTEX vort ex)

vor t ex: Pointer to DDB that contains device context
information maintained by the driver

None

VTX_ SUCCESS
VTX_ERR | NVALI D_DEVI CE (invalid device handle)

VTX_FAI LURE (test failed)

4.6.2 vortexLoopback: Enabling/Disabling Diagnostic or Line Loopback

This function enables or disables a diagnostic or line loopback on the specified

HSS link.

Valid States
Side Effects

Prototype

All states except VTX_EMPTY
None

I NT4 vort exLoopback(VORTEX vortex, U NT1
ulHssld, U NT1 ullLpbkType, U NT1 ulEnabl e)

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 45

RELEASED

DRIVER MANUAL
PMC-1990786

ra “ A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

Inputs

Outputs

Return Codes

vor t ex: Pointer to DDB that contains device context
information maintained by the driver

ulHssLnkl d: Serial link identifier. Valid identifiers are O
through (VTX_NUM HSS LNKS - 1).

ulLpbkType: Type of loopback. It can be VTX_DI AG_LPBK
or VTX_LI NE_LPBK.

ulEnabl e: Loopback operation requested. It can be
VTX_LPBK_SET or VTX_LPBK_ RESET.

None

VTX_SUCCESS

VTX_ERR | NVALI D_DEVI CE (invalid device handle)
VTX_ERR | NVALI D_LPBK_TYPE (invalid loopback type)
VTX_ERR I NVALI D_HSS | D (invalid serial link identifier)

VTX_ERR | NVALI D_FLAG (invalid loopback flag)

4.6.3 vortexGetClockStatus: Monitoring Device Clocks

This function monitors the activity of the S/UNI-VORTEX device clocks. It reads
the contents of the clock monitor register and provides the status of each clock in
a bit vector format. Call this function periodically to check if the clock signals are
making low to high transitions.

Valid States
Side Effects

Prototype

Inputs

All states except VTX_EMPTY
None

I NT4 vortexGet d ockSt at us(VORTEX vort ex,
U NT1 *puld kSt at)

vor t ex: Pointer to DDB that contains device context
information maintained by the driver

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 46

RELEASED

DRIVER MANUAL
PMC-1990786

ra “ A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

Outputs

Return Codes

puld kSt at : Contains the following bit vector that indicates
the active/inactive status of the S/UNI-VORTEX device clocks.
A one in the bit position indicates that the clock is active. A
zero indicates that the clock is inactive.

e Bit 0: Transmit FIFO clock input (TCLK)
» Bit 1. Receive FIFO clock input (RCLK)
» Bit 2: Reference clock input (REFCLK)

VTX_SUCCESS

VTX_ERR | NVALI D_DEVI CE (invalid device handle)

This section describes the API functions used to configure HSS links. Their tasks

* Retrieving the contents of the specified serial-link’s configuration registers

» Configuring or modifying the contents of the specified serial-link’s

» Getting a snapshot of the state of the eight serial links for the specified device

» Retrieving the logical-channel address information for all serial links of the

4.7 HSS Link Configuration
include:
configuration registers
specified device
4.7.1

vortexHssGetConfig: Getting HSS-Link Configuration Information

This function retrieves the contents of the specified serial link’s configuration
registers. With one call, this function can retrieve the value of individual
configuration registers as well as the entire configuration register set.

Valid States
Side Effects

Prototype

VIX_ INIT, VITX ACTI VE
None

I NT4 vort exHssCGet Confi g(VORTEX vortex, U NT1
ulHssLnkl d, eVTX HSS REG eHssRegl d,
SVTX HSS REGS *psHssRegs)

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 47

RELEASED

DRIVER MANUAL
PMC-1990786

ra “ A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

Inputs

Outputs

Return Codes

vor t ex: Pointer to DDB that contains device context
information maintained by the driver

ulHssLnkl d: Serial link identifier. Valid identifiers are O
through (VTX_NUM HSS LNKS - 1)

eHssRegl d: Specifies the register holding the value the driver
will retrieve. It can be one of the following:

e VIX_RX_HSS CFG

« VTX_RX_HSS CELL_FI LTER CFGSTAT

e VTX_UPSTRM RR_WI

« VTX_LOG CHNL_BASE_ADDR RANGE

e VTX_DNSTRM LOG CHNL_FI FO_RDY_LVL

e VIX_TX HSS CFG

« VTX ALL_REGS

Note: The logical channel base address and address range

are retrieved together. In addition, the driver can retrieve all
configuration registers at once using VTX_ALL_ REGS.

psHssRegs: Contents of the specified HSS link control
register(s) output by this function. These contents are valid
only if the function returns VTX_SUCCESS. Further, only those
fields of this structure are valid that have been requested
using the input parameter, eHssRegl d.

VTX_SUCCESS

VTX_ERR | NVALI D_DEVI CE (invalid device handle)
VTX_ERR_| NVALI D_STATE (invalid device state)
VTX_ERR I NVALI D_HSS | D (invalid serial link identifier)

VTX_ERR | NVALI D_REG | D (invalid register ID)

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 48

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL
PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

4.7.2 vortexHssSetConfig: Modifying HSS-Link Configuration Information

This function sets up or modifies the contents of the specified serial link’s
configuration registers. With one call, this function can set the value of individual
configuration registers as well as the entire configuration register set.

Valid States VIX INIT, VTX ACTI VE
Side Effects None

Prototype | NT4 vortexHssSet Confi g(VORTEX vortex, U NT1
ulHssLnkl d, eVTX HSS REG eHssRegl d,
sVTX_HSS REGS *psHssRegs)

Inputs vort ex: Pointer to DDB that contains device context
information maintained by the driver

ulHssLnkl d: Serial link identifier. Valid identifiers are O
through (VTX_NUM HSS LNKS - 1)

eHssRegl d: Specifies the register with the value the driver
will write. It can be one of the following:

« VIX RX HSS CFG

e VIX_ RX HSS CELL_FILTER _CFGSTAT
 VTX_UPSTRM RR WI

« VTX_LOG CHNL_BASE_ADDR RANGE

« VTX_DNSTRM LOG CHNL_FI FO RDY_LVL

« VIX TX HSS CFG

e VTX ALL_REGS

Note: The logical channel base address and address range

have to be set together. In addition, the driver can set all
configuration registers at once using VT X_ALL_REGS.

psHssRegs: Contents of the specified HSS link control
register(s) to be set. The only fields in this structure that will
be set are those that the driver has requested using
eHssRegl d.

Outputs None

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 49

RELEASED

DRIVER MANUAL
PMC-1990786

ra “ A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

Return Codes

VTX_SUCCESS

VTX_ERR | NVALI D_DEVI CE (invalid device handle)
VTX_ERR_| NVALI D_STATE (invalid device state)
VTX_ERR | NVALI D_HSS | D (invalid serial link identifier)
VTX_ERR | NVALI D_REG | D (invalid register ID)

VTX_ERR | NVALI D_CONTENTS (values to be written are
invalid)

4.7.3 vortexHssSetState: Setting Vortex HSS Link State

This function can be used to configure the VORTEX HSS link in a specified state.

Valid States
Side Effects

Prototype

Inputs

Outputs

VIX INIT, VIX ACTI VE
None

I NT4 vortexHssSet State(VORTEX vortex, U NT1
ulHssLnkl d, U NT1 ulState)

vort ex : pointer to DDB that contains device context
information maintained by the driver.

ulHssLnkl d : HSS link ID (0-7 valid)

ulSt at e : State for HSS links:
VTX DI SABLE
VTX_ENABLE_| NACTI VE
VTX _ENABLE_ACTI VE

None

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 50

RELEASED

DRIVER MANUAL
PMC-1990786

ra “ A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

Return Codes

VTX_SUCCESS

VTX_ERR | NVALI D_DEVI CE (invalid device handle)
VTX_ERR_| NVALI D_STATE (invalid device state)
VTX_ERR I NVALI D_HSS | D (invalid serial link identifier)

VTX_ERR | NVALI D_FLAG (invalid HSS link state)

4.7.4 vortexHssGetLinkInfo: Getting the State of HSS Links

This function gets a snapshot of the state (unconfigured, configured, disabled) of
the eight serial links for the specified S/UNI-VORTEX device.

