4 Megabit (512K x 8) SuperFlash MTP SST27VF040

Preliminary Specifications

FEATURES:

- 2.7 to 3.6 Volt Read Operation
- Superior Reliability
 - Endurance: Greater than 1000 CyclesGreater than 100 years Data Retention
- Low Power Consumption
 - Active Current: 10 mA (typical)Standby Current: 10 µA (typical)
- Fast Access Time
 - 90 and 120 ns
- Fast Programming Operation
 - 10 µs Programming Pulse
 - Chip Programming Time of 7 seconds

- Features Electrical Erase
 - Does Not Require UV Source
 - Chip Erase Time: 100 ms
- CMOS I/O Compatibility
- JEDEC Standard Byte-wide EPROM Pinouts
- 12V Power Supply for Programming/Erase
- Packages Available
 - 32-Pin PLCC
 - 32-Pin Plastic DIP
 - 32-Pin TSOP (8mm x 14mm)

PRODUCT DESCRIPTION

The SST27VF040 is a 512K x 8 CMOS, many-time programmable (MTP) low cost flash, manufactured with SST's proprietary, high performance CMOS SuperFlash technology. The split gate cell design and thick oxide tunneling injector attain better reliability and manufacturability compared with alternate approaches. The SST27VF040 can be electrically erased and programmed at least 1000 times using an external programmer, e.g., to change the contents of devices in inventory. The SST27VF040 has to be erased prior to programming. The SST27VF040 conforms to JEDEC standard pinouts for byte-wide memories.

Featuring high performance byte programming, the SST27VF040 uses a programming pulse of 10 μ s. The entire memory can be programmed byte by byte in 7 seconds. Designed, manufactured, and tested for a wide spectrum of applications, the SST27VF040 is offered with a endurance of 1000 cycles. Data retention is rated at greater than 100 years.

The SST27VF040 is suited for applications that require infrequent writes and low power nonvolatile storage. The SST27VF040 will improve flexibility, efficiency, and performance while matching the low cost in nonvolatile applications that currently use UV-EPROMs, OTPs, and mask ROMs.

To meet surface mount and conventional through hole requirements, the SST27VF040 is offered in 32-pin PLCC, 32-pin PDIP and 32-pin TSOP packages. See Figures 1 and 2 for pinouts.

Device Operation

The SST27VF040 is a low cost flash solution that can be used to replace existing UV-EPROM, OTP and mask ROM sockets. It is functionally (Read and Program) and pin compatible with industry standard EPROM products. In addition to EPROM functionality, the device also supports electrical erase operation via an external programmer. The SST27VF040 does not require a UV source to erase, and therefore the packages do not have windows.

Read

The Read operation of the SST27VF040 is controlled by CE# and OE#. Both CE# and OE# have to be low for the system to obtain data from the outputs. Once the address is stable, the address access time is equal to the delay from CE# to output (T_{CE}). Data is available at the output after a delay of T_{OE} from the falling edge of OE#, assuming the CE# pin has been low and the addresses have been stable for at least T_{CE} - T_{OE} . When the CE# pin is high, the chip is deselected and a standby current of only 10 μ A (typical) is consumed. OE# is the output control and is used to gate data from the output pins. The data bus is in high impedance state when either CE# or OE# is high.

Programming operation

The SST27VF040 is programmed by using an external programmer. The programming mode is activated by asserting 12V (\pm 5%) on V_{PP} pin and V_{IL} on CE#, pin. The device is programmed using a single pulse (CE# pin low) of 10 μ s per byte. Using the MTP programming algorithm, the byte programming process continues byte by byte until the entire chip (512 KBytes) has been programmed.

