TOSHIBA

TOSHIBA PHOTOINTERRUPTER INFRARED LED + PHOTO IC

TLP1029

PRINTER, ELECTRONIC TYPEWRITER

COPYING MACHINE, FACSIMILE

TRACK BALL

VARIOUS POSITION DETECTION

TLP1029 is a digital output photointerrupter with a GaAs infrared LED and a high sensitive and high gain Si photo IC combined. This photointerrupter has a switching time shorter than the phototransistor output and is capable of high speed position detection.

Further because of large output current and a built-in Schmitt trigger circuit, this photonterrupter is connectable directly to a microcomputer or logic IC.

Its output becomes low level when the light is shielded.

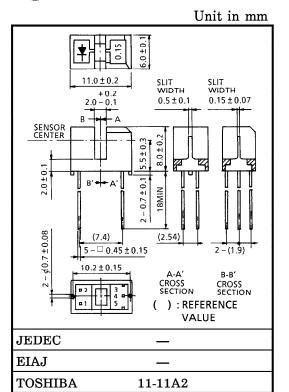
Printing wiring board direct mounting type

Gap : 2mm

: Slit width 0.5mm (LED side), High resolution

0.15mm (detector side)

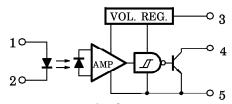
Digital output (open collector)


Threshold input current: IFHL=6mA (Max.) at

 $Ta = 25^{\circ}C$

Supply voltage $V_{CC} = 4.5 \sim 17V$

Switching time : $t_{DLH} = 6\mu s$, $t_{DHL} = 3\mu s$ (Typ.)


Detector side is of visible light cut type.

TLP1029

Weight: 0.6g (Typ.)

PIN CONNECTION

- 1. ANODE
- 2. CATHODE
- 3. VCC
- 4. OUT
- 5. GND

961001EBC2

- TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

 Gallium arsenide (GaAs) is a substance used in the products described in this document. GaAs dust and fumes are toxic. Do not break, cut or pulverize the product, or use chemicals to dissolve them. When disposing of the products, follow the appropriate regulations. Do not dispose of the products with other industrial waste or with domestic garbage.

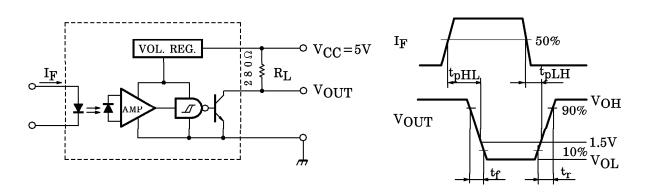
 The products described in this document are subject to foreign exchange and foreign trade control laws.

 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of TOSHIBA CORPORATION or others.

MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC		SYMBOL	RATING	UNIT	
	Forward Current	$I_{\mathbf{F}}$	50	mA	
LED	Forward Current Derating (Ta>25°C)	$\Delta I_{\mathbf{F}} / {^{\circ}\mathbf{C}}$	-0.33	mA/°C	
	Reverse Voltage	$v_{ m R}$	5	V	
	Supply Voltage	v_{CC}	17	V	
OR	Output Voltage	v_{O}	30	V	
DETECTOR	Output Current	IO	50	mA	
TE	Power Dissipation	PO	250	mW	
DE	Power Dissipation Derating (Ta>25°C)	△PO/°C	-3.33	mW/°C	
Operating Temperature Range		${ m T_{opr}}$	-25~85	°C	
Storage Temperature Range		$\mathrm{T_{stg}}$	-40~100	°C	
So	ldering Temperature (5s)	T_{sol}	260	°C	

RECOMMENDED OPERATING CONDITIONS


CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
LED Forward Current	$I_{\mathbf{F}}$	21*	_	25	mA
Supply Voltage	v_{CC}	4.5	5.0	17	V
Output Voltage	$v_{\mathbf{O}}$		5.0	24	V
Low Level Output Current	$I_{ m OL}$	_	_	16	mA
Operating Temperature	T_{opr}	-25	_	85	$^{\circ}\mathrm{C}$

^{*} 21mA is a value when 50% LED deterioration is taken into consideration. Initial threshold input current shall be 10.5mA MAX.