Valid States
Side Effects

Prototype

Inputs

Outputs

VTX_INI'T, VTX_ACTI VE

None

I NT4 vort exHssCet Li nkl nf o(VORTEX vort ex,
eVTX _LNK CFG _STATE *pelLnkCf gSt at e)

vor t ex: Pointer to DDB that contains device context
information maintained by the driver

peLnkCf gSt at e: Pointer to an array of VTX_NUM HSS LNKS
elements. Each element contains the status of a serial link.
The status value can be one of the following:

* VTX LNK_LOOPBACK

« VTX LNK DI SABLED

« VTX_LNK_ENABLED

Note: It is the responsibility of the calling function to allocate
and free the array to which peLnkSt at e points. The contents
of the array are only valid if this function returns with
VTX_SUCCESS.

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 51

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

Return Codes VTX_ SUCCESS
VTX_ERR | NVALI D_DEVI CE (invalid device handle)

VTX_ERR | NVALI D_STATE (invalid device state)

4.7.5 vortexHssGetLogChnlAddrMap: Getting Logical Channel Addresses

This function can retrieve the logical-channel address information (base address
and address range) for all serial links of the specified device.

Valid States VIX INIT, VITX ACTI VE
Side Effects None

Prototype | NT4 vortexHssGet LogChnl Addr Map(VORTEX
vortex, sVITX _CHNL_ADDR RNG *psAddr Rng)

Inputs vort ex: Pointer to DDB that contains device context
information maintained by the driver

Outputs psAddr Rng: Pointer to an array of VTX_NUM HSS LNKS
elements. Each element contains the logical-channel base
address and range for a particular serial link.

Note: It is the responsibility of the calling function to allocate
and free the structure to which psAddr Rng points. The
contents of this structure are only valid if this function returns
with VTX_SUCCESS.

Return Codes VTX_ SUCCESS
VTX_ERR | NVALI D_DEVI CE (invalid device handle)

VTX_ERR | NVALI D_STATE (invalid device state)

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 52

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL
PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

4.7.6 vortexHssSetLogChnlAddrMap: Setting Logical Channel Addresses

This function can be used to set the logical channel address information (base
address and address range) for all serial links of the specified device.

Valid States VIX_INI'T, VTX_ACTI VE

Side Effects None

I NT4 vort exHssSet LogChnl Addr Map(VORTEX
vortex, sVIX_CHNL_ADDR RNG * psAddr Rng)

Inputs vort ex . pointer to DDB that contains device context
information maintained by the driver.

Prototype

psAddrRng : pointer to an array of VIX_NUM HSS_LNKS
elements; each element contains the logical
channel base address and range for a
particular serial link.

Note: It is the responsibility of the calling routine to allocate,
assign, and free the structure psAddr Rng

Outputs None

Return Codes VTX_ SUCCESS
VTX_ERR | NVALI D_DEVI CE (invalid device handle)

VTX_ERR | NVALI D_STATE (invalid device state)

4.7.7 vortexSetCtrIChnIBaseAddr: Setting Control Channel Base Addresses

This function can be used to set the control channel base address for the
specified device.

Valid States VIX_INI'T, VIX_ACTI VE

Side Effects None

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 53

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL
PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

I NT4 vortexSet Ctrl Chnl BaseAddr (VORTEX vort ex,
U NT2 u2BaseAddr)

Prototype
Inputs vort ex : pointer to DDB that contains device context
information maintained by the driver.
u2BaseAddr : base address of the control channel.
bits 0-2: must be 0 or will be ignored

bits 3-11: programmed into the VORTEX
register

bits 12-15: must be 0 or will be ignored
Outputs None
Return Codes VTX_SUCCESS
VTX_ERR | NVALI D_DEVI CE (invalid device handle)

VTX_ERR | NVALI D_STATE (invalid device state)

4.8 Cell Insertion and Extraction

This section describes the API functions used to insert and extract cells. Their
tasks include:

» Transmitting a cell on a specified HSS link ’s control channel

» Extracting a cell received on a specified HSS link 's control channel

* Returning the contents of the microprocessor extract FIFO ready register
* Enabling the interrupt indication for a cell's reception

» Installing a callback function that determines the type of cell being extracted

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 54

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

4.8.1 vortexinsertCell: Inserting Cells into HSS Links

This function transmits a cell on a specified HSS link ’s control channel. This
function can send messages, which you define, over the HSS links. If the
message is longer than the length of a cell's payload, then the application should
segment the message into 48 byte cells. Call this function repeatedly until all the
cells that constitute the message have been transmitted.

Optionally, a 32-bit CRC can protect messages. The CRC accumulates each time
a cell belonging to the message is sent. For the last cell of the message
(indicated by the application), the CRC is inserted into the last four bytes of the
cell’'s payload.

Message interleaving (over different control channels and different circuits on
same control channel) is allowed. For CRC-32 protected messages, message
interleaving requires the application to save the intermediate CRC-32 value
output by this function, if a cell has to be sent out on another control channel or
another circuit on the same control channel.

Valid States VTX_ACTI VE

Side Effects You should give cell reception higher priority than cell
transmission to prevent extract FIFO overflow. In other words,
all cells of a received message should be extracted before
switching context.

Prototype I NT4 vortexlnsertCell (VORTEX vortex, U NT1
ulHssLnkl d, sVTX CELL_HDR *psCel | Hdr, Ul NT1
*pulCel | Pyl d, sVIX _CELL_CTRL *psCtrl)

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 55

RELEASED

DRIVER MANUAL
PMC-1990786

ra “ A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

Inputs

Outputs

vor t ex: Pointer to DDB that contains device context
information maintained by the driver

ulHssLnkl d: Serial link identifier. Valid identifiers are O
through (VTX_NUM HSS LNKS - 1).

psCel | Hdr : Pointer to the cell header structure that contains
the two prepend bytes that you define (optional), H1-H4 bytes,
and the H5 (optional) and UDF (optional) bytes. The driver
uses the optional bytes based on the transmit HSS
configuration register contents.

pulCel | Pyl d: Pointer to first byte of cell payload (48
contiguous bytes)
psCrl->ulCel | Type: Contains three control-flag bits:

 BIitO:
* 0, no CRC protection required
* 1, CRC protected

 Bitl:
* 0, non-first cell
o 1, first cell
 Bit2:
e 0, non-last cell
« 1, lastcell

* For bits (2,1):
e 01b, first cell of message
e 10D, last cell of message
» 11b, single cell message
* 00b, intermediate cell

psCtrl->u4Crc32Prev: Used to restore previously saved
CRC-32 value output by this function. Only applicable if bit 0
of psCrl ->ulCrcFl g is set.

psCtrl->u4Crc32: Used to output CRC-32 value after
writing a cell. The driver then passes this value back as an
input parameter (psCt r | - >u4Cr c32Pr ev) for the next cell to
be transmitted on the same control channel connection.

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 56

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

Return Codes VTX_SUCCESS
VTX_ERR | NVALI D_DEVI CE (invalid device handle)
VTX_ERR_| NVALI D_STATE (invalid device state)
VTX_ERR | NVALI D_HSS | D (invalid serial link identifier)

VTX_ERR _CELL_TX BUSY (cell transmission failed)

4.8.2 vortexExtractCell: Extracting Cells from HSS Links

This function extracts a cell received on a specified HSS link ’s control channel.
This function also receives messages, which you define, that can span multiple
cells. The application must call this function once for each cell that constitutes the
message.

If the incoming message contains a CRC-32 field at the end, then the driver can
perform a CRC check over the body of the message. The function also provides
the header information of the cell to the calling function.

Valid States VTX_ACTI VE

Side Effects You should give cell reception a higher priority than cell
transmission to prevent extract FIFO overflow. In other
words, all cells of a received message should be extracted
before switching context.

Prototype | NT4 vortexExtractCel | (VORTEX vortex, U NT1
ulHssLnkl d, sVTX CELL_HDR *psCel | Hdr, U NT1
*pulCel | Pyl d, sVIX CELL _CTRL *psCirl)

Inputs vor t ex: Pointer to DDB that contains device context
information maintained by the driver

ulHssLnkl d: Serial link identifier. Valid identifiers are O
through (VTX_NUM HSS LNKS - 1).