Preliminary Specifications

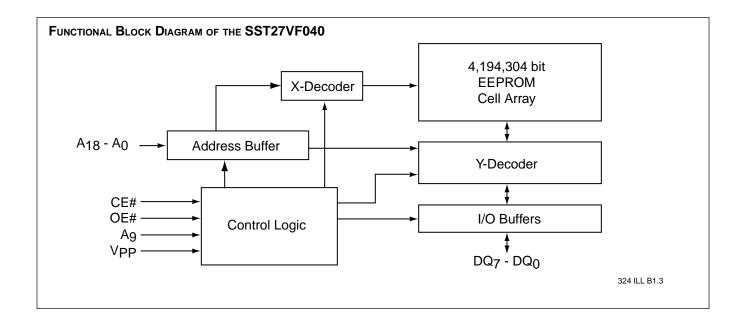
Chip Erase Operation

The only way to change a data from a "0" to "1" is by electrical erase that changes every bit in the device to "1". Unlike traditional EPROMs, which use UV light to the chip erase, the SST27VF040 uses an electrical Chip Erase operation. This saves a significant amount of time (about 30 minutes for each Erase operation). The entire chip can be erased in 100 ms (CE# pin low). In order to activate erase mode, the 12V ($\pm 5\%$) is applied to V_{PP} and A₉ pins and V_{IH} on OE# pin. All other address and data pins are don't care. The falling edge of CE# will start the chip erase operation. Once the chip has been erased, all bytes must be verified for FF. Refer to Figure 8 for the flow chart.

The SST27VF040 can also be reprogrammed in the system. This requires the availability of 12V on V_{PP} to program and 12V on address pin A_9 to erase.

Product Identification Mode

The product identification mode identifies the device as the SST27VF040 and manufacturer as SST. This mode may be accessed by the hardware method. To activate this mode, the programming equipment must force V_H (12V±5%) on address A_9 with $V_{PP} = V_{DD} = 2.7$ -3.6V. Two identifier bytes may then be sequenced from the device outputs by toggling address line A_0 . For details, see Table 3 for hardware operation.


TABLE 1: PRODUCT IDENTIFICATION TABLE

	Byte	Data
Manufacturer's Code	0000 H	BF H
Device Code	0001 H	C7 H

324 PGM T1.0

Design Consideration

The $\bar{S}ST27VF040$ should have a $0.1\mu F$ ceramic high frequency low inductance capacitor connected between V_{DD} and GND, as well as V_{PP} and GND. These capacitors should be placed as close as possible to the package terminals.

Preliminary Specifications

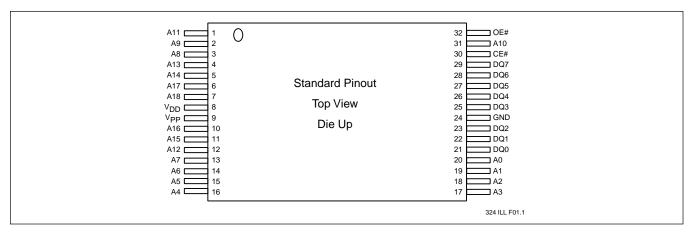


FIGURE 1: PIN ASSIGNMENTS FOR 32-PIN TSOP PACKAGES

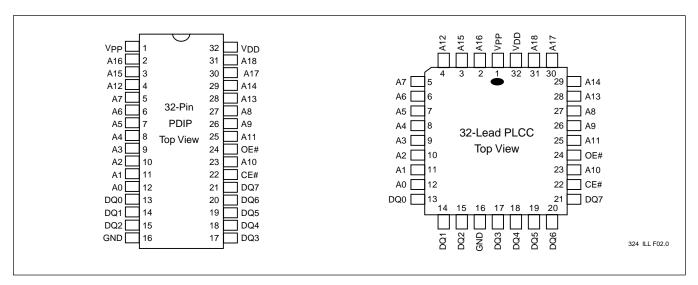


FIGURE 2: PIN ASSIGNMENTS FOR 32-PIN PLASTIC DIPS AND 32-LEAD PLCCS

TABLE 2: PIN DESCRIPTION

Symbol	Pin Name	Functions
A ₁₈ -A ₀	Address Inputs	To provide memory addresses
DQ ₇ -DQ ₀	Data Input/Output	To output data during read cycles and receive input data during program cycle, the outputs are in tri-state when OE# or CE# is high.
CE#	Chip Enable	To activate the device when CE# is low
OE#	Output Enable	To gate the data output buffers during read operation
V _{PP}	Power Supply for Program or Erase	High voltage pin during chip erase and programming operation 12-volt (±5%)
V_{DD}	Power Supply	To provide 3-volt supply (2.7 to 3.6V)
GND	Ground	

