TENTATIVE TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic
 TC74VCXH16646FT

Low-Voltage 16-Bit Bus Transceiver/Register with Bushold

The TC74VCXH16646FT is a high-performance CMOS 16-bit bus transceiver/register. Designed for use in $1.8-\mathrm{V}, 2.5-\mathrm{V}$ or $3.3-\mathrm{V}$ systems, it achieves high-speed operation while maintaining the CMOS low power dissipation.

This device is bus transceiver with 3 -state outputs, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the internal registers.

The A, B data inputs include active bushold circuitry, eliminating the need for external pull-up resisisors to hold unused or floating data inputs at a valid logic level.

All inputs are equipped with protection circuits against static discharge.

Weight: 0.25 g (typ.)

Features

- Low-voltage operation: $\mathrm{VCC}=1.8$ to 3.6 V
- Bushold on data inputs eliminating the need for external pull-up/pull-down resistors
- High-speed operation : $\mathrm{t}_{\mathrm{pd}}=2.9 \mathrm{~ns}(\max)(\mathrm{VCC}=3.0$ to 3.6 V$)$

$$
\begin{aligned}
& : \operatorname{t}_{\mathrm{pd}}=3.5 \mathrm{~ns}(\max)(\mathrm{VCC}=2.3 \text { to } 2.7 \mathrm{~V}) \\
& : \mathrm{t}_{\mathrm{pd}}=7.0 \mathrm{~ns}(\max)\left(\mathrm{VCC}_{\mathrm{CC}}=1.8 \mathrm{~V}\right)
\end{aligned}
$$

- $3.6-\mathrm{V}$ tolerant control inputs
- Output current: $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{IOL}= \pm 24 \mathrm{~mA}(\mathrm{~min})\left(\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}\right)$

$$
\begin{aligned}
& : \mathrm{IOH} / \mathrm{IOL}= \pm 18 \mathrm{~mA}(\min)(\mathrm{VCC}=2.3 \mathrm{~V}) \\
& : \mathrm{IOH} / \mathrm{IOL}= \pm 6 \mathrm{~mA}(\mathrm{~min})(\mathrm{VCC}=1.8 \mathrm{~V})
\end{aligned}
$$

- Latch-up performance: $\pm 300 \mathrm{~mA}$
- ESD performance: Machine model $> \pm 200 \mathrm{~V}$
: Human body model $> \pm 2000 \mathrm{~V}$
- Package: TSSOP (thin shrink small outline package)

Note 1: Do not apply a signal to any bus pins when it is in the output mode. Damage may result.

Pin Assignment (top view)

IEC Logic Symbol

Truth Table

Control Inputs						Bus		Function
$\overline{\mathrm{OE}}$	DIR	CAB	CBA	SAB	SBA	A	B	
H	X	X*	X*	X	X	Input	Input	The output functions of A and B Busses are disabled.
						Z	Z	
		\uparrow	\uparrow	X	X	X	X	Both A and B Busses are used as inputs to the internal flip-flops. Data on the Bus will be stored on the rising edge of the Clock.
L	H	X*	X*	L	X	Input	Output	The data on the A bus are displayed on the B bus.
						L	L	
						H	H	
		\uparrow	X*	L	X	L	L	The data on the A bus are displayed on the B Bus, and are stored into the A storage flip-flops on the rising edge of CAB.
						H	H	
		X*	X*	H	X	X	Qn	The data in the A storage flop-flops are displayed on the B Bus.
		\uparrow	X*	H	X	L	L	The data on the A Bus are stored into the A storage flip-flops on the rising edge of CAB, and the stored data propagate directly onto the B Bus.
						H	H	
L	L	X*	X*	X	L	Output	Input	The data on the B Bus are displayed on the A bus.
						L	L	
						H	H	
		X*	\uparrow	X	L	L	L	The data on the B Bus are displayed on the A Bus, and are stored into the B storage flip-flops on the rising edge of CBA.
						H	H	
		X*	X*	X	H	Qn	X	The data in the B storage flip-flops are displayed on the A Bus.
		X*	\uparrow	X	H	L	L	The data on the B Bus are stored into the B storage flip-flops on the rising edge of CBA, and the stored data propagate directly onto the A Bus.
						H	H	

X: Don't care

Z: High impedance

Qn: The data stored into the internal flip-flops by most recent low to high transition of the clock inputs.
*: The clocks are not internally with either $\overline{\mathrm{OE}}$ or DIR.
Therefore, data on the A and/or B busses may be clocked into the storage flip-flops at any time.

