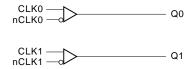
ICS830231

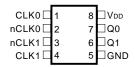
DUAL, 1-TO-1

DIFFERENTIAL-TO-LVCMOS TRANSLATOR BUFFER

GENERAL DESCRIPTION


The ICS83023I is a dual, 1-to-1 Differential-to-LVCMOS Translator/Fanout Buffer and a member of the HiPerClockS[™] family of High Performance Clock Solutions from ICS. The differential inputs can accept most differential signal types (LVDS,

LVHSTL, LVPECL, SSTL, and HCSL) and translate into two single-ended LVCMOS outputs. The small 8-lead SOIC footprint makes this device ideal for use in applications with limited board space.


Features

- 2 LVCMOS / LVTTL outputs
- · 2 differential CLKx, nCLKx input pairs
- CLK, nCLK pairs can accept the following differential input levels: LVDS, LVPECL, LVHSTL, SSTL, HCSL
- Maximum output frequency: 350MHz (typical)
- Output skew: 60ps (maximum)
- Part-to-part skew: 500ps (maximum)
- Small 8 lead SOIC package saves board space
- 3.3V operating supply
- -40°C to 85°C ambient operating temperature
- Pin-to-pin compatible with MC100EPT23

BLOCK DIAGRAM

PIN ASSIGNMENT

ICS83023I 8-Lead SOIC

3.8mm x 4.8mm, x 1.47mm package body

M Package

Top View

ICS83023I

Dual, 1-to-1 Differential-to-LVCMOS Translator/Buffer

TABLE 1. PIN DESCRIPTIONS

Number	Name	Ту	/ре	Description
1	CLK0	Input	Pulldown	Non-inverting differential clock input.
2	nCLK0	Input	Pullup	Inverting differential clock input.
3	nCLK1	Input	Pullup	Inverting differential clock input.
4	CLK1	Input	Pulldown	Non-inverting differential clock input.
5	GND	Power		Power supply ground.
6	Q1	Output		Single clock output. LVCMOS / LVTTL interface levels.
7	Q0	Output		Single clock output. LVCMOS / LVTTL interface levels.
8	V _{DD}	Power		Positive supply pin.

NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

TABLE 2. PIN CHARACTERISTICS

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance				4	pF
C _{PD}	Power Dissipation Capacitance (per output)	V _{DD} = 3.6V		23		pF
R _{PULLUP}	Input Pullup Resistor			51		ΚΩ
R _{PULLDOWN}	Input Pulldown Resistor			51		ΚΩ
R _{out}	Output Impedance			7		Ω

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V_{DD} 4.6V

 $\begin{array}{ll} \text{Inputs, V}_{\text{I}} & -0.5\text{V to V}_{\text{DD}} + 0.5\text{V} \\ \text{Outputs, V}_{\text{O}} & -0.5\text{V to V}_{\text{DD}} + 0.5\text{V} \\ \text{Package Thermal Impedance, } \theta_{\text{JA}} & 112.7^{\circ}\text{C/W (0 lfpm)} \\ \text{Storage Temperature, T}_{\text{STG}} & -65^{\circ}\text{C to } 150^{\circ}\text{C} \\ \end{array}$

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Table 3A. Power Supply DC Characteristics, $V_{DD} = 3.3V \pm 0.3V$, Ta = -40°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Positive Supply Voltage		3.0	3.3	3.6	V
I _{DD}	Positive Supply Current				20	mA

Table 3B. LVCMOS / LVTTL DC Characteristics, $V_{DD} = 3.3V \pm 0.3V$, TA = -40°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{OH}	Output High Voltage; NOTE 1		2.6			٧
V _{OL}	Output Low Voltage; NOTE 1				0.5	V

NOTE 1: Outputs terminated with 50Ω to $V_{DD}/2$. See Parameter Measurement Section, 3.3V Output Load Test Circuit.

Table 3C. Differential DC Characteristics, $V_{DD} = 3.3V \pm 0.3V$, $T_A = -40$ °C to 85°C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
	Input High Current	nCLK0, nCLK1	$V_{IN} = V_{DD} = 3.6V$			5	μA
I'IH	Input High Current	CLK0, CLK1	$V_{IN} = V_{DD} = 3.6V$			150	μA
	Innut Low Current	nCLK0, nCLK1	$V_{IN} = 0V, V_{DD} = 3.6V$	-150			μA
I _{IL}	Input Low Current	CLK0, CLK1	$V_{IN} = 0V, V_{DD} = 3.6V$	-5			μA
V _{PP}	Peak-to-Peak Input Voltage			0.15		1.3	V
V _{CMR}	Common Mode Input Voltage; NOTE 1, 2			GND + 0.5		V _{DD} - 0.85	V

NOTE 1: For single-ended applications, the maximum input voltage for CLKx, nCLKx is V_{DD} + 0.3V.