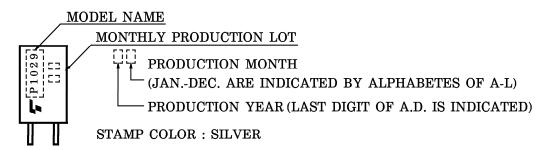
ELECTRICAL CHARACTERISTICS (Unless Otherwise Specified, $Ta = -25 \sim 85$ °C, $V_{CC} = 5V \pm 10\%$)

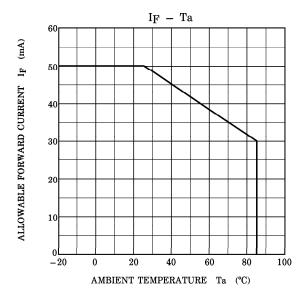
CHARACTERISTIC		SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT	
LED	Forward Current	$V_{\mathbf{F}}$	I _F =10mA, Ta=25°C	1.00	1.15	1.30	V	
	Reverse Current	$I_{\mathbf{R}}$	$V_R=5V$, $Ta=25$ °C	_	_	10	μ A	
	Peak Emitter Wavelength	$\lambda_{\mathbf{P}}$	I _F =15mA, Ta=25°C	_	940	_	nm	
DETECTOR	Low Lovel Supply Cumon	ICCL	I _F =15mA	_	_	5.0	mA	
	Low Level Supply Curren		$I_F=15mA, V_{CC}=17V$		_	5.2		
	High Level Supply	ICCH	$I_{\mathbf{F}} = 0$	_	_	3.0	mA	
	Current		$I_F=0, V_{CC}=17V$	_		3.2		
	I am I am I on to the many to the many	Level Output Voltage VOL	I _{OL} =16mA, I _F =15mA Ta=25°C	_	0.07	0.3	· V	
	Low Level Output Voltage		I _{OL} =16mA, I _F =15mA V _{CC} =17V	_	_	0.4		
	High Level Output Current	IOH	$I_{F}=0, V_{O}=30V$	_	_	15	μ A	
	Peak Sensitivity Wavelength	$\lambda_{\mathbf{P}}$	Ta=25°C		900		nm	
	Threshold Input Current	$I_{ m FHL}$	Ta=25°C		_	6		
COUPLED	(H→L)		$V_{CC} = 17V$		_	10.5	mA	
	Hysteresis Ratio	I _{FHL} /I _{FLH}		_	1.5	_	_	
	Propagation L→H	$ m t_{pLH}$		_	6	_		
	Delay Time H→L	$ m t_{pHL}$	$V_{CC}=5V$, $I_F=15mA$ (Note)	_	3	_	μ s	
	Rise Time	t_r	$R_L=280\Omega$, $Ta=25^{\circ}C$	_	0.1	_]	
	Fall Time	t_f		_	0.05	_		

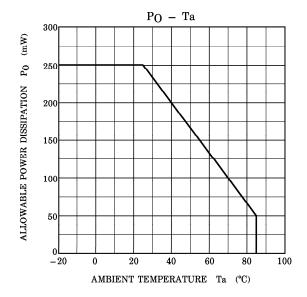
NOTE: SWITCHING TIME TEST CIRCUIT

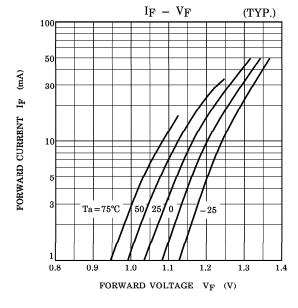
PRECAUTION

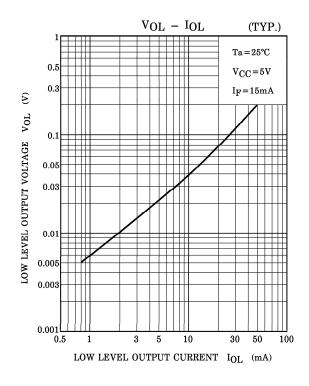
Please be careful of the followings.