System Diagram

Timing Chart

Maximum Ratings

Characteristics		Symbol	Rating	Unit
Power supply voltage		V_{CC}	-0.5 to 4.6	V
DC input voltage	(DIR, $\overline{O E}, \mathrm{CAB}, \mathrm{CBA}$, SAB, SBA)	V_{IN}	-0.5 to 4.6	V
	(An, Bn)		$-0.5 \text { to } V_{\mathrm{CC}}+0.5$ (Note 2)	
DC output voltage	(An, Bn)	Vout	$-0.5 \text { to } \mathrm{V}_{\mathrm{CC}}+0.5$ (Note 3)	V
Input diode current		IIK	-50	mA
Output diode current		lok	$\pm 50 \quad$ (Note 4)	mA
Output current		IOUT	± 50	mA
Power dissipation		PD	400	mW
DC $\mathrm{V}_{\mathrm{CC}} /$ ground current per supply pin		$\mathrm{ICC} / \mathrm{l}_{\text {GND }}$	± 100	mA
Storage temperature		$\mathrm{T}_{\text {stg }}$	-65 to 150	${ }^{\circ} \mathrm{C}$

Note 2: OFF state
Note 3: High or low state. IOUT absolute maximum rating must be observed.
Note 4: $V_{\text {OUT }}<G N D, V_{\text {OUT }}>V_{C C}$
Recommended Operating Range (Note 5)

Characteristics		Symbol	Rating	Unit	
Power supply voltage		V Cc	1.8 to 3.6	V	
		1.2 to 3.6 (Note 6)			
Input voltage	(DIR, $\overline{O E}, ~ C A B, ~ C B A, ~$ SAB, SBA)		$\mathrm{V}_{\text {IN }}$	-0.3 to 3.6	V
	(An, Bn)	0 to $\mathrm{V}_{\text {CC }}$ (Note 7)			
Output voltage	(An, Bn)	VOUT	0 to $\mathrm{V}_{\text {CC }}$ (Note 8)	V	
Output current		$\mathrm{loh} / \mathrm{loL}$	± 24 (Note 9)	mA	
		± 18 (Note 10)			
		± 6 (Note 11)			
Operating temperature			$\mathrm{T}_{\text {opr }}$	-40 to 85	${ }^{\circ} \mathrm{C}$
Input rise and fall time			dt/dv	0 to 10 (Note 12)	ns/V

Note 5: Floating or unused control inputs must be held high or low.
Note 6: Data retention only
Note 7: OFF state
Note 8: High or low state
Note 9: $\mathrm{V}_{\mathrm{CC}}=3.0$ to 3.6 V
Note 10: $\mathrm{V}_{\mathrm{CC}}=2.3$ to 2.7 V
Note 11: $\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}$
Note 12: V IN $=0.8$ to $2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$

Electrical Characteristics

DC Characteristics $\left(\mathbf{T a}=\mathbf{- 4 0}\right.$ to $85^{\circ} \mathrm{C}, 2.7 \mathrm{~V}<\mathrm{V}_{\mathrm{Cc}} \leqq 3.6 \mathrm{~V}$)