324 PGM T2.1

Preliminary Specifications

TABLE 3: OPERATION MODES SELECTION

Mode	CE#	OE#	A ₉	V _{PP}	DQ	Address
Read	VIL	VIL	A _{IN}	V _{DD} or GND	D _{OUT}	A _{IN}
Output Disable	X	V _{IH}	X	V _{DD} or GND	High Z	A _{IN}
Standby	V _{IH}	X	X	V _{DD} or GND	High Z	X
Chip Erase	VIL	ViH	Vн	V _{PPH}	High Z	X
Program	VIL	ViH	Ain	V _{PPH}	D _{IN}	Ain
Program/Erase Inhibit	V _{IH}	X	X	V _{PPH}	High Z	X
Product Identification	VIL	VIL	Vн	V _{DD} or GND	Manufacturer Code (BF) Device Code (C7)	$A_{18}-A_{1} = V_{IL}, A_{0} = V_{IL}$ $A_{18}-A_{1} = V_{IL}, A_{0} = V_{IH}$

324 PGM T3.1

Note: $X = V_{IL}$ or V_{IH} $V_{H} = 12V\pm5\%$ $V_{PPH} = 12V\pm5\%$

Absolute Maximum Stress Ratings (Applied conditions greater than those listed under "Absolute Maximum Stress Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these conditions or conditions greater than those defined in the operational sections of this data sheet is not implied. Exposure to absolute maximum stress rating conditions may affect device reliability.)

Temperature Under Bias	55°C to +125°C
Storage Temperature	65°C to +150°C
D. C. Voltage on Any Pin to Ground Potential	0.5V to V _{DD} + 0.5V
Transient Voltage (<20 ns) on Any Pin to Ground Potential	1.0V to V _{DD} + 1.0V
Voltage on A ₉ , and V _{PP} Pin to Ground Potential	0.5V to 13.2V
Package Power Dissipation Capability (T _A = 25°C)	1.0W
Through Hole Lead Soldering Temperature (10 Seconds)	300°C
Surface Mount Lead Soldering Temperature (3 Seconds)	240°C
Output Short Circuit Current ⁽¹⁾	50 mA
Note: (1) Outputs shorted for no more than one second. No more than one output shorted at a time.	

OPERATING RANGE

Range	Ambient Temp	V_{DD}
Commercial	0°C to +70°C	2.7 to 3.6V
Industrial	-40°C to +85°C	2.7 to 3.6V

AC CONDITIONS OF TEST

Input Rise/Fall Time 10 ns	
Output LoadC _L = 100 pF	
See Figures 6 and 7	

Preliminary Specifications

Table 4: Read Mode DC Operating Characteristics $V_{DD} = 2.7$ to 3.6V, $T_A = 0^{\circ}$ C to 70°C (Commercial) or -40°C to +85°C (Industrial)

		Limits			
Symbol	Parameter	Min	Max	Units	Test Conditions
Icc	V _{DD} Read Current		12	mA	CE# = OE# = V_{IL} , all I/Os open, Address Input = V_{IL}/V_{IH} , at f = 1/T _{RC} Min, V_{DD} = V_{DD} Max
I _{PPR}	V _{PP} Read Current		100	μΑ	CE# = OE# = V_{IL} , all I/Os open, Address Input = V_{IL}/V_{IH} , at f = 1/ T_{RC} Min, $V_{DD} = V_{DD}$ Max, $V_{PP} = V_{DD}$
I _{SB}	Standby V _{DD} Current		15	μA	CE# = V _{IHC} V _{DD} = V _{DD} Max
ILI	Input Leakage Current		1	μΑ	$V_{IN} = GND$ to V_{DD} , $V_{DD} = V_{DD}$ Max
I _{LO}	Output Leakage Current		1	μΑ	$V_{OUT} = GND$ to V_{DD} , $V_{DD} = V_{DD}$ Max
VIL	Input Low Voltage		0.8	V	V _{DD} = V _{DD} Max
V _{IH}	Input High Voltage	2.0	V _{DD} +0.5	V	$V_{DD} = V_{DD} Max$
V _{IHC}	Input High Voltage (CMOS)	V _{DD} -0.3		V	$V_{DD} = V_{DD} Max$
VoL	Output Low Voltage		0.4	V	$I_{OL} = 100\mu A$, $V_{DD} = V_{DD} Min$
VoH	Output High Voltage	2.4		V	I_{OH} = -100 μ A, V_{DD} = V_{DD} Min
l _H	Supervoltage Current for A ₉		200	μΑ	$CE\# = OE\# = V_{IL}, A_9 = V_H Max.$