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 57

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL
PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

Outputs psCel | Hdr : Pointer to the cell header-data received.

pulCel | Pyl d: Pointer to first byte of cell payload 48
contiguous bytes)

psCrl->u4Crc32: Used to output CRC-32 value after
reading a cell. The driver then passes this value back as an
input parameter (psCt r | - >u4Cr c32Pr ev) for the next cell
to be extracted on the same control channel connection.

psCtrl->ulCrcFl g: This is a control flag. Contains the
following bit vector:

» Bit 0: CRC protection flag
e Bit 1: Flag for first cell of a CRC protected message
» Bit 2: Flag for last cell of a CRC protected message

Return Codes VTX SUCCESS
VTX_ERR | NVALI D_DEVI CE (invalid device handle)
VTX_ERR | NVALI D_STATE (invalid device state)
VTX_ERR | NVALI D_HSS | D (invalid serial link identifier)

VTX_ERR CB_FN_NOT_| NSTALLED (callback function is
not installed yet)

VTX_ERR CELL_DI SCARDED (cell reception failed)

VTX_ERR CELL_RX CRC (cell CRC error)

4.8.3 vortexCheckExtractFifos: Getting Contents of the Extract-FIFO-Ready
Register

This function returns the contents of the microprocessor extract-FIFO-ready
register. This function can check if there are any cells to extract from the extract

FIFOs.
Valid States VTX ACTI VE
Side Effects None

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 58

RELEASED

DRIVER MANUAL
PMC-1990786

ra “ A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

Prototype

Inputs

Outputs

Return Codes

U NT4 vortexCheckExtractFi f os(VORTEX vort ex,
U NT1 *pulFifoStat)

vor t ex: Pointer to DDB that contains device context
information maintained by the driver

pulFi f oSt at : A bit vector of the status of the eight extract
FIFOs. Each bit corresponds to a link ID. The following bit
vector represents the state of each Extract FIFO.

For bit # (where #is 0 to 7):

e Ifvalue =1, then HSS link # has at least one cell ready
for extraction

* If value = 0, then no cells present at HSS link #
VTX_SUCCESS

VTX_ERR | NVALI D_DEVI CE (invalid device handle)

VTX_ERR | NVALI D_STATE (invalid device state)

4.8.4 vortexEnableRxCelllnd: Enabling the Received Cell Indicator

This function enables the interrupt indication in the device for the reception of a
cell. The application calls this function after it has responded to a previous
indication by extracting all received cells (using multiple vor t exExt r act Cel |
calls). The application task can now re-enable this indication and wait for the
arrival of more cells.

Valid States
Side Effects
Prototype

Inputs

Outputs

VTX_ACTI VE
None
| NT4 vortexEnabl eRxCel | I nd(VORTEX vort ex)

vor t ex: Pointer to DDB that contains device context
information maintained by the driver

None

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 59

RELEASED

DRIVER MANUAL
PMC-1990786

ra “ A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

Return Codes

VTX_SUCCESS
VTX_ERR | NVALI D_DEVI CE (invalid device handle)

VTX_ERR | NVALI D_STATE (invalid device state)

4.8.5 vortexinstallCellTypeFn: Installing Callback Functions

This function can install a callback function (which you define) that the driver

uses to determine the type of cell it is extracting. The detector function takes a
cell header as the input argument and returns a cell type bit. It also returns the
accumulated CRC value for the previous cells received for the same message.

Valid States
Side Effects

Prototype

Inputs

Outputs

Return Codes

VIX INIT, VIX ACTI VE
None

| NT4 vortexlnstall Cel | TypeFn(VORTEX vort ex,
VTX_CELLTYPE_FN pCel | TypeFn)

vor t ex: Pointer to DDB that contains device context
information maintained by the driver

pCel | TypeFn: pointer to the EOM detector function. The
prototype of this function is:

e U NT1 pCell TypeFn(U NT1 *pulHdr, Ul NT4
*pudCr c32Prev)

pulHdr is the pointer to the first byte of the cell header’s
eight bytes. pu4Cr c32Pr ev is the accumulated CRC for the
previous cells received for the same message.

None
VTX_SUCCESS
VTX_ERR | NVALI D_DEVI CE (invalid device handle)

VTX_ERR | NVALI D_STATE (invalid device state)

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 60

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL
PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

4.9 BOC Transmission and Reception

This section describes the API functions used to transmit and receive bit-oriented
code (BOC). Their tasks include transmitting the specified BOC on the specified
HSS link, and reading the BOC received on a serial link

4.9.1 vortexTxBOC: Transmitting BOC
This function transmits the specified BOC on the specified HSS link.

Valid States VTX_ACTI VE

Side Effects a “ulCode” of 000001b (Loopback activate) is a special
case. When transmitting a loopback activate code. The
RDIDIS bit in the Serial Link Maintenance register is set to
logic 1 to prevent a premature loopback due to a preemptive
remote defect indication (RDI) code being sent when a
loss-of-signal or loss-of-cell-delineation event occurs.

Prototype | NT4 vort exTxBOC(VORTEX vortex, Ul NT1
ulHssLnkl d, U NT1l ulCode)

Inputs vort ex: Pointer to DDB that contains device context
information maintained by the driver

ulHssLnkl d: Serial link identifier. Valid identifiers are O
through (VTX_NUM HSS LNKS - 1).

ulCode: BOC to be transmitted. Valid BOCs are:

« 000000b (RDI)

* 000001b (Loopback activate)
 000010b (Loopback deactivate)

* 000011b (Remote reset activate)

* 000100b (Remote reset deactivate)

e 010001bto111110b (defined by you)
e 111111b (idle code)

Outputs None

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 61

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL
PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

Return Codes VTX_ SUCCESS
VTX_ERR | NVALI D_DEVI CE (invalid device handle)
VTX_ERR | NVALI D_STATE (invalid device state)
VTX_ERR | NVALI D_HSS | D (invalid serial link identifier)

VTX_ERR | NVALI D_BOC (invalid BOC)

4.9.2 vortexRxBOC: Reading Received BOC
This function can read BOC received on a serial link.

Valid States VTX_ACTI VE

Side Effects This function reads from the receive BOC status register.
This function clears the status bits (I DLEI and BOCI) bits in
the BOC status register.

Prototype | NT4 vort exRxBOC(VORTEX vortex, Ul NT1
ulHssLnkl d, U NT1l *pulCode)

Inputs vort ex: Pointer to DDB that contains device context
information maintained by the driver

ulHssLnkl d: Serial link identifier. Valid identifiers are O
through (VTX_NUM _HSS_LNKS — 1).

Outputs pulCode: Pointer to BOC to be received. Valid BOCs are:

« 000000b (RDI)

 000001b (Loopback activate)
 000010b (Loopback deactivate)

* 000011b (Remote reset activate)

* 000100b (Remote reset deactivate)

e 010001bto111110b (defined by you)
e 111111b (idle code)

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 62

RELEASED

DRIVER MANUAL
PMC-1990786

ra “ A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

Return Codes

VTX_SUCCESS

VTX_ERR | NVALI D_DEVI CE (invalid device handle)
VTX_ERR | NVALI D_STATE (invalid device state)
VTX_ERR | NVALI D_HSS | D (invalid serial link identifier)

VTX_ERR | NVALI D_BOC (invalid BOC)

4.10 Statistics Collection

This section describes the API functions used to collect statistics about the
device’s HSS links. Their tasks include:

» Accumulating the received-cell count and header-check sequence (HCS)
cell-error count for a specified HSS link

» Accumulating the transmitted-cell count for a specified HSS link

» Reading all the cell counts (transmit and receive) for all the serial links of the

specified device

* Retrieving and resetting the statistical counts maintained by the driver

4.10.1vortexGetHssLnkRxCounts: Accumulating Counts for Received Cells

This function accumulates the received cell and HCS cell errors counts for a
specified HSS link. This function triggers an update of the receive HSS
cell-counter registers and the receive-HSS HCS error-count register. It then
reads the contents of these registers and returns the values read to the

application.

To maintain a steady count of received cells and HCS cell errors, and to avoid
overflow, the application should call this function at least every 30 seconds.

Valid States

Side Effects

VTX_ACTI VE

You should not use this function at the same time (in
periodic polling fashion) as vor t exGet Al | HssLnkCount s
because both functions trigger updates to the receive
counters.

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 63

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL
PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

Prototype | NT4 vortexGet HssLnkRxCount s(VORTEX vort ex,
U NT1 ulHssLnkl d, U NT4 *pud4RxCells, Ul NT4
*pudHcsErrs)

Inputs vor t ex: Pointer to DDB that contains device context
information maintained by the driver

ulHssLnkl d: Serial link identifier. Valid identifiers are O
through (VTX_NUM HSS LNKS - 1).

