4194304-word × 1-bit High Speed CMOS Static RAM

HITACHI

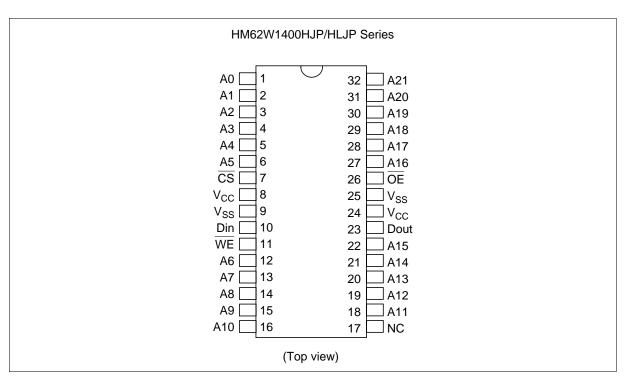
ADE-203-773 (Z) Preliminary Rev. 0.0 Apr. 28, 1997

Description

The HM62W1400H is an asyncronous high speed static RAM organized as 4-Mword \times 1-bit. It has realized high speed access time (10/12/15 ns) with employing 0.35 μm CMOS process and high speed circuit designing technology. It is most appropriate for the application which requires high speed and high density memory, such as cache and buffer memory in system. The HM62W1400H is packaged in 400-mil 32-pin SOJ for high density surface mounting.

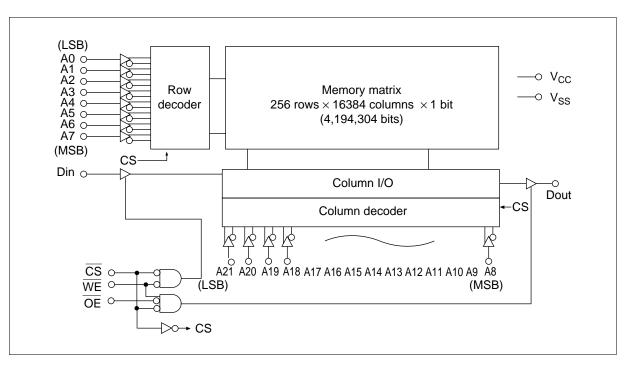
Features

- Single supply: $3.3 \text{ V} \pm 0.3 \text{ V}$
- Access time 10 ns/12 ns/15 ns (max)
- Completely static memory
 - No clock or timing strobe required
- Equal access and cycle times
- Directly TTL compatible
 - All inputs and outputs
- 400-mil 32-pin SOJ package
- Center V_{CC} and V_{SS} type pinout


Ordering Information

Type No.	Access time	Package
HM62W1400HJP-10	10 ns	400-mil 32-pin plastic SOJ (CP-32DB)
HM62W1400HJP-12	12 ns	
HM62W1400HJP-15	15 ns	
HM62W1400HLJP-10	10 ns	_
HM62W1400HLJP-12	12 ns	
HM62W1400HLJP-15	15 ns	

Preliminary: This document contains information on a new product. Specifications and information contained herein are subject to change without notice.


Pin Arrangement

Pin Description

Pin name	Function					
A0 to A21	Address input					
Din	Data input					
Dout	Data output					
CS	Chip select					
ŌĒ	Output enable					
WE	Write enable					
V _{cc}	Power supply					
V _{SS}	Ground					
NC	No connection					

Block Diagram

Function Table

CS	ŌĒ	WE	Mode	V _{cc} current	1/0	Ref. cycle
Н	×	×	Standby	I _{SB} , I _{SB1}	High-Z	_
L	Н	Н	Output disable	I _{cc}	High-Z	_
L	L	Н	Read	I _{cc}	Dout	Read cycle (1) to (3)
L	Н	L	Write	I _{cc}	Din	Write cycle (1)
L	L	L	Write	I _{cc}	Din	Write cycle (2)

Note: x: H or L

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Supply voltage relative to V _{SS}	V _{cc}	-0.5 to +4.6	V
Voltage on any pin relative to V _{ss}	V_{T}	-0.5^{*1} to $V_{\rm CC}$ +0.5	V
Power dissipation	P _T	1.0	W
Operating temperature	Topr	0 to +70	°C
Storage temperature	Tstg	−55 to +125	°C
Storage temperature under bias	Tbias	–10 to +85	°C

Notes: 1. V_T min = -2.5 V for pulse width (under shoot) \leq 10 ns

Recommended DC Operating Conditions ($Ta = 0 \text{ to } +70^{\circ}\text{C}$)

Parameter	Symbol	Min	Тур	Max	Unit
Supply voltage	V _{CC} *2	3.0	3.3	3.6	V
	V _{SS} *3	0	0	0	V
Input voltage	V _{IH}	2.2	_	V _{cc} + 0.3	V
	V _{IL}	-0.3* ¹	_	0.8	V

Notes: 1. $V_{IL} min = -2.0 \text{ V}$ for pulse width (under shoot) $\leq 10 \text{ ns}$

- 2. The supply voltage with all $V_{\text{\tiny CC}}$ pins must be on the same level.
- 3. The supply voltage with all $V_{\rm ss}$ pins must be on the same level.

