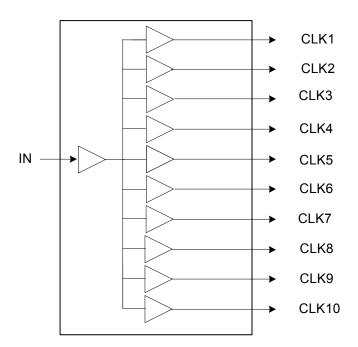


MK3807-01 Buffer/Clock Driver


Description

The MK3807-01 is a low skew 3.3V, 1 to 10 fanout buffer. The large fanout from a single input line reduces loading on the input clock. The TTL level outputs reduce noise levels on the part. Typical applications are clock and signal distribution.

Features

- Packaged in 20 pin SOIC/SSOP (3.3V)
- · One to ten fanout Buffer
- Maximum skew between outputs of same package 0.35ns
- Maximum skew between outputs of different packages 0.75ns
- Max propagation delay of 3.8ns
- Operating voltage of 3.3V
- · Advanced, low power, CMOS process
- Industrial temp range -40° C to +85° C
- · Hysteresis on all inputs

Block Diagram

Pin Assignment

			1	
IN	1	20		VDD
GND	2	19		CLK10
CLK1	3	18		CLK9
VDD	4	17		GND
CLK2	5	16		CLK8
GND	6	15		VDD
CLK3	7	14		CLK7
VDD	8	13		GND
CLK4	9	12		CLK6
GND	10	11		CLK5

20 pin (150 mil) SSOP

Pin Descriptions

Pin Number	Pin Name	Pin Type	Pin Description
1	IN	Input	Clock input.
2	GND	Power	Connect to ground.
3	CLK1	Output	Clock output.
4	VDD	Power	Connect to +3.3V
5	CLK2	Output	Clock output.
6	GND	Power	Connect to ground.
7	CLK3	Output	Clock output.
8	VDD	Power	Connect to +3.3V
9	CLK4	Output	Clock output.
10	GND	Power	Connect to ground.
11	CLK5	Output	Clock output.
12	CLK6	Output	Clock output.
13	GND	Power	Connect to ground.
14	CLK7	Output	Clock output.
15	VDD	Power	Connect to +3.3V
16	CLK8	Output	Clock output.
17	GND	Power	Connect to ground.
18	CLK9	Output	Clock output.
19	CLK10	Output	Clock output.
20	VDD	Power	Connect to +3.3V

External Components

The MK3807-01 requires a minimum number of external components for proper operation.

Decoupling Capacitors

Decoupling capacitors of $0.01\mu F$ must be connected between VDD and GND, as close to these pins as possible. For optimum device performance, the decoupling capacitors should be mounted on the component side of the PCB. Avoid the use of vias in the decoupling circuit.

Series Termination Resistor

When the PCB trace between the clock outputs and the loads are over 1 inch, series termination should be used. To series terminate a 50Ω trace (a commonly used trace impedance) place a 33Ω resistor in series

with the clock line, as close to the clock output pin as possible. The nominal impedance of the clock output is 20Ω .

PCB Layout Recommendations

For optimum device performance and lowest output phase noise, the following guidelines should be observed.

- 1) The $0.01\mu F$ decoupling capacitors should be mounted on the component side of the board as close to the VDD pins as possible. No vias should be used between the decoupling capacitors and VDD pins. The PCB trace to VDD pin should be kept as short as possible, as should the PCB trace to the ground via.
- 2) To minimize EMI, the 33Ω series termination resistor (if needed) should be placed close to the clock output.

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the MK3807-01. These ratings, which are standard values for ICS commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

Item	Rating
Supply Voltage, VDD	7V
All Inputs and Outputs	-0.5V to VDD+0.5V
Ambient Operating Temperature	-40 to +85°C
Storage Temperature	-65 to +150°C
Junction Temperature	175°C
Soldering Temperature	260°C

Recommended Operation Conditions

Parameter	Min.	Тур.	Max.	Units
Ambient Operating Temperature	-40		+85	°C
Power Supply Voltage (measured in respect to GND)	+3.135	+3.3	+3.465	V

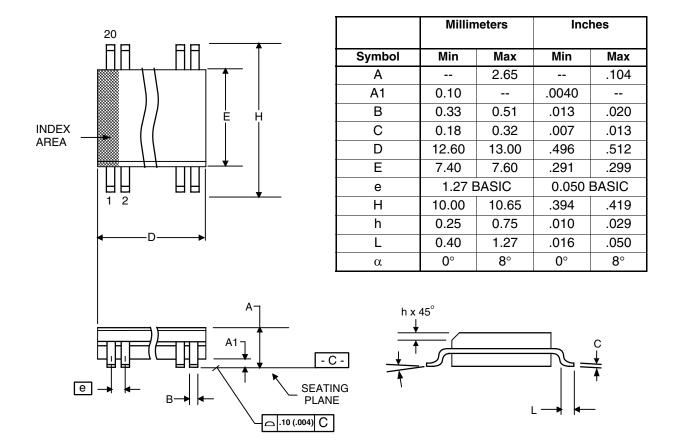
DC Electrical Characteristics

Unless stated otherwise, VDD = 3.3V $\pm 5\%$, Ambient Temperature -40° C to +85° C