NOTE 2: Common mode voltage is defined as $V_{\rm in}$.

ICS830231

DUAL, **1-TO-1**

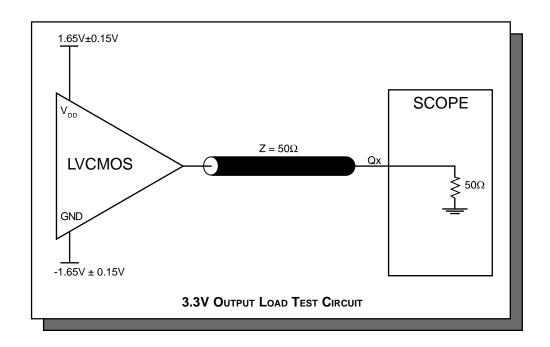
DIFFERENTIAL-TO-LVCMOS TRANSLATOR / BUFFER

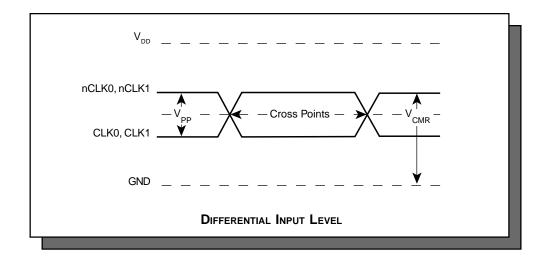
Table 4. AC Characteristics, $V_{DD} = 3.3V \pm 0.3V$, $T_A = -40$ °C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f _{MAX}	Maximum Output Frequency			350		MHz
t _{PD}	Propagation Delay; NOTE 1		1.8	2.1	2.4	ns
tsk(o)	Output Skew; NOTE 2, 4				60	ps
tsk(pp)	Part-to-Part Skew; NOTE 3, 4				500	ps
t _R	Output Rise Time	0.8V to 2V	100	250	400	ps
t _F	Output Fall Time	0.8V to 2V	100	250	400	ps
odo	Output Duty Cyclo	f ≤ 166MHz	45	50	55	%
odc	Output Duty Cycle	f > 166MHz	43	50	57	%

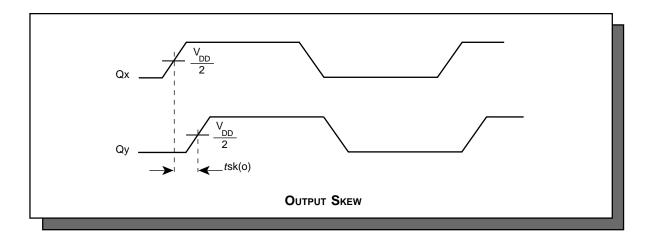
All parameters measured at f_{MAX} unless noted otherwise. See Parameter Measurement Information. NOTE 1: Measured from the differential input crossing point to $V_{DD}/2$ of the output.

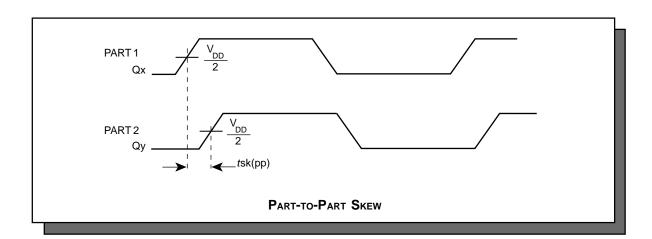
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.

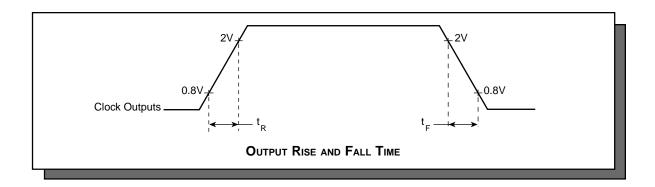

Measured at $V_{DD}/2$. Input clocks are phase aligned.

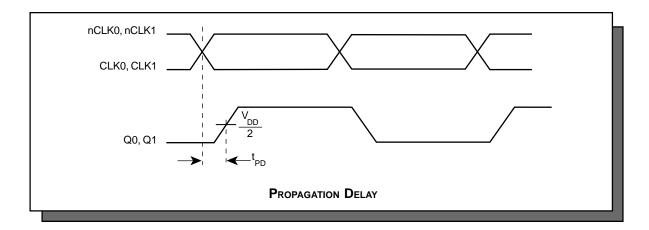

NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at $V_{DD}/2$.