Outputs pu4RxCel | s: Count of cells received
pudHcsEr rs: Count of HCS errored cells received
Return Codes VTX_ SUCCESS
VTX_ERR | NVALI D_DEVI CE (invalid device handle)
VTX_ERR | NVALI D_STATE (invalid device state)

VTX_ERR | NVALI D_HSS | D (invalid serial link identifier)

4.10.2 vortexGetHssLnkTxCounts: Accumulating Counts for Transmitted Cells

This function is accumulates the transmitted cell count for a specified HSS link.
This function triggers an update of the transmit HSS cell-counter registers. It then
reads the contents of these registers and returns the values read to the
application.

To maintain a steady count of transmitted cells and to avoid overflow, the
application should call this function at least every 30 seconds.

Valid States VTX_ACTI VE

Side Effects You should not use this function at the same time (in
periodic polling fashion) as
vort exGet Al | HssLnksCount s because both functions
trigger updates to the transmit counter.

Prototype | NT4 vortexGet HssLnkTxCount s(VORTEX vort ex,
U NT1 ulHssLnkld, U NT4 *pudTxCells)

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 64

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL
PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

Inputs vortex: Pointer to DDB that contains device context
information maintained by the driver

ulHssLnkl d: Serial link identifier. Valid identifiers are O
through (VTX_NUM HSS LNKS - 1).

Outputs pudTxCel | s: Count of cells transmitted

Return Codes VTX SUCCESS
VTX_ERR | NVALI D_DEVI CE (invalid device handle)
VTX_ERR | NVALI D_STATE (invalid device state)

VTX_ERR | NVALI D_HSS | D (invalid serial link identifier)

4.10.3 vortexGetAllHssLnkCounts: Accumulating Counts for All Cells

This function reads all the cell counts (transmit and receive) for all the serial links
of the specified S/UNI-VORTEX device. This function triggers an update to all the
counters of all the HSS links by writing a dummy value to the load performance
meters register. It then reads the counters of all the serial links and returns the
contents to the calling function.

To maintain a steady count of cells received, cells transmitted, and HCS errored
cells on a per-link basis for all the serial links, and to avoid overflow, the
application should call this function at least every 30 seconds.

Valid States VTX_ACTI VE

Side Effects You should not use this function at the same time (in
periodic polling fashion) as vor t exGet HssLnkRxCount s
and vor t exGet HssLnkTxCount s because both functions
trigger updates to the same counters.

Prototype | NT4 vortexGet Al |l HssLnkCount s(VORTEX vort ex,
U NT4 *pudTxCel | sArray Ul NT4
*pudRxCel | sArray Ul NT4 *pudHcsErrsArray)

Inputs vort ex: Pointer to DDB that contains device context
information maintained by the driver

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 65

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL
PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

Outputs pudTxCel | s: Pointer to first element of an array of
transmitted cell counts

pu4RxCel | s: Pointer to first element of an array of received
cell counts

pudHcsErrs: Pointer to first element of an array of HCS
errored cell counts

Notes:

* Each array has VTX_NUM _HSS LNKS elements.

* Itis the responsibility of the calling function to allocate
and free memory for each of these arrays.

* Ifalink is not configured, the driver will not read its
counts and the value of the counts returned will be
OXfffffff.

Return Codes VTX SUCCESS
VTX_ERR | NVALI D_DEVI CE (invalid device handle)
VTX_ERR | NVALI D_STATE (invalid device state)

VTX_ERR | NVALI D_HSS | D (invalid serial link identifier)

4.10.4 vortexGetStatisticCounts: Retrieving Driver Statistical Counts

This function retrieves the statistical counts maintained by the driver. It contains
the counts for events and interrupts of the S/UNI-VORTEX device since the last
call to reset statistic counts.

Valid States All states except VTX_EMPTY
Side Effects None

Prototype | NT4 vortexGet StatisticCounts(VORTEX vort ex,
sVTX _STAT_COUNTS *psSt at Count s)

Inputs vor t ex: Pointer to DDB that contains the count information
maintained by the driver

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 66

RELEASED

DRIVER MANUAL
PMC-1990786

ra “ A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

Outputs

Return Codes

psSt at Count s: Contains statistical counts of events and
interrupts

VTX_SUCCESS

VTX_ERR | NVALI D_DEVI CE (invalid device handle)

4.10.5vortexResetStatisticCounts: Resetting Driver Statistical Counts

4.11

This function resets the statistical counts maintained by the driver.

Valid States
Side Effects
Prototype

Inputs

Outputs

Return Codes

All states except VTX_EMPTY
None
| NT4 vortexReset Stati sticCounts(VORTEX vort ex)

vor t ex: Pointer to DDB that contains the count information
maintained by the driver

None

VTX_SUCCESS

VTX_ERR | NVALI D_DEVI CE (invalid device handle)

Indication Callbacks

The DPR uses indication callback functions to notify the application of events in
the S/UNI-VORTEX device and driver. You must implement these functions to
work within the inter-task communication and scheduling capabilities of your
RTOS. Typically, the callback functions will run in the context of the DPR, not in
the context of the application. Therefore, these functions must be non-blocking.
They should use RTOS-based inter-task notification to pass callback information
safely from the DPR to the application task.

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 67

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

4.11.1 indVortexNotify: Notifying the Application of Significant Events

This indication function notifies the application about the occurrence of a
significant event in the hardware or the driver software. The vor t ex DPR function
calls this function. This function should be non-blocking. Typically, the indication
function sends a message to another task with the event identifier and other
context information. The task that receives this message can then process this
information according to the system requirements.

Prototype VO D i ndVortexNoti fy(USR_CTXT usrCt xt,
sVTX_| ND_BUF *pl ndBuf)

Inputs usr Ct xt : Context information (maintained by your system)
for the device

pl ndBuf : Information regarding the indication. It consists of
an event identifier that identifies the reported event. Uniquely
supplemental information about the event. The application
should use vor t exRet ur nl ndBuf to free the indication
context structure.

Outputs None

Return Codes None

4.11.2 indVortexRxBOC: Notifying the Application of Received BOC

This indication function notifies the application about the reception of a valid
BOC. The vortexDPR function calls this function. This function should be
non-blocking.

Prototype VA D i ndVor t exRxBOC(USR_CTXT usr Ct xt ,
sSVTX_|I ND_BUF *pl ndBuf)

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 68

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

Inputs usr C xt : Context information (maintained by your system)
for the device

pl ndBuf : Information regarding the indication. It consists of:

* ulHssLnkl d: Serial link that received the BOC
* UulBOC: BOC received. It can be one of the following:

« 000000b (RDI)

* 000001b (loopback activate)

* 000010b (loopback deactivate)

* 000011b (remote reset activate)

* 000100b (remote reset deactivate)

e 010001bto111110b (defined by you)
e 111111b (idle code)

The application should use vor t exRet ur nl ndBuf to free
the indication context structure.

Outputs None

Return Codes None

4.11.3indVortexRxCell: Notifying the Application of Ready Extract-Cell-FIFOs

This indication function notifies the application of the reception of cells in the
microprocessor extract cell FIFOs. The vor t exDPR function calls this function.
This function should be non-blocking. Typically, the indication function sends a
message to another task with the event identifier and other context information.
The task that receives this message can then extract the received cells using
vort exCheckExtract Fi f os and vort exExtract Cel | .

Prototype VO D i ndVort exRxCel | (USR_CTXT usr Ct xt,
SVTX_|I ND_BUF *pl ndBuf)

Inputs usr Ct xt : Context information (maintained by your system)
for the device

pl ndBuf : Information regarding the indication. Currently, the
driver does not use it, so the driver passes a null pointer for
NOW.

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

69

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL
PMC-1990786 ISSUE 2

S/UNI-VORTEX DRIVER MANUAL

Outputs None

Return Codes None

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

70

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL
PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

) REAL-TIME-OS INTERFACE FUNCTIONS

The driver’s RTOS interface module provides functions and macros that let the
driver use RTOS services. The S/UNI-VORTEX driver requires the following
RTOS services:

* Memory: Allocate and de-allocate
* Interrupts: Install and remove
* Preemption: Enable and disable

The driver may also require the following additional RTOS services depending on
how you customize the code (for example, the ISR, the DPR, and so on). These
services are:

» Timers: Create, delete, start and abort
» Tasks: Spawn and delete
* Message queues: Create and destroy queues, send and receive messages

Figure 8 illustrates the external interfaces defined for the S/UNI-VORTEX driver.

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 71

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

Figure 8: Real-Time OS Interface

Application

A

Function Calls Indication Callbacks

v Service Calls

S/UNI-VORTEX Driver RTOS

A b

RTOS Interface

Hardware
Interrupts

Register Access

Y

S/UNI-VORTEX Device

5.1 Memory Allocation and De-allocation

This section describes the RTOS interface functions used to allocate and
de-allocate memory.