Characteristics		Symbol	Test Condition			Min	Max	Unit	
Input voltage	H-level	V_{IH}	-		2.7 to 3.6	2.0	-	V	
	L-level	V_{IL}	-		2.7 to 3.6	-	0.8		
Output voltage	H-level	VOH	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$	$\mathrm{IOH}=-100 \mu \mathrm{~A}$	2.7 to 3.6	$\begin{aligned} & V_{C C} \\ & -0.2 \end{aligned}$	-	V	
				$\mathrm{IOH}^{\prime}=-12 \mathrm{~mA}$	2.7	2.2	-		
				$\mathrm{IOH}^{\prime}=-18 \mathrm{~mA}$	3.0	2.4	-		
				$\mathrm{IOH}^{\prime}=-24 \mathrm{~mA}$	3.0	2.2	-		
	L-level	Vol	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$	$\mathrm{lOL}=100 \mu \mathrm{~A}$	2.7 to 3.6	-	0.2		
				$\mathrm{loL}=12 \mathrm{~mA}$	2.7	-	0.4		
				$\mathrm{IOL}=18 \mathrm{~mA}$	3.0	-	0.4		
				$\mathrm{loL}=24 \mathrm{~mA}$	3.0	-	0.55		
Input leakage current (DIR, $\overline{O E}, C A B, C B A, S A B, S B A)$		In	$\mathrm{V}_{\mathrm{IN}}=0$ to 3.6 V		2.7 to 3.6	-	± 5.0	$\mu \mathrm{A}$	
Bushold input minimum drive hold current		$\mathrm{II}_{\text {(HOLD }}$	$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$		3.0	75	-	$\mu \mathrm{A}$	
		$\mathrm{V}_{1 \mathrm{~N}}=2.0 \mathrm{~V}$		3.0	-75	-			
Bushold input over-drive current to change state			1 I (OD)		(Note 13)	3.6	-	450	$\mu \mathrm{A}$
				(Note 14)	3.6	-	-450		
3-state output OFF state current		loz	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$		2.7 to 3.6	-	± 10.0	$\mu \mathrm{A}$	
Quiescent supply current		Icc	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND		2.7 to 3.6	-	20.0	$\mu \mathrm{A}$	
Increase in Icc per input		$\Delta_{\text {l }} \mathrm{Cc}$	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$		2.7 to 3.6	-	750	$\mu \mathrm{A}$	

Note 13: An external driver must source at least the specified current to switch from LOW-to-HIGH.
Note 14: An external driver must sink at least the specified current to switch from HIGH-to-LOW.

DC Characteristics ($\mathbf{T a}=-40$ to $85^{\circ} \mathrm{C}, 2.3 \mathrm{~V} \leqq \mathrm{~V}_{\mathrm{CC}} \leqq 2.7 \mathrm{~V}$)

Characteristics		Symbol	Test Condition			Min	Max	Unit	
Input voltage	H-level	V_{IH}	-		2.3 to 2.7	1.6	-	V	
	L-level	V_{IL}	-		2.3 to 2.7	-	0.7		
Output voltage	H-level	V_{OH}	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}	$\mathrm{IOH}=-100 \mu \mathrm{~A}$	2.3 to 2.7	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}} \\ -0.2 \end{gathered}$	-	V	
				$\mathrm{IOH}=-6 \mathrm{~mA}$	2.3	2.0	-		
				$\mathrm{IOH}=-12 \mathrm{~mA}$	2.3	1.8	-		
				$\mathrm{IOH}=-18 \mathrm{~mA}$	2.3	1.7	-		
	L-level	VoL	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$	$\mathrm{lOL}=100 \mu \mathrm{~A}$	2.3 to 2.7	-	0.2		
				$\mathrm{l} \mathrm{OL}=12 \mathrm{~mA}$	2.3	-	0.4		
				$\mathrm{lOL}=18 \mathrm{~mA}$	2.3	-	0.6		
Input leakage current (DIR, $\overline{O E}, C A B, C B A, S A B, S B A)$		In	$\mathrm{V}_{\mathrm{IN}}=0$ to 3.6 V		2.3 to 2.7	-	± 5.0	$\mu \mathrm{A}$	
Bushold input minimum drive hold current		I_{1} (HOLD)	$\mathrm{V}_{\mathrm{IN}}=0.7 \mathrm{~V}$		2.3	45	-	$\mu \mathrm{A}$	
		$\mathrm{V}_{1 \mathrm{I}}=1.6 \mathrm{~V}$		2.3	-45	-			
Bushold input over-drive current to change state			$11(0 D)$		(Note 13)	2.7	-	300	$\mu \mathrm{A}$
				(Note 14)	2.7	-	-300		
3 -state output OFF state current		loz	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$		2.3 to 2.7	-	± 10.0	$\mu \mathrm{A}$	
Quiescent supply current		Icc	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND		2.3 to 2.7	-	20.0	$\mu \mathrm{A}$	