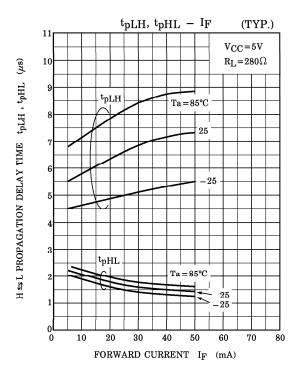

- 1. Soldering should be performed after lead forming.
- 2. If chemicals are used for cleaning, the soldered surface only shall be cleaned with chemicals avoiding the whole cleaning of the package.
- 3. The container is made of polycarbonate. Polycarbonate is usually stable with acid, alcohol, and aliphatic hydrocarbons however, with pertochemicals (such as benzene, toluene, and acetone), alkali, aromatic hydrocarbons, or chloric hydrocarbons, polycarbonate becomes cracked, swollen, or melted. Please take care when chosing a packaging material by referencing the table below.

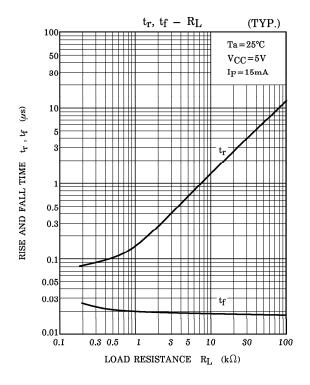

<Chemicals to avoid with polycarbonate>

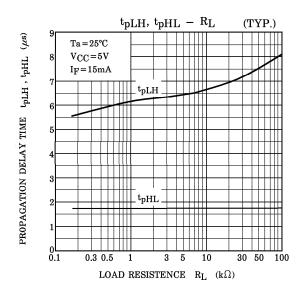

	PHENOMENON	CHEMICALS	
Α	Little deterioration but staining	nitric acid (low concentration), hydrogen peroxide, chlorine	
В	Cracked, crazed, or swollen	 acetic acid (70% or more) gasoline methyl ethyl ketone, ehtyl acetate, butyl acetate ethyl methacrylate, ethyl ether, MEK acetone, m-amino alcohol, carbon tetrachloride carbon disulfide, trichloroethylene, cresol thinners, oil of turpentine triethanolamine, TCP, TBP 	
С	Melted { }: Used as solvent.	 concentrated sulfuric acid benzene styrene, acrylonitrile, vinyl acetate ethylenediamine, diethylenediamine chloroform, methyl chloride, tetrachloromethane, dioxane 1, 2-dichloroethane 	
D	Decomposed	ammonia water other alkali	

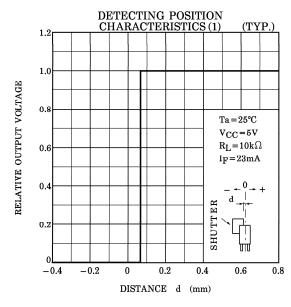

- 4. During $100\mu s$ after turning on VCC, output voltage changes for stabilizing the inner circuit.
- 5. Supply the by-pass condenser up to $0.01\mu\mathrm{F}$ betweeen VCC and GND near device to stabilize the power supply line.

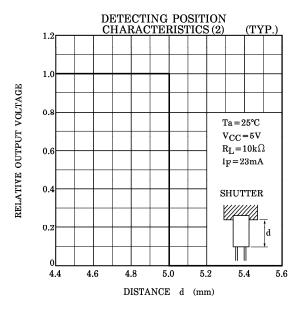

PRODUCT INDICATION

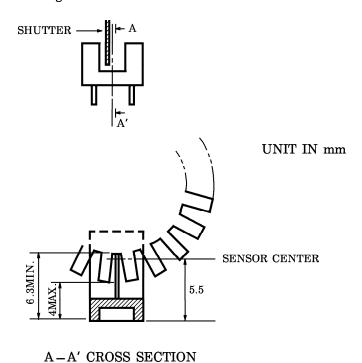












POSITIONING OF SHUTTER AND DEVICE

To operate correctly, make sure that the shutter and the device are positioned as shown in the figure below.

The shit pitch of the shutter must be set wider than the slit width of the device.

Determine the width taking the switching time into consideration.