5.1.1 sysVortexMemAlloc: Allocating Memory

This macro allocates a specified number of bytes.

Prototype #define sysVortexMemAl | oc(nbyt es)
mal | oc(nbyt es)

Inputs nbyt es: Number of bytes to be allocated

Outputs None

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 72

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

Return Codes Pointer to first byte of allocated memory

NULL pointer (memory allocation failed)

5.1.2 sysVortexMemFree: De-allocating Memory

This macro de-allocates memory allocated by sysVort exMemAl | oc.

Prototype #def i ne sysVortexMenfree(pulFirst)
free(pulFirst)

Inputs pulFi r st : Pointer to first byte of the memory region being
de-allocated

Outputs None

Return Codes None

5.2 Buffer Management

This section describes the RTOS interface functions used to manage buffers for
the DPR. Their tasks include getting a buffer for saving the context information
for the indication callbacks, and returning the buffer after the application has
received the context information.

5.2.1 vortexGetindBuf: Getting DPR Buffers

This function gets a buffer that saves the context information for the indication
callbacks called by the DPR.

Prototype SVTX_I ND_BUF *vortexGet| ndBuf (VO D)
Inputs None
Outputs None

Return Codes Pointer to indication context buffer

NULL pointer (buffer unavailable)

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 73

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL
PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

5.2.2 vortexReturnindBuf: Returning DPR Buffers

This function returns the indication context buffer after the DPR has received the
context information.

Prototype VA D vortexRet urnl ndBuf (sVTX_| ND_BUF *pBuf)
Inputs pBuf : Pointer to indication context structure
Outputs None

Return Codes None

5.3 Timer Operations

This section describes the RTOS interface function used to suspend a task for a
specified period.

5.3.1 sysVortexDelayFn: Delaying Functions

This function suspends execution of the calling function’s task for a specified
number of milliseconds.

Prototype VA D sysVort exDel ayFn(U NT4 u4Msecs)
Inputs u4Msecs: Delay (in milliseconds)
Outputs None

Return Codes None

5.4 Semaphore Operations

This section describes the RTOS interface macros used to manage semaphores.
Their tasks include:

* Creating a new mutual-exclusion semaphore
» Deleting a specified semaphore

» Taking and giving semaphores

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 74

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

5.4.1 sysVortexSemCreate: Creating Semaphores

This macro creates a new mutual-exclusion semaphore.

Prototype #define sysVortexSenCreate() senMCreate()
Inputs None
Outputs None

Return Codes semaphore ID

5.4.2 sysVortexSemDelete: Deleting Semaphores

This macro deletes a specified semaphore.

Prototype #def i ne sysVortexSenDel et e(senl d)
senDel et e(senl d)

Inputs semaphore ID

Outputs None

Return Codes None

5.4.3 sysVortexSemTake: Taking Semaphores

This macro takes a semaphore.

Prototype #defi ne sysVortexSenTake(sen d)
senmlake(sem d)

Inputs semaphore ID

Outputs None

Return Codes None

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 75

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

5.4.4 sysVortexSemGive: Giving Semaphores

This macro gives a semaphore.

Prototype #define sysVortexSenG ve(sen d) senG ve(senl d)
Inputs semaphore ID
Outputs None

Return Codes None

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 76

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

HARDWARE INTERFACE FUNCTIONS

6.1

The S/UNI-VORTEX hardware interface provides functions and macros that read
from and write to S/UNI-VORTEX device-registers. The hardware interface also
provides a template for an ISR that the driver calls when the device raises a
hardware interrupt. You must modify this function based on the interrupt
configuration of your system.

Figure 9 illustrates the external interfaces defined for the S/UNI-VORTEX driver.

Figure 9: Hardware Interface

Application
A
Function Calls Indication Callbacks
\/ Service Calls
S/UNI-VORTEX Driver RTOS
A A

Hardware

Hardware Register Interface
Interrupts v Access

S/UNI-VORTEX Device

Device Reqgister Access

This section describes the hardware interface functions used to read from and
write to S/UNI-VORTEX device registers. Their tasks include reading and writing
the contents of a specific address. It also includes getting the base address of
the new device so that the driver can access the device register map to control it.

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 77

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL
PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

6.1.1 sysVortexRawRead: Reading from Register Address Locations

This low-level system-specific macro reads the contents of a specific
register-address location. You should define this to reflect your system’s
addressing logic.

Prototype #defi ne sysVort exRawRead(addr, pval)
Inputs addr : Address location to be read

pval : Value read
Outputs None

Return Codes Value read from the address location

6.1.2 sysVortexRawWrite: Writing to Register Address Locations

This low-level system-specific macro writes the contents to a specific
register-address location. You should define this macro to reflect your system'’s
addressing logic.

Prototype #define sysVortexRawwWite(addr, val)
Inputs addr : Address location to write
val : Value to be written

Outputs None

6.1.3 sysVortexDeviceDetect: Getting Device Base Addresses

This function gets the base address of the new device so that the driver can
access it. The vor t exAdd API function calls it.

Prototype | NT4 sysVort exDevi ceDet ect (VIX_USR_CTXT
usrCtxt, VA D **ppSyslinfo, U NT4 *pud4BaseAddr)

Inputs usr ¢t xt : Context information (maintained by your system) for
the device

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 78

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

6.2

Outputs pu4BaseAddr : Base address of device

ppsysi nf o: Pointer to the sysinfo structure
Return Codes VTX_SUCCESS

VTX_DEVI CE_NOT_DETECTED

Interrupt Servicing

This section describes the hardware interface functions used to provide hardware
interrupt servicing. They install and remove the interrupt handlers and DPRs for
the S/UNI-VORTEX devices. These functions depend on whether you implement
the driver in interrupt mode or polling mode. In interrupt mode, their tasks
include:

* Installing and removing the system-dependent interrupt-handler function
(sysVort exl nt Handl er) and the DPR function (sysVor t exDPRTask),
creating a communication channel between the two, and adding the device to
a list of devices for which interrupts will be serviced

* Removing the specified device from the list of devices for which interrupt
processing will be done

» Calling vort exl SRfor each device for which interrupt processing is enabled

* Retrieving interrupt status information saved for it by the
sysVor t exl nt Handl er function, and calling the vor t exDPR function for
the appropriate device

In polling mode, these functions’ tasks include:
* Spawning and removing the sysVor t exDPRTask function
* Adding the device to a list of devices that need polling

* Polling the S/UNI-VORTEX device for interrupt status information and
processing the interrupt status

The S/UNI-VORTEX driver provides a function called vor t exl SR that checks if
there are any valid interrupt conditions present for a specified device. This
function can be used by a system-specific interrupt-handler function to service
interrupts raised by S/UNI-VORTEX devices.

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 79

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL
PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

The low-level interrupt handler function that traps the hardware interrupt and calls
vort exl SRis system and RTOS dependent. Therefore, it is outside the scope of
the driver. As a reference, this manual provides an example implementation of
such an interrupt handler (see sysVort exl nt Handl er) as well as installation
and removal functions (see sysVor t exl nt I nst al | Handl er and

sysVort exl nt RenoveHandl er). You can customize these example
implementations as per your specific requirements.

6.2.1 sysVortexIntinstallHandler: Installing Interrupt Service Functions

In interrupt mode, this function installs sysVor t ex| nt Handl er in the processor
vector table, spawns the sysVor t exDPRTask function as a task, and creates a
communication channel (for example, a message queue) between the two. In
addition, it adds the S/UNI-VORTEX device to a list of devices that need interrupt
servicing.

In polling mode, this function spawns the sysVor t exDPRTask function. This
function periodically polls the device for interrupts and services the interrupts. It
also adds the S/UNI-VORTEX device to a list of devices that need polling

services.

Prototype I NT4 sysVortexlntlnstall Handl er (VORTEX vort ex)
Inputs vort ex: Pointer to device context information

Outputs None

Return Codes VTX_SUCCESS
VTX_ERR | NT_ALREADY

VTX_ERR | NT_I NSTALL

6.2.2 sysVortexIntRemoveHandler: Removing Interrupt Service Functions

In interrupt mode, this function removes the specified device from the list of
devices that need interrupt processing. If this is the last active device, the
function deletes the sysVor t exDPRTask function and the associated message
gqueue. It also removes the sysVor t exl nt Handl er function from the
processor’s interrupt-vector table.

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 80

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL
PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

In polling mode, this function removes the specified device from the list of
devices that need polling services. If this is the last active device, this function
deletes sysVor t exDPRTask.