Note 13: An external driver must source at least the specified current to switch from LOW-to-HIGH.
Note 14: An external driver must sink at least the specified current to switch from HIGH-to-LOW.

DC Characteristics $\left(\mathbf{T a}=\mathbf{- 4 0}\right.$ to $85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leqq \mathrm{~V}_{\mathrm{CC}}<2.3 \mathrm{~V}$)

Characteristics	Symbol	Test Condition			Min	Max	Unit
Input voltage	V_{IH}		-	1.8 to 2.3	$\begin{aligned} & 0.7 \times \\ & V_{\mathrm{CC}} \end{aligned}$	-	V
	VIL		-	1.8 to 2.3	-	$\begin{aligned} & 0.2 \times \\ & V_{C C} \end{aligned}$	
Output voltage	V OH	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\text {IL }}$	$\mathrm{I}^{\mathrm{OH}}=-100 \mu \mathrm{~A}$	1.8	$\begin{aligned} & V_{C C} \\ & -0.2 \end{aligned}$	-	V
			$\mathrm{lOH}=-6 \mathrm{~mA}$	1.8	1.4	-	
	$\mathrm{V}_{\text {OL }}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}	$\mathrm{IOL}=100 \mu \mathrm{~A}$	1.8	-	0.2	
			$\mathrm{IOL}=6 \mathrm{~mA}$	1.8	-	0.3	
Input leakage current (DIR, $\overline{\mathrm{OE}}, \mathrm{CAB}, \mathrm{CBA}, \mathrm{SAB}, \mathrm{SBA})$	In	$\mathrm{V}_{\mathrm{IN}}=0$ to 3.6 V		1.8	-	± 5.0	$\mu \mathrm{A}$
Bushold input minimum drive hold current	$\mathrm{II}_{\text {(HOLD }}$	$\mathrm{V}_{\mathrm{IN}}=0.36 \mathrm{~V}$		1.8	25	-	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{IN}}=1.26 \mathrm{~V}$		1.8	-25	-	
Bushold input over-drive current to change state	$1{ }^{\prime}$ (OD)		(Note 13)	1.8	-	200	$\mu \mathrm{A}$
			(Note 14)	1.8	-	-200	
3-state output OFF state current	loz	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$		1.8	-	± 10.0	$\mu \mathrm{A}$
Quiescent supply current	ICC	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND		1.8	-	20.0	$\mu \mathrm{A}$

Note 13: An external driver must source at least the specified current to switch from LOW-to-HIGH.
Note 14: An external driver must sink at least the specified current to switch from HIGH-to-LOW.

AC Characteristics ($\mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$, input: $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=\mathbf{2 . 0} \mathrm{ns}, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$)