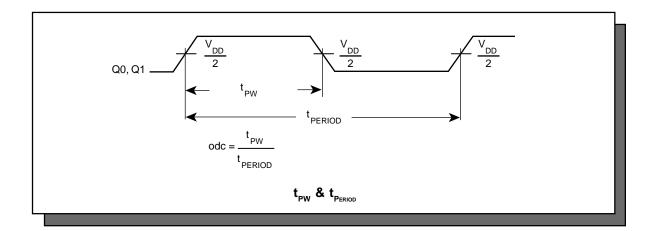
NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.



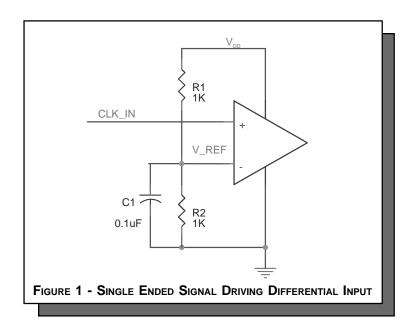

PARAMETER MEASUREMENT INFORMATION




Dual, 1-to-1 Differential-to-LVCMOS Translator/Buffer



Dual, 1-to-1 Differential-to-LVCMOS Translator/Buffer



APPLICATION INFORMATION

WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS

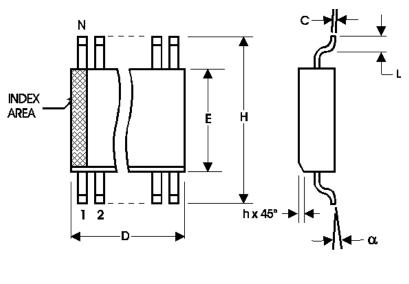
Figure 1 shows how the differential input can be wired to accept single ended levels. The reference voltage $V_REF = V_{DD}/2$ is generated by the bias resistors R1, R2 and C1. This bias circuit should be located as close as possible to the input pin. The ratio of R1 and R2 might need to be adjusted to position the V_REF in the center of the input voltage swing. For example, if the input clock swing is only 2.5V and $V_{DD} = 3.3V$, V_REF should be 1.25V and R2/R1 = 0.609.

RELIABILITY INFORMATION

Table 5. $\theta_{\text{JA}} \text{vs. A} \text{ir Flow Table}$

$\boldsymbol{\theta}_{\text{JA}}$ by Velocity (Linear Feet per Minute)

	0	200	500
Single-Layer PCB, JEDEC Standard Test Boards	153.3°C/W	128.5°C/W	115.5°C/W
Multi-Layer PCB, JEDEC Standard Test Boards	112.7°C/W	103.3°C/W	97.1°C/W


NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.

TRANSISTOR COUNT

The transistor count for ICS83023I is: 416

PACKAGE OUTLINE - SUFFIX M

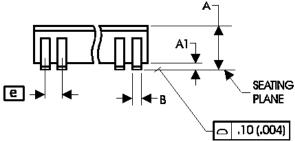


TABLE 6. PACKAGE DIMENSIONS

SYMBOL	Millin	neters
STWIBOL	MINIMUN	MAXIMUM
N	8	8
А	1.35	1.75
A1	0.10	0.25
В	0.33	0.51
С	0.19	0.25
D	4.80	5.00
E	3.80	4.00
е	1.27 [BASIC
Н	5.80	6.20
h	0.25	0.50
L	0.40	1.27
α	0°	8°

Reference Document: JEDEC Publication 95, MS-012

ICS83023I

Dual, 1-to-1 Differential-to-LVCMOS Translator/Buffer

TABLE 7. ORDERING INFORMATION

Part/Order Number	Marking	Package	Count	Temperature
ICS83023AMI	83023AMI	8 lead SOIC	96 per tube	-40°C to 85°C
ICS83023AMIT	83023AMI	8 lead SOIC on Tape and Reel	2500	-40°C to 85°C

While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and industrial applications. Any other applications such as those requiring high reliability, or other extraordinary environmental requirements are not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for use in life support devices or critical medical instruments.

ICS83023I Dual, 1-to-1 Differential-to-LVCMOS Translator/Buffer

REVISION HISTORY SHEET					
Rev	Table	Page	Description of Change	Date	
Α	7	11	Ordering Information Table - corrected Part/Order Number for Tape & Reel to read ICS83023AMIT from ICS83023AMI.	09/09/02	