Prototype VA D sysVort exl nt RenoveHandl er (VORTEX
vort ex)

Inputs vor t ex: Pointer to device context information

Outputs None

Return Codes None

6.2.3 sysVortexIntHandler: Calling vortexISR

In interrupt mode, this function calls vor t exl SR for each device with interrupt
processing enabled. The driver calls this function when one or more
S/UNI-VORTEX devices interrupt the microprocessor. If vor t ex| SR detects at
least one valid pending interrupt condition, then this function queues the interrupt
context information for later processing by sysVor t exDPRTasKk.

In polling mode, this function is not used.

Prototype VA D sysVortexl ntHandl er (U NT4 Irq)
Inputs u4dl nt Ct xt : IRQ number of interrupt
Outputs None

Return Codes None

6.2.4 sysVortexDPRTask: Calling vortexDPR

In interrupt mode, the driver spawns this function as a separate task within the
RTOS. It retrieves interrupt status information saved for it by the

sysVor t exl nt Handl er function and calls the vor t exDPR function for the
appropriate device.

In polling mode, the driver spawns this function as a separate task within the
RTOS. It periodically calls the vor t exDPR function for each active device.

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 81

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL
Prototype VA D sysVort exDPRTask(VO D)
Inputs None
Outputs None

Return Codes None

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

82

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

PORTING THE DRIVER

7.1

This section outlines how to port the S/UNI-VORTEX device driver to your
hardware and OS platform.

Note: Because each platform and application is unique, this manual can only
offer guidelines for porting the S/UNI-VORTEX driver.

Driver Source Files

The C source files listed in Figure 7-1 contain the code for the S/UNI-VORTEX
driver. You may need to modify the code or develop additional code. The code is
in the form of constants, macros, and functions. For the ease of porting, the code
is grouped into source files (sr ¢) and include files (i nc). The sr c files contain
the functions and the i nc files contain the constants and macros.

Figure 10: Driver Source Files

vixdrv src vitx_api.c (contains all API functions)

——— vitx.c (contains driver internal functions)
——— vitx_hw.c (contains hardware interface functions)

——— vtx_rtos.c (contains RTOS interface functions)

L—— vitx_test.c (contains sample driver callback functions and
test code)

inc vtx_api.h (contains data-structure definitions and prototypes)
———vitx.h (contains device register-address and bit-mask definitions)
——vtx_hw.h (contains device-interface macro and constant definitions)
———-vtx_rtos.h (contains RTOS-interface macro and constant definitions)

——— vtx_err.h (contains driver error codes)

L vitx_test.h (contains data structure definitions and prototypes of test
code)

L Makefile

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 83

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

1.2

Driver Porting Procedures

7.2.1

The following steps summarize how to port the S/UNI-VORTEX driver to your
platform. The following sections describe these steps in more detail.

Note: Because each platform and application is unique, this manual can only
offer guidelines for porting the S/UNI-VORTEX driver.

To port the S/IUNI-VORTEX driver to your platform:

1. Port the driver's OS extensions (page 84):
» Data types
» OS specific services
» Utilities and interrupt services that use OS specific services
2. Port the driver to your hardware platform (page 86):
* Port the device detection function.
* Port low-level device read-and-write macros.
» Define hardware system-configuration constants.
3. Port the driver’s application-specific elements (page 88):
* Define the task-related constants.
* Code the callback functions.

4. Build the driver (page 89).
Porting the Driver's OS Extensions

The OS extensions encapsulate all OS specific services and data types used by
the driver. The vt x_rt os. h file contains data types and compiler-specific
data-type definitions. It also contains macros for OS specific services used by the
OS extensions. These OS extensions include:

» Task management

+ Message queues

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 84

RELEASED

DRIVER MANUAL

PMC-1990786

ra “ A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

ISSUE 2

S/UNI-VORTEX DRIVER MANUAL

Timers
Events

Semaphores

Memory Management

In addition, you may need to modify functions that use OS specific services, such
as utility and interrupt-event handling functions. The vt x_r t os. c file contains
the utility and interrupt-event handler functions that use OS specific services.

To port the driver’s OS extensions:

1. Modify the data types in vt x_rt os. h. The number after the type identifies
the data-type size. For example, Ul NT4 defines a 4-byte (32-bit) unsigned
integer. Substitute the compiler types that yield the desired types as defined

in this file.

Modify the OS specific services in vt x_rt os. h. Redefine the following
macros to the corresponding system calls that your target system supports:

Service Type

Macro Name

Description

Memory sysVort exMenAl | oc Allocates the memory block
sysVor t exMentr ee Frees the memory block
sysVor t exMenCopy Copies the memory block from

src to dest

Semaphore sysVort exSenCr eat e | Creates the mutually exclusive

semaphore

sysVort exSenDel et e

Frees the mutually exclusive
semaphore

sysVortexSen(d ve

Relinquishes the mutually
exclusive semaphore

sysVort exSenTake

Gets the mutually exclusive
semaphore

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 85

RELEASED

DRIVER MANUAL
PMC-1990786

ra “ A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

ISSUE 2

S/UNI-VORTEX DRIVER MANUAL

3. Modify the utilities and interrupt services that use OS specific services in the
vt x_rtos.c. Thevtx_rtos. c file contains the utility and interrupt-event
handler functions that use OS specific services. Refer to the function headers
in this file for a detailed description of each of the functions listed below:

Service Type

Function Name

Description

Memory sysVort exMentet Sets each character
in the memory buffer
vort exCGet | ndBuf Gets a block of
memory for the
indication buffer
vor t exRet ur nl ndBuf Frees the indication
buffer
Timer sysVort exDel ayFn Sets the task
execution delay in
milliseconds
Interrupt sysVortexlntlnstal | Handl er | Installs the interrupt

handler for the OS

sysVort exl nt RenoveHandl| er

Removes the
interrupt handler from
the OS

sysVort exl nt Handl er

Interrupt handler for
the S/UNI-VORTEX
device

sysVort exDPRTask

Deferred process
routine for interrupts

7.2.2 Porting the Driver to a Hardware Platform

This section describes how to modify the S/UNI-VORTEX driver for your

hardware platform.

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

86

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

Before you build the driver, ensure that you port the driver’s OS extensions (page

84).

To port the driver to your hardware platform:

1. Modify the device detection function in the vt x_hw. c file. The function
sysVort exDevi ceDet ect is implemented for a PCI platform. Modify it to

reflect your specific hardware interface. Its purpose is to detect a

S/UNI-VORTEX device based on a Usr Cont ext input parameter. It returns
two output parameters:

* The base address of the S/UNI-VORTEX device
» A pointer to the system-specific configuration information

. Modify the low-level device read/write macros in the vt x_hw. h file. You may
need to modify the raw read/write access macros (sysVor t exRawRead and

sysVort exRaw i t e) to reflect your system’s addressing logic.

3. Define the hardware system-configuration constants in the vt x_hw. h file.

Modify the following constants to reflect your system’s hardware
configuration:

#define Description

Default

VTX_MEM ADDR RANGE The assigned address memory
range for each S/UNI-VORTEX
device. Your system’s memory
map determines it.

0x800

VTX_ADAPTER_MAX_UNI TS | The maximum number of
S/UNI-VORTEX cards allowed in
the system

Note: The DSLAM architecture
allows up to 16 S/UNI-VORTEX
cards.

VTX_ADAPTER_MAX_DEVS | The maximum number of
S/UNI-VORTEX devices on each
card

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

87

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL
PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

7.2.3 Porting the Driver’s Application-Specific Elements

Application specific elements are configuration constants used by the API for
developing an application. This section describes how to modify the application
specific elements in the S/UNI-VORTEX driver.

Before you port the driver’s application-specific elements, ensure that you:
1. Port the driver’'s OS extensions (page 84).
2. Port the driver to your hardware platform (page 86).

To port the driver’s application-specific elements:

1. Define the following driver task-related constants for your OS-specific
services in file vt x_rtos. h:

#define Description Default
VTX DPR TASK PRIORITY Deferred Task (DPR) task 85
priority

VTX_DPR TASK STACK Sz DPR task stack size, in bytes 4096

VTX_ POLLI NG _DELAY Constant used in polling task 10
mode, this constant defines the
interval time in millisecond
between each polling action

VTX_TASK_SHUTDOWN_DELAY | Delay time in millisecond. 10
When clearing the DPR loop
active flag in the DPR task, this
delay is used to gracefully
shutdown the DPR task before
deleting it.