Characteristics	Symbol	Test Condition		Min	Max	Unit
			$\mathrm{V}_{\mathrm{CC}}(\mathrm{V})$			
Maximum clock frequency	${ }^{\text {f max }}$	Figure 1, Figure 3	1.8	100	-	MHz
			2.5 ± 0.2	200	-	
			3.3 ± 0.3	250	-	
Propagation delay time (An, Bn-Bn, An)	$\begin{aligned} & \mathrm{t}_{\mathrm{pLH}} \\ & \mathrm{t}_{\mathrm{pHL}} \end{aligned}$	Figure 1, Figure 2	1.8	1.5	7.0	ns
			2.5 ± 0.2	0.8	3.5	
			3.3 ± 0.3	0.6	2.9	
Propagation delay time (CAB, CBA-Bn, An)	$\begin{aligned} & \mathrm{t}_{\mathrm{pLH}} \\ & \mathrm{t}_{\mathrm{pHL}} \end{aligned}$	Figure 1, Figure 3	1.8	1.5	8.8	ns
			2.5 ± 0.2	0.8	4.4	
			3.3 ± 0.3	0.6	3.2	
Propagation delay time (SAB, SBA-Bn, An)	$t_{p L H}$ $\mathrm{t}_{\mathrm{pHL}}$	Figure 1, Figure 2	1.8	1.5	8.8	ns
			2.5 ± 0.2	0.8	4.4	
			3.3 ± 0.3	0.6	3.5	
Output enable time ($\overline{\mathrm{OE}}$, DIR-An, Bn)	$\begin{aligned} & \mathrm{t}_{\mathrm{pzL}} \\ & \mathrm{t}_{\mathrm{pzH}} \end{aligned}$	Figure 1, Figure 4, Figure 5	1.8	1.5	9.8	ns
			2.5 ± 0.2	0.8	4.9	
			3.3 ± 0.3	0.6	3.8	
Output disable time ($\overline{O E}$, DIR-An, Bn)	$\begin{aligned} & \mathrm{t}_{\mathrm{pLLZ}} \\ & \mathrm{t}_{\mathrm{pHZ}} \end{aligned}$	Figure 1, Figure 4, Figure 5	1.8	1.5	7.6	ns
			2.5 ± 0.2	0.8	4.2	
			3.3 ± 0.3	0.6	3.7	
Minimum pulse width	$\begin{aligned} & \mathrm{t}_{\mathrm{w}(\mathrm{H})} \\ & \mathrm{t}_{\mathrm{w}(\mathrm{~L})} \end{aligned}$	Figure 1, Figure 3	1.8	4.0	-	ns
			2.5 ± 0.2	1.5	-	
			3.3 ± 0.3	1.5	-	
Minimum setup time	t_{s}	Figure 1, Figure 3	1.8	2.5	-	ns
			2.5 ± 0.2	1.5	-	
			3.3 ± 0.3	1.5	-	
Minimum hold time	$t_{\text {h }}$	Figure 1, Figure 3	1.8	1.0	-	ns
			2.5 ± 0.2	1.0	-	
			3.3 ± 0.3	1.0	-	
Output to output skew	$\mathrm{t}_{\mathrm{osLH}}$ $\mathrm{t}_{\mathrm{osHL}}$		1.8	-	0.5	ns
			2.5 ± 0.2	-	0.5	
			3.3 ± 0.3	-	0.5	

For $C_{L}=50 \mathrm{pF}$, add approximately 300 ps to the AC maximum specification.
Note 15: Parameter guaranteed by design.
$\left(\mathrm{t}_{\mathrm{os} L \mathrm{H}}=\left|\mathrm{t}_{\mathrm{pLHm}}-\mathrm{t}_{\mathrm{pLHn}}\right|, \mathrm{t}_{\mathrm{os}} \mathrm{HL}=\left|\mathrm{t}_{\mathrm{pHLm}}-\mathrm{t}_{\mathrm{pHLn}}\right|\right)$

Dynamic Switching Characteristics

($\mathrm{Ta}=25^{\circ} \mathrm{C}$, input: $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=2.0 \mathrm{~ns}, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$)

