

# SPICE Device Model Si3447DV

### **Vishay Siliconix**

### P-Channel 1.8V (G-S) MOSFET

#### **CHARACTERISTICS**

- P-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS

- Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

#### **DESCRIPTION**

The attached spice model describes the typical electrical characteristics of the p-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125°C temperature ranges under the pulsed 0-V to 5-V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched  $C_{gd}$  model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

#### SUBCIRCUIT MODEL SCHEMATIC



This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

### **SPICE Device Model Si3447DV**

# **Vishay Siliconix**



| SPECIFICATIONS (T <sub>J</sub> = 25°C UNLESS OTHERWISE NOTED) |                     |                                                                                                                         |         |      |
|---------------------------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------|---------|------|
| Parameter                                                     | Symbol              | Test Condition                                                                                                          | Typical | Unit |
| Static                                                        |                     |                                                                                                                         |         |      |
| Gate Threshold Voltage                                        | $V_{GS(th)}$        | $V_{DS} = V_{GS}, I_{D} = -250 \mu A$                                                                                   | 0.82    | V    |
| On-State Drain Current <sup>a</sup>                           | I <sub>D(on)</sub>  | $V_{DS} \geq -5 \ V, \ V_{GS}$ = $-4.5 \ V$                                                                             | 78      | А    |
| Drain-Source On-State Resistance <sup>a</sup>                 | r <sub>DS(on)</sub> | $V_{GS} = -4.5 \text{ V}, I_D = -5.2 \text{ A}$                                                                         | 0.037   |      |
|                                                               |                     | $V_{GS} = -2.5 \text{ V}, I_D = -4.4 \text{ A}$                                                                         | 0.055   | Ω    |
|                                                               |                     | $V_{GS} = -1.8 \text{ V}, I_D = -2.0 \text{ A}$                                                                         | 0.082   | 1    |
| Forward Transconductance <sup>a</sup>                         | 9fs                 | $V_{DS} = -10 \text{ V}, I_{D} = -5.2 \text{ A}$                                                                        | 14      | S    |
| Diode Forward Voltage <sup>a</sup>                            | $V_{SD}$            | $I_{S} = -1.7 \text{ A}, V_{GS} = 0 \text{ V}$                                                                          | 0.80    | V    |
| Dynamic <sup>b</sup>                                          |                     |                                                                                                                         | •       | •    |
| Total Gate Charge                                             | Qg                  | $V_{DS}$ = -6 V, $V_{GS}$ = -4.5 V, $I_{D}$ = -5.2 A                                                                    | 14      | nC   |
| Gate-Source Charge                                            | $Q_{gs}$            |                                                                                                                         | 3.5     |      |
| Gate-Drain Charge                                             | $Q_{gd}$            |                                                                                                                         | 2.5     |      |
| Turn-On Delay Time                                            | t <sub>d(on)</sub>  | $V_{DD} = -6~V,~R_L = 10~\Omega$ $I_D \cong -1~A,~V_{GEN} = -4.5~V,~R_G = 6~\Omega$ $I_F = -1.7~A,~di/dt = 100~A/\mu s$ | 59      | ns   |
| Rise Time                                                     | t <sub>r</sub>      |                                                                                                                         | 28      |      |
| Turn-Off Delay Time                                           | $t_{\text{d(off)}}$ |                                                                                                                         | 120     |      |
| Fall Time                                                     | t <sub>f</sub>      |                                                                                                                         | 21      |      |
| Source-Drain Reverse Recovery Time                            | t <sub>rr</sub>     |                                                                                                                         | 57      |      |

#### Notes

- a. Pulse test; pulse width  $\leq$  300  $\mu$ s, duty cycle  $\leq$  2%. b. Guaranteed by design, not subject to production testing.



## SPICE Device Model Si3447DV Vishay Siliconix

#### COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)













Note: Dots and squares represent measured data.