VTX_MAX DPR_MBGS The queue message depth of 10
the queue used for pass
interrupt context between the
ISR task and DPR task

VTX _MAX | ND BUFSZ Maximum indication buffer size | 53
in bytes

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 88

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL
PMC-1990786 ISSUE 2

S/UNI-VORTEX DRIVER MANUAL

VTX_MAX_NUM DEVS

The maximum number of
S/UNI-VORTEX devices in the
system

14

2. Code the callback functions according to your application. There are four
sample callback functions in the vt x_t est . c file. You can use these
callback functions or you can customize them before using the driver. The
driver will call these callback functions when an event occurs on the device.
These functions must conform to the following prototypes:

e VA D indVortexNotify(VTX USR CTXT usrCtxt,
sVTX_ | ND_BUF *psl ndCt xt)

e VA D i ndVort exRxBOC(VTX_USR _CTXT usr Ct xt,

*psl ndCt xt)

e VA D indVortexCell (VIX_USR_CTXT usrCt xt,

*psl ndCt xt)

e U NT1 pCel |l TypeFn(U NT1 *pulHdr,

7.2.4 Building the Driver

This section describes how to build the S/UNI-VORTEX driver.

Before you build the driver, ensure that you:

1. Port the driver’'s OS extensions (page 84).

2. Port the driver to your hardware platform (page 86).

3. Port the driver’s application-specific elements (page 88).

To build the driver:

sVTX_| ND_BUF

sVTX_| ND_BUF

U NT4 *pudCrc32Prev)

1. Modify the makefile’'s compile-switch flag VTX_ CSW | NTERRUPT _MODE. Set it
to 1 for interrupt mode or O for polling mode.

2. Set the makefile’s compile-switch flag CSW PV_FLAGto 0. This disables the
test code specific to product verification.

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

89

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL
PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

3. Ensure that the directory variable names in the makefile reflect your actual
driver and directory names.

4. Compile the source files and build the S/JUNI-VORTEX API driver library using
your make utility.

5. Link the S/JUNI-VORTEX API driver library to your application code.

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 90

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL
PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

APPENDIX: CODING CONVENTIONS

This section describes the coding and naming conventions used in the
implementation of the driver software. This section also describes the variable

types.

Definition of Variable Types

The following table describes the variable types used by the S/UNI-VORTEX
driver.

Table 13: Definition of Variable Types

Type Description

U NT1 Unsigned integer, 1 byte

Ul NT2 Unsigned integer, 2 bytes

Ul NT4 Unsigned integer, 4 bytes

I NT1 Signed integer, 1 byte

| NT2 Signed integer, 2 bytes

| NT4 Signed integer, 4 bytes

VA D Void

VTX _USR _CTXT Void *, pointer to user maintained device context
VORTEX Void *, pointer to driver maintained device context

Naming Conventions

The names for variables, functions, and macros (but not constants) include
prefixes that indicate their type. Variable, function, and macro names that contain
multiple words have the first letter of each word capitalized.

Variables

The following table describes the prefixes used for the driver’s variables.

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 91

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2

S/UNI-VORTEX DRIVER MANUAL

Table 14: Variable Naming Conventions

Variable Type Prefix Example

Ul NT1 ul ulFl ag

Ul NT2 u2 u2Code

Ul NT4 ud u4Vval

| NT1 il i 1Fl ag

| NT2 i 2 i 2Code

| NT4 i 4 i 4Val

Structure variable S sCel | Hdr

Enumerated type e eHssRegl d

Pointers p pulFl ag
pi 4Val
psCel | Hdr
peHssRegl d

Pointer to a pointer | pp ppulFl ag
ppi 4Val
ppsCel | Hdr
ppeHssRegl d

Functions and Macros

The following table describes the prefixes used for the driver’s functions and

macros.

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 92

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL
PMC-1990786 ISSUE 2

S/UNI-VORTEX DRIVER MANUAL

Table 15: Function and Macro Naming Conventions

macros

Function Type Prefix Example Name

API functions vortex vort exAdd

Indication functions i ndVor t ex i ndVor t exRxCel |
System-specific functions and sysVort ex sysVort exl nt Handl er

Definable Constants

You can define some constants using the “#def i ne” command. These constants
have names that are composed of all uppercase letters with underscores
separating multiple words. An example is VTX_NUM HSS LNKS.

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 93

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL

PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

ACRONYMS

API: Application programming interface
DDB: Device data block

BOC: Bit oriented code

DPR: Deferred processing routine
GDD: Global driver database

HCS: Header check sequence

HSS link: High-speed serial link

ISR: Interrupt service routine

RTOS: Real-time operating system

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 94

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL
PMC-1990786 ISSUE 2

S/UNI-VORTEX DRIVER MANUAL

INDEX

Accessing Registers, 77
Accumulating Counts for All Cells, 65
Accumulating Counts for Received Cells, 63
Accumulating Counts for Transmitted Cells, 64
Acronyms, 94

Activating Devices, 43

Adding Devices, 37

addr, 78

Addresses, 52

Allocating Memory, 72

AP| Module, 13

Application Interface Functions, 35
Architecture, 12, 13

Base Addresses, 78

BOC, 11, 35, 61, 62

Buffers, 73, 74

Building Drivers, 89

Callbacks, 12, 60, 67

Calling vortexDPR, 21, 81
Calling vortexISR, 20, 79, 81
Cell Data Structures, 24

Cell Extraction, 11, 18, 19, 54
Cell Insertion, 11, 54, 55
Cell-Control Data Structure, 24
Cell-Header Data Structure, 24
CntBufFifoOvrRn, 32
CntDwnStrmCelllfParityErr, 33
CntDwnStrmCelllfTxStCellErr, 33
CntPIIErr, 32

CntRxBocldle, 34
CntRxBocValid, 34
CntRxCellCntsUpd, 34
CntRxCellCtILstFifoOvrFlw, 34
CntRxCellDatLstFifoOvrFlw, 34
CntRxCellDelinXSync, 33
CntRxCellHcsErrDetect, 33
CntRxHIdCntOwvr, 34
CntRxNonZeroCrc, 33
CntRxTransFrmLcd, 33
CntRxTransFrmLos, 33
CntRxTransOfActv, 33
CntTxCellCntOvrnind, 33
CntTxCellCntUpdInd, 33
CntTxFifoOvrRn, 33
CntUpStrmCelllfXferErr, 33
Coding Conventions, 91