Characteristics	Symbol	Test Condition			Typ.	Unit
				$\mathrm{V}_{\mathrm{CC}}(\mathrm{V})$		
Quiet output maximum dynamic $V_{\text {OL }}$	$\mathrm{V}_{\text {OLP }}$	$\mathrm{V}_{\mathrm{IH}}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$	(Note 16)	1.8	0.25	V
		$\mathrm{V}_{\mathrm{IH}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$	(Note 16)	2.5	0.6	
		$\mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$	(Note 16)	3.3	0.8	
Quiet output minimum dynamic V_{OL}	$\mathrm{V}_{\text {OLV }}$	$\mathrm{V}_{\text {IH }}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$	(Note 16)	1.8	-0.25	V
		$\mathrm{V}_{\mathrm{IH}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$	(Note 16)	2.5	-0.6	
		$\mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$	(Note 16)	3.3	-0.8	
Quiet output minimum dynamic V_{OH}	Vohv	$\mathrm{V}_{\text {IH }}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$	(Note 16)	1.8	1.5	V
		$\mathrm{V}_{\mathrm{IH}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$	(Note 16)	2.5	1.9	
		$\mathrm{V}_{\text {IH }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=0 \mathrm{~V}$	(Note 16)	3.3	2.2	

Note 16: Parameter guaranteed by design.
Capacitive Characteristics ($\mathrm{Ta}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Characteristics	Symbol	Test Condition		$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$	Typ.	Unit
Input capacitance	$\mathrm{C}_{\text {IN }}$			1.8, 2.5, 3.3	6	pF
Bus I/O capacitance	$\mathrm{Cl}_{1 / \mathrm{O}}$	-		1.8, 2.5, 3.3	7	pF
Power dissipation capacitance	CPD	$\mathrm{fIN}=10 \mathrm{MHz}$	(Note 17)	1.8, 2.5, 3.3	20	pF

Note 17: CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.
Average operating current can be obtained by the equation:

$$
\mathrm{I}_{\mathrm{CC}}(\mathrm{opr})=\mathrm{CPD} \cdot \mathrm{~V}_{\mathrm{CC}} \cdot \mathrm{f}_{\mathrm{IN}}+\mathrm{I}_{\mathrm{CC}} / 16 \text { (per bit) }
$$

AC Test Circuit

Parameter	Switch	
$\mathrm{t}_{\mathrm{pLH}}, \mathrm{t}_{\mathrm{p} H \mathrm{~L}}$		Open
$t_{\text {pLZ }}, \mathrm{t}_{\text {pZL }}$	$\begin{array}{\|l\|} \hline 6.0 \mathrm{~V} \\ \mathrm{~V}_{C C} \times 2 \end{array}$	$@ V_{C C}=3.3 \pm 0.3 \mathrm{~V}$ $@ \mathrm{~V}_{\mathrm{CC}}=2.5 \pm 0.2 \mathrm{~V}$ $@ V_{C C}=1.8 \mathrm{~V}$
$\mathrm{t}_{\mathrm{pHz}}, \mathrm{t}_{\mathrm{p} Z \mathrm{H}}$		GND

Figure 1

AC Waveform

Figure $2 \mathbf{t p L H}_{\mathbf{p}} \mathrm{t}_{\mathrm{pHL}}$

Figure $3 \mathrm{t}_{\mathrm{pLH}}, \mathrm{t}_{\mathrm{pHL}}, \mathrm{t}_{\mathrm{w}}, \mathrm{t}_{\mathbf{s}}, \mathrm{t}_{\mathbf{h}}$

Output Disable ($\overline{\mathrm{OE}}$)

Figure $4 \quad t_{p L Z}, t_{p H}, t_{p z}, t_{p z H}$

Input (DIR)

Output
(An)

Output
(An)

Output
(Bn)

Output (Bn)

Figure $5 \quad t_{p L Z}, t_{p H}, t_{p z}, t_{p z H}$

Symbol	V_{CC}		
	$3.3 \pm 0.3 \mathrm{~V}$	$2.5 \pm 0.2 \mathrm{~V}$	1.8 V
$\mathrm{~V}_{\mathrm{IH}}$	2.7 V	$\mathrm{~V}_{\mathrm{CC}}$	V_{CC}
V_{M}	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{X}}$	$\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{Y}}$	$\mathrm{V}_{\mathrm{OH}}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$

Package Dimensions

Weight: 0.25 g (typ.)

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.