324 PGM T4.6

Preliminary Specifications

Table 5: Program/Erase DC Operating Characteristics $V_{DD} = 2.7$ to 3.6V, $V_{PP} = V_{PPH}$, $T_A = 25^{\circ}C \pm 5^{\circ}C$

		Limits			
Symbol	Parameter	Min	Max	Units	Test Conditions
I _{CP}	V _{DD} Erase or Program Current		30	mA	$CE\# = V_{IL}, V_{PP} = 12V\pm5\%, V_{DD} = V_{DD} Max$
IPP	V _{PP} Erase or Program Current		1	mA	$CE\# = V_{IL}, V_{PP} = 12V\pm5\%, V_{DD} = V_{DD} Max$
ILI	Input Leakage Current		1	μA	$V_{IN} = GND$ to V_{DD} , $V_{DD} = V_{DD}$ Max
I _{LO}	Output Leakage Current		1	μA	$V_{OUT} = GND$ to V_{DD} , $V_{DD} = V_{DD}$ Max
V _H	Supervoltage for A ₉	11.4	12.6	V	CE# = OE# = V _{IL}
I _H	Supervoltage Current for A ₉		200	μA	$CE\# = OE\# = V_{IL}, A_9 = V_H Max$
V_{PPH}	High Voltage for V _{PP} Pin	11.4	12.6	V	

324 PGM T5.4

TABLE 6: RECOMMENDED SYSTEM POWER-UP TIMINGS

Symbol	Parameter	Minimum	Units
T _{PU-READ}	Power-up to Read Operation	100	μs
P _{PU-WRITE}	Power-up to Write Operation	100	μs

324 PGM T6.1

TABLE 7: CAPACITANCE (TA = 25 °C, f=1 MHz, other pins open)

Parameter	Description	Test Condition	Maximum
C _{I/O} ⁽¹⁾	I/O Pin Capacitance	$V_{I/O} = 0V$	12 pF
C _{IN} ⁽¹⁾	Input Capacitance	$V_{IN} = 0V$	6 pF

324 PGM T7.1

Note: (1)This parameter is measured only for initial qualification and after a design or process change that could affect this parameter.

TABLE 8: RELIABILITY CHARACTERISTICS

Symbol	Parameter	Minimum Specification	Units	Test Method
N _{END}	Endurance	1000	Cycles	MIL-STD-883, Method 1033
T _{DR} ⁽¹⁾	Data Retention	100	Years	JEDEC Standard A103
V _{ZAP} _HBM ⁽¹⁾	ESD Susceptibility Human Body Model	1000	Volts	JEDEC Standard A114
Vzap_mm ⁽¹⁾	ESD Susceptibility Machine Model	200	Volts	JEDEC Standard A115
I _{LTH} ⁽¹⁾	Latch Up	100 + I _{DD}	mA	JEDEC Standard 78

324 PGM T8 2

Note: (1) This parameter is measured only for initial qualification and after a design or process change that could affect this parameter.

Preliminary Specifications

AC CHARACTERISTICS

Table 9: Read Cycle Timing Parameters $V_{DD} = 2.7$ to 3.6V, $T_A = 0^{\circ}$ C to 70°C (Commercial) or -40°C to +85°C (Industrial)

					•		
		SST27VI	SST27VF040-90		SST27VF040-120		
Symbol	Parameter	Min	Max	Min	Max	Units	
T _{RC}	Read Cycle Time	90		120		ns	
T _{CE}	Chip Enable Access Time		90		120	ns	
T _{AA}	Address Access Time		90		120	ns	
T _{OE}	Output Enable Access Time		45		55	ns	
T _{CLZ}	CE# Low to Active Output	0		0		ns	
Tolz	OE# Low to Active Output	0		0		ns	
T _{CHZ}	CE# High to High-Z Output		30		30	ns	
T _{OHZ}	OE# High to High-Z Output		30		30	ns	
T _{OH}	Output Hold from Address Change	0		0		ns	

324 PGM T9.5

Table 10: Programming/Erase Cycle Timing Parameters $V_{DD} = 2.7$ to 3.6V, $V_{PP} = 12V \pm 5\%$, $T_A = 25^{\circ}C \pm 5^{\circ}C$