Collecting Statistics, 12, 63

Configuration Data Structures, 25

Configuration Information, 47, 49

Contents of the Extract-FIFO-Ready Register,
58

Context Data Structures, 28

Count Structure, 32

Countinterrupts, 34

Counts for All Cells, 65

Counts for Received Cells, 63

Counts for Transmitted Cells, 64

Creating Semaphores, 75

Data Structures, 24, 25, 28, 31, 32

Data-Block, 14, 28

Deactivating Devices, 43, 44

Deallocating Memory, 72, 73

Deferred-Processing Routine Module, 15

Delaying Functions, 74

Deleting Devices, 37, 39

Deleting Semaphores, 75

dest, 85

Device Activation, 43

Device Addition, 37

Device Base Addresses, 78

Device Clocks, 46

Device Data-Block, 14, 28

Device Deactivation, 43

Device Deletion, 37

Device Diagnostics, 11, 44

Device Initialization, 11, 17, 18, 41

Device Interface Functions, 77

Device Register Access, 77

Device Reset, 37

Device-Configuration Data Structures, 25

Device-Context Data Structures, 28

Diagnostic or Line Loopback, 45

Diagnostics, 11, 44

Disabling Diagnostic or Line Loopback, 45

DPR, 79

DPR Buffers, 73, 74

Driver APl Module, 13

Driver Architecture, 12, 13

Driver Data Structures, 24

Driver Functions and Features, 11

Driver Hardware-Interface Module, 14

Driver Initialization, 36

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 95

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL
PMC-1990786 ISSUE 2

S/UNI-VORTEX DRIVER MANUAL

Driver Library Module, 14

Driver Module Initialization, 36

Driver Porting, 10, 84

Driver Real-Time-OS Interface Module, 14

Driver Shutdown, 36, 37

Driver Software States, 15, 16

Driver Source Files, 83

eCbType, 42, 43

eDevState, 29

eHssRegld, 47, 48, 49, 92

Enabling Diagnostic or Line Loopback, 45

Enabling Received Cell Indicators, 59

eVTX_CB_TYPE, 42, 43

eVTX_HSS REG, 47, 49

eVTX_LNK_CFG_STATE, 51

eVTX_STATE, 29

Extract-FIFO-Ready Registers, 58

Extracting Cells, 11, 18, 19, 54, 57

FIFO, 12, 26, 30, 58, 59, 69

Files, 10, 83, 85, 89, 90

Functions and Features, 11

GDD Structure, 28

Getting Contents of the Extract-FIFO-Ready
Register, 58

Getting Device Base Addresses, 78

Getting DPR Buffers, 73

Getting HSS-Link Configuration Information, 47

Getting Logical-Channel Addresses, 52

Getting States of HSS Links, 51

Giving Semaphores, 76

Global Driver-Database, 28

Hardware Interface Functions, 77

Hardware Interface Module, 14

HSS Links, 11, 47, 51, 55

HSS-Link Configuration, 47, 49

Include Files, 10, 83

Indication Callbacks, 12, 42, 67

indNotify, 26, 30

indRxBOC, 26, 30

indRxCell, 26, 30

indVortex, 93

indVortexCell, 89

indVortexNotify, 68, 89

indVortexRxBOC, 68, 89

indVortexRxCell, 69, 93

Init, 16

Initialization Data Structure, 25

Initializing Devices, 11, 17, 18, 41

Initializing Drivers, 36

Inserting Cells, 11, 54, 55

Installing Callback Functions, 60

Installing Indication Callback Functions, 42

Installing Interrupt Service Functions, 80

Interrupt Data Structures, 31

Interrupt Service Functions, 80

Interrupt Servicing, 12, 19, 79

Interrupt-Context Data Structure, 32

Interrupt-Enable Data Structure, 31

Interrupt-Service Routine Module, 15

ISR, 12, 15, 19, 79

Library Module, 14

Line Loopback, 45

Link Configuration, 11, 47

lockld, 31

Logical-Channel Addresses, 52

loopback, 11, 44, 45, 46, 61, 69

makefile, 89, 90

malloc, 72

Memory, 72, 73

Modifying HSS-Link Configuration Information,
49

Monitoring Device Clocks, 46

nbytes, 72

Notifying the Application, 68, 69

OS Extensions, 84

pBuf, 74

pCbFn, 42

pCellTypeFn, 26, 30, 60, 89

pDdb, 28

peHssRegld, 92

peLnkCfgState, 51

peLnkState, 51

pIndBuf, 68, 69

Polling Servicing, 22

Porting, 83, 84, 86, 88

Porting Procedures, 84

Porting Quick Start, 10

Porting the Driver to a Hardware Platform, 86

Porting the Driver’s Application-Specific
Elements, 88

Porting the Driver's OS Extensions, 84

ppeHssRegld, 92

ppsCellHdr, 92

ppSysinfo, 78

Processing Flows, 16

psAddrRng, 52

psCellHdr, 55, 56, 57, 58, 92

psCtrl, 55, 56, 57, 58

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

96

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL
PMC-1990786 ISSUE 2

S/UNI-VORTEX DRIVER MANUAL

psHssRegs, 47, 48, 49

psindCtxt, 89

psStatCounts, 66, 67

pSysinfo, 29

pval, 78

pVortex, 38

Reading from Device Registers, 39, 40
Reading from Received BOC, 62
Reading from Register Address Locations, 78
Real-Time-OS Interface Functions, 71
Received BOC, 62

Received Cells, 63

Register Access Verification, 45
Register Address Locations, 78
Register Data Structure, 26

Registers, 40, 58, 77

Re-initializing Devices, 17, 18
Removing Indication Callback Functions, 42
Removing Interrupt Service Functions, 80
Resetting Devices, 37, 38

Resetting Driver Statistical Counts, 67
Retrieving Driver Statistical Counts, 66
Returning DPR Buffers, 74

RTOS, 21

RTOS Functions, 71

RTOS Interface Module, 14

sCellHdr, 92

Semaphores, 74, 75, 76

semDelete, 75

semGive, 76

semld, 75, 76

semMCreate, 75

semTake, 75

sHssRegs, 27

Shutting Down Devices, 17, 18
Shutting Down Drivers, 36, 37
sInitVector, 30, 41

sintEnbls, 30

sintEnRegs, 27

sLogChnlAddrRng, 30

Software States, 15, 16

Source Files, 10, 83, 85

sReglnfo, 26

sStatCounts, 30, 31

State of HSS Links, 51

States, 15, 16

Statistical Counts, 32, 66, 67
Statistics Collection, 12, 63
sVTX_CELL_CTRL, 25, 55, 57

sVTX_CELL_HDR, 24, 55, 57

sVTX_CHNL_ADDR_RNG, 30, 52

sVTX_DDB, 28, 29

sVTX_GDD, 28

sVTX_HSS_REGS, 27, 47, 49

sVTX_IND_BUF, 68, 69, 73, 74, 89

sVTX_INIT_VECT, 26, 30, 41

sVTX_INIT_VECTOR, 26, 30

SVTX_INT_CTXT, 32

sVTX_INT_ENBLS, 27, 30, 31

sVTX_REGS, 26, 27

sVTX_STAT_COUNTS, 30, 32, 66

sysinfo, 79

sysVortex, 22, 93

sysVortexDelayFn, 74, 86

sysVortexDeviceDetect, 78, 87

sysVortexDPR, 19

sysVortexDPRTask, 21, 22, 23, 79, 80, 81, 82,
86

sysVortexintHandler, 20, 21, 22, 79, 80, 81, 86,
93

sysVortexIntinstallHandler, 21, 22, 80, 86

sysVortexIntRemoveHandler, 80, 81, 86

sysVortexISR, 19

sysVortexMemAlloc, 72, 73, 85

sysVortexMemCopy, 85

sysVortexMemFree, 73, 85

sysVortexMemSet, 86

sysVortexRawRead, 40, 78, 87

sysVortexRawWrite, 40, 78, 87

sysVortexSemCreate, 75, 85

sysVortexSembDelete, 75, 85

sysVortexSemGive, 76, 85

sysVortexSemTake, 75, 85

Taking Semaphores, 75

Timer Operations, 74

Transmitted Cells, 64

Transmitting BOC, 61

UsrContext, 87

usrCtxt, 29, 38, 68, 69, 78, 89

val, 78

Verifying Device Register Access, 45

vortexActivate, 43

vortexAdd, 37, 38, 78, 93

vortexCheckExtractFifos, 58, 59, 69

vortexDeactivate, 44

vortexDelete, 21, 35, 39

vortexDPR, 15, 19, 21, 22, 35, 41, 42, 68, 69,
79, 81

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 97

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL
PMC-1990786 ISSUE 2

S/UNI-VORTEX DRIVER MANUAL

vortexEnableRxCelllnd, 59
vortexExtractCell, 57, 59, 69
vortexGetAllHssLnkCounts, 63, 65
vortexGetClockStatus, 46
vortexGetHssLnkRxCounts, 63, 64, 65
vortexGetlndBuf, 73, 86
vortexGetStatisticCounts, 66
vortexHssGetConfig, 47
vortexHssGetLinkInfo, 51
vortexHssGetLogChnlAddrMap, 52
vortexHssSetConfig, 49
vortexInsertCell, 55
vortexinstallCellTypeFn, 60
vortexInstallindFn, 42

vortexISR, 15, 19, 20, 21, 22, 79, 80, 81
vortexLoopback, 45
vortexModulelnit, 36
vortexModuleShutdown, 37
vortexRead, 40
vortexRegisterTest, 45
vortexRemovelndFn, 42, 43
vortexReset, 38, 39
vortexResetStatisticCounts, 67
vortexReturnindBuf, 68, 69, 74, 86
vortexRxBOC, 62

vortexTxBOC, 61

vortexWrite, 40

Writing to Registers, 39, 40, 78

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 98

RELEASED rD“A “ PMC-Sierra,Inc. =~ PM7351 S/UNI-VORTEX DRIVER

DRIVER MANUAL
PMC-1990786 ISSUE 2 S/UNI-VORTEX DRIVER MANUAL

CONTACTING PMC-SIERRA, INC.

PMC-Sierra, Inc.
105-8555 Baxter Place Burnaby, BC
Canada V5A 4V7

Tel: (604) 415-6000
Fax: (604) 415-6200

Document Information: document@pmc-sierra.com
Corporate Information: info@pmc-sierra.com
Application Information: apps@pmc-sierra.com
Web Site: http://www.pmc-sierra.com

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 99

mailto:document@pmc-sierra.com
mailto:info@pmc-sierra.com
mailto:apps@pmc-sierra.com