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Operating Voltage	VDD		3.135	3.3	3.465	V
Quiescent Power Supply Current	ICC	VCC=Max VIN=GND or VCC		3	30	uA
Quiescent Power Supply Current	ICC	VCC=Max VIN=@TTL HIGH (VCC-0.6V)		2.0	300	uA
Input High Voltage	V _{IH}	High Level Input pins	2		5.5	V
Input Low Voltage	V _{IL}	Low Level Input pins	-0.5		0.8	V
Output High Voltage	V _{OH}	VCC=min VIN=VIH or VIL I _{OH} = -0.1mA, I _{OH} = -8mA	VDD-0.2 2.4	3.0		V
Output Low Voltage	V _{OL}	VCC=min VIN=VIH or VIL I _{OL} = -0.1mA, Io _L =16ma Io _L =24ma			0.2 0.4 0.5	V
Short Circuit Current	I _{OS}	VCC=mAX, V _{OUT} =GND	-60	-135	-240	mA
Input Capacitance	CIN	VIN=0V, Note1		5	6.0	pF
Output Capacitance	COUT	V _{OUT} =0V, Note1		5.5	8.0	pF
Input Hysteresis	VH			150		mV

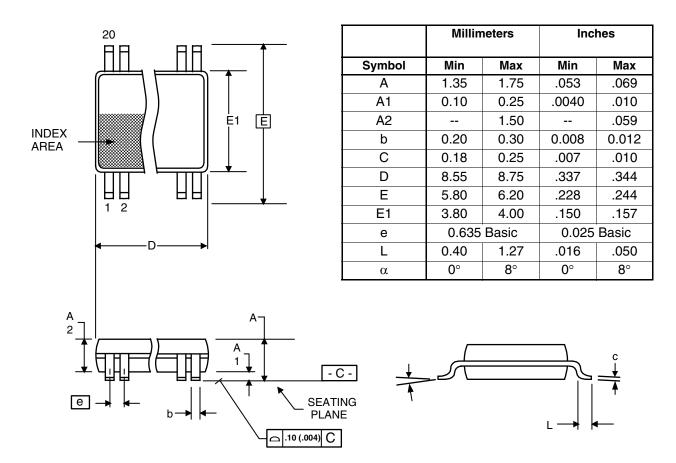
Note1: This parameter is not tested.

AC Electrical Characteristics


Unless stated otherwise, VDD = 3.3V $\pm 5\%$, Ambient Temperature -40° C to +85° C

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Skew between outputs of same package	tsk ₉₌₍₀₎	CL=50pF, RL=500Ω			0.35	ns
Skew between opposite transitions of same output	tsk _(p)	CL=50pF, RL=500Ω			0.35	ns
Propagation Delay IN to ON	tpLH/tpHL	CL=50pF, RL=500Ω	1.5		3.8	ns
Skew between outputs of different package at same power supply, temperature and speed grade	tsk _(t)	CL=50pF, RL=500Ω			0.75	ns
Output Rise Time 0.8V to 2.0V	tr _(o)	CL=50pF, RL=500Ω			1.5	ns
Output Fall Time 2.0V to 0.8V	tf _(o)	CL=50pF, RL=500Ω			1.5	ns
Duty Cycle Measured at VDD/2	DC	CL=50pF, RL=500Ω	45		55	%
Test Frequency			1		100	MHz

Package Outline and Package Dimensions (20 pin SOIC, 300Mil. Body)


Package dimensions are kept current with JEDEC Publication No. 95

Package Outline and Package Dimensions (20 pin SSOP, 150Mil. Body)

Package dimensions are kept current with JEDEC Publication No. 95

Ordering Information

Part / Order Number	Marking	packaging	Package	Temperature
MK3807-01SI	MK3807-01SI	Tubes	20 pin SOIC	-40 to +85° C
MK3807-01SIT	MK3807-01SI	Tape and Reel	20 pin SOIC	-40 to +85° C
MK3807-01RI	MK3807-01RI	Tubes	20 pin SSOP	-40 to +85° C
MK3807-01RIT	MK3807-01RI	Tape and Reel	20 pin SSOP	-40 to +85° C

While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems (ICS) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for use in life support devices or critical medical instruments.

MDS 3807-01 A 7 Revision 070903