Symbol	Parameter	Min	Max	Units
T _{PC}	Program Cycle Time	12		μs
T _{AS}	Address Setup Time	1		μs
T _{AH}	Address Hold Time	1		μs
T _{DS}	Data Setup Time	1		μs
T _{DH}	Data Hold Time	1		μs
T _{PRT}	V _{PP} Pulse Rise Time	1		μs
T _{VPS}	V _{PP} Setup Time	1		μs
T _{VPH}	V _{PP} Hold Time	1		μs
T _{PWP}	CE# Program Pulse Width	10	15	μs
T _{PWE}	CE# Erase Pulse Width	100	500	ms
T _{VR}	A ₉ Recovery Time for Erase	1		μs
T _{ART}	A ₉ Rise Time to 12V during Erase	1		μs
T _{A9S}	A ₉ Setup Time during Erase	1		μs
T _{A9H}	A ₉ Hold Time during Erase	1		μs

324 PGM T10.5

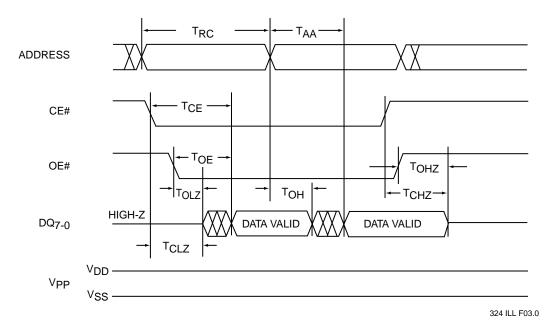


FIGURE 3: READ CYCLE TIMING DIAGRAM

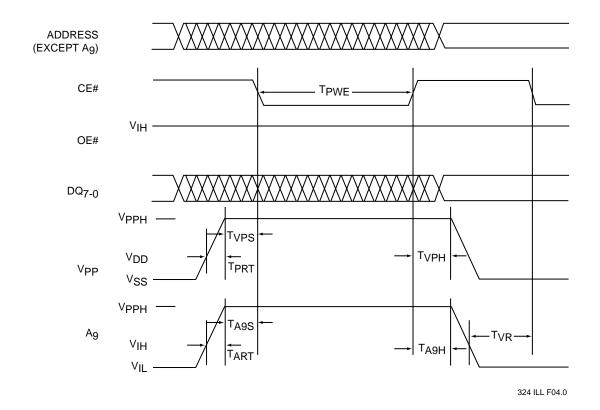


FIGURE 4: ERASE TIMING DIAGRAM

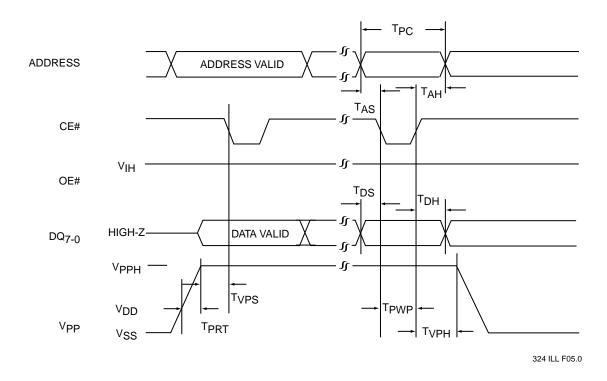


FIGURE 5: PROGRAM TIMING DIAGRAM

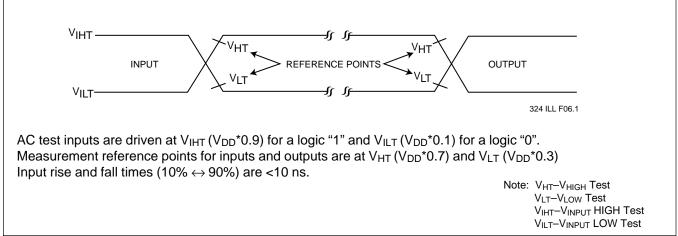


FIGURE 6: AC INPUT/OUTPUT REFERENCE WAVEFORMS

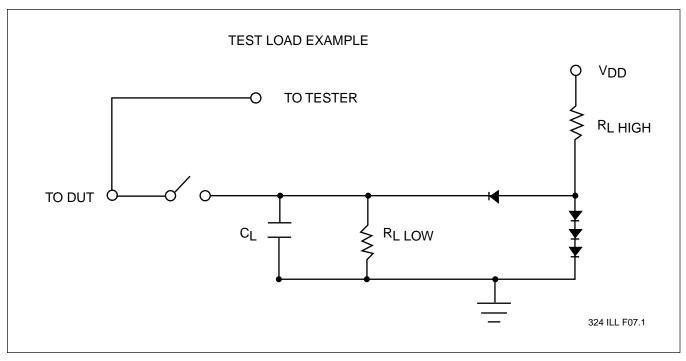


FIGURE 7: A TEST LOAD EXAMPLE

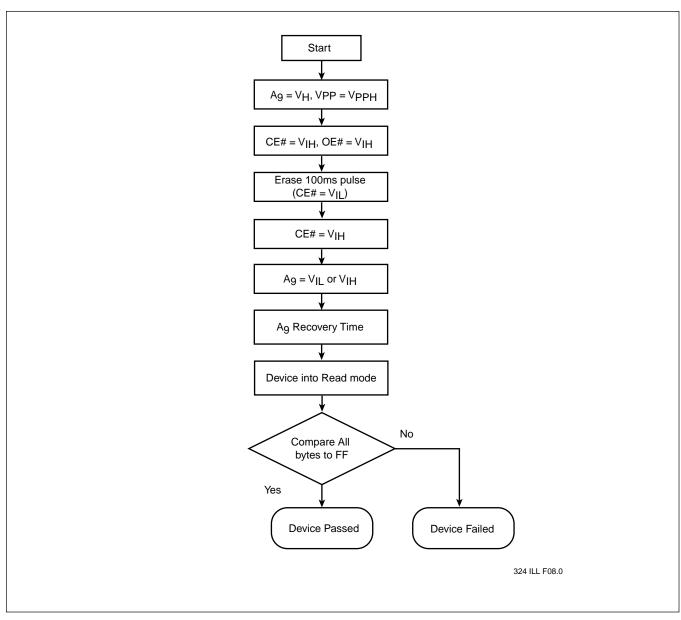


FIGURE 8: ERASE ALGORITHM

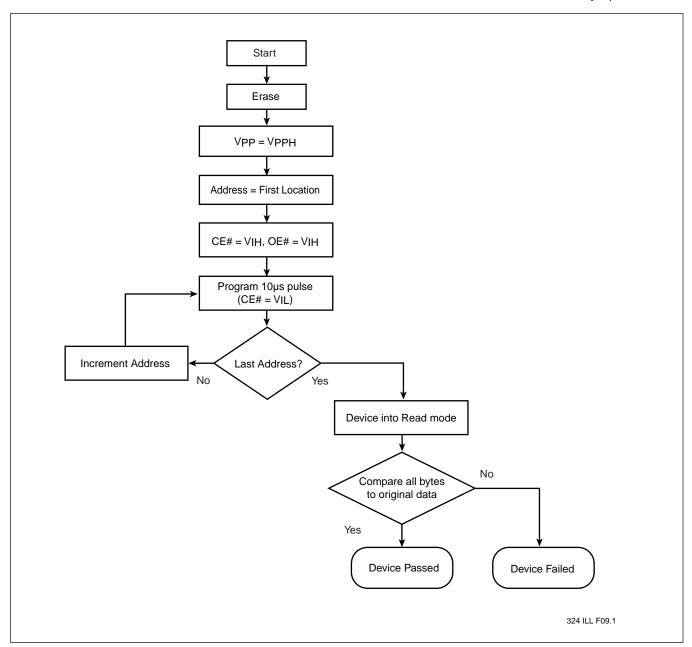
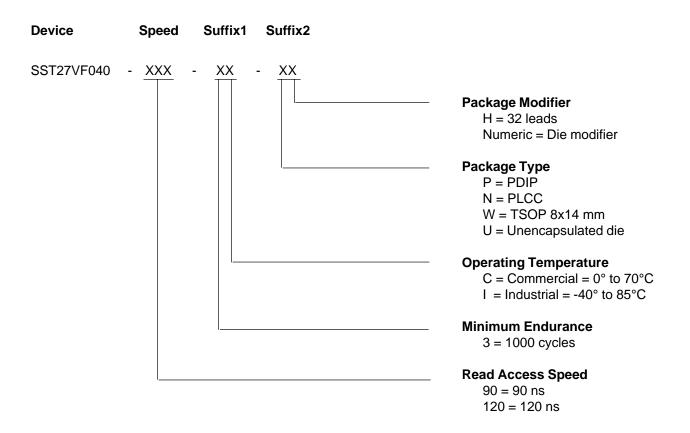
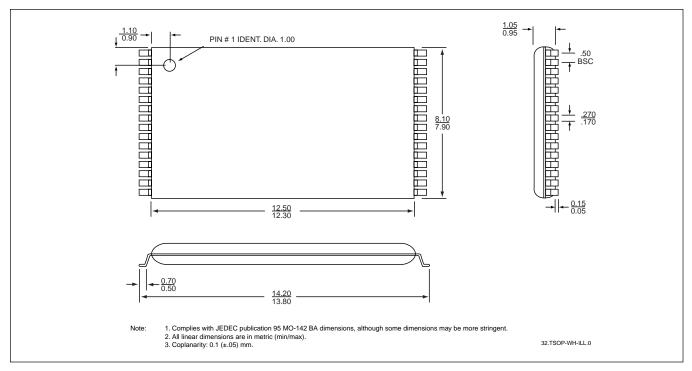



FIGURE 9: PROGRAMMING ALGORITHM

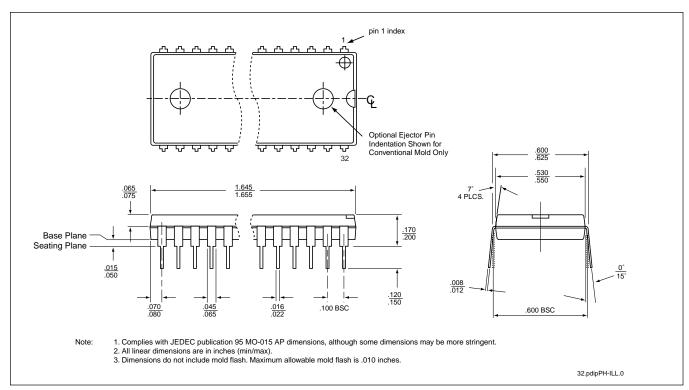
Preliminary Specifications

PRODUCT ORDERING INFORMATION


Valid combinations

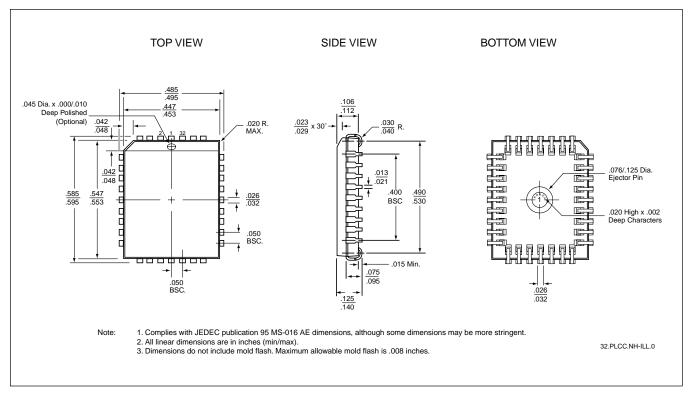
SST27VF040-90-3C-WH SST27VF040-90-3I-WH	SST27VF040-90-3C-NH SST27VF040-90-3I-NH	SST27VF040-90-3C-PH
SST27VF040-120-3C-WH SST27VF040-120-3I-WH	SST27VF040-120-3C-NH SST27VF040-120-3I-NH	SST27VF040-120-3C-PH

Example: Valid combinations are those products in mass production or will be in mass production. Consult your SST sales representative to confirm availability of valid combinations and to determine availability of new combinations.


Preliminary Specifications

PACKAGING DIAGRAMS

32-LEAD THIN SMALL OUTLINE PACKAGE (TSOP)


SST PACKAGE CODE: WH

32-LEAD PLASTIC DUAL-IN-LINE PACKAGE (PDIP)
SST PACKAGE CODE: PH

Preliminary Specifications

32-LEAD PLASTIC LEAD CHIP CARRIER (PLCC)

SST PACKAGE CODE: NH