DC Characteristics (Ta = 0 to +70°C, V_{CC} = 3.3 V \pm 0.3 V, V_{SS} = 0V)

Parameter		Symbol	Min	Typ*1	Max	Unit	Test conditions
Input leakage current		II _{LI} I	_	_	2	μΑ	Vin = V _{ss} to V _{cc}
Output leakage current		II _{LO} I	_	_	2	μΑ	Vin = V _{ss} to V _{cc}
Operation power supply current	10 ns cycle	I _{cc}	_	_	240	mA	$\overline{\text{CS}} = \text{V}_{\text{IL}}, \text{ lout} = 0 \text{ mA}$ Other inputs = $\text{V}_{\text{IH}}/\text{V}_{\text{IL}}$
	12 ns cycle	I _{CC}	_	_	200		
	15 ns cycle	I _{cc}	_	_	190		
Standby power supply current	10 ns cycle	I _{SB}	_	_	100	mA	CS = V _{IH} , Other inputs = V _{IH} /V _{IL}
	12 ns cycle	I _{SB}	_	_	100		
	15 ns cycle	I _{SB}	_	_	100		
		I _{SB1}	_	_	10	mA	$V_{CC} \ge \overline{CS} \ge V_{CC} - 0.2 \text{ V},$ (1) $0 \text{ V} \le \text{Vin} \le 0.2 \text{ V} \text{ or}$ (2) $V_{CC} \ge \text{Vin} \ge V_{CC} - 0.2 \text{ V}$
			*2	*2	0.5*2	_	
Output voltage		V _{OL}	_	_	0.4	V	I _{OL} = 8 mA
		V _{OH}	2.4	_	_	V	I _{OH} = -4 mA

Notes: 1. Typical values are at $V_{cc} = 3.3 \text{ V}$, $Ta = +25^{\circ}\text{C}$ and not guaranteed.

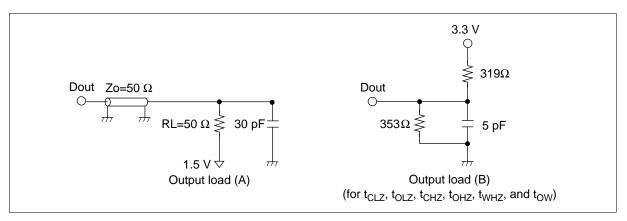
2. This characteristics is guaranteed only for L-version.

Capacitance (Ta = 25°C, f = 1.0 MHz)

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
Input capacitance*1	Cin	_	_	6	pF	Vin = 0 V
Input/output capacitance*1	C _{I/O}	_	_	8	pF	V _{I/O} = 0 V

Note: 1. This parameter is sampled and not 100% tested.

AC Characteristics (Ta = 0 to +70°C, V_{CC} = 3.3 V ± 0.3 V, unless otherwise noted.)


Test Conditions

• Input pulse levels: 3.0 V/0.0 V

• Input rise and fall time: 3 ns

• Input and output timing reference levels: 1.5V

• Output load: See figures (Including scope and jig)

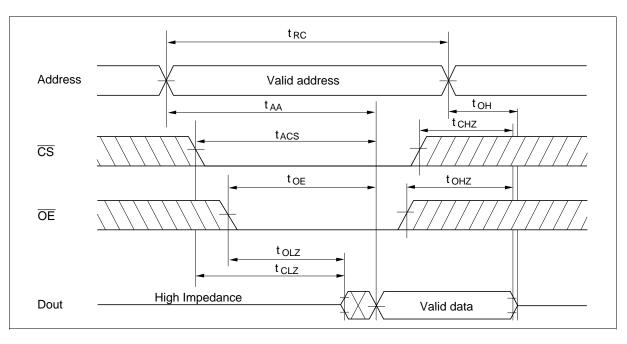
Read Cycle

HM62W1400I	۲
------------	---

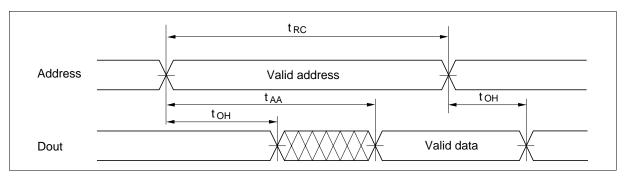
		-10		-12		-15			
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Read cycle time	t _{RC}	10	_	12	_	15	_	ns	
Address access time	t _{AA}	_	10	_	12	_	15	ns	_
Chip select access time	t _{ACS}	_	10	_	12	_	15	ns	_
Output enable to outpput valid	t _{OE}	_	5	_	6	_	8	ns	
Output hold from address change	t _{oh}	3	_	3	_	3	_	ns	
Chip select to output in low-Z	t _{CLZ}	3	_	3	_	3	_	ns	1
Output enable to output in low-Z	t _{OLZ}	0	_	0	_	0	_	ns	1
Chip deselect to output in high-Z	t _{CHZ}	_	5	_	6	_	8	ns	1
Output disable to output in high-Z	t _{OHZ}	_	5	_	6	_	8	ns	1

Write Cycle

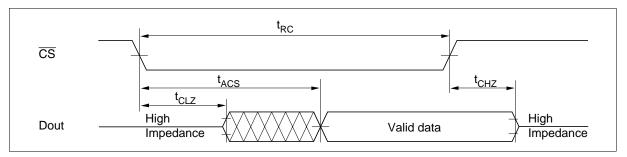
НΝ	162W	114	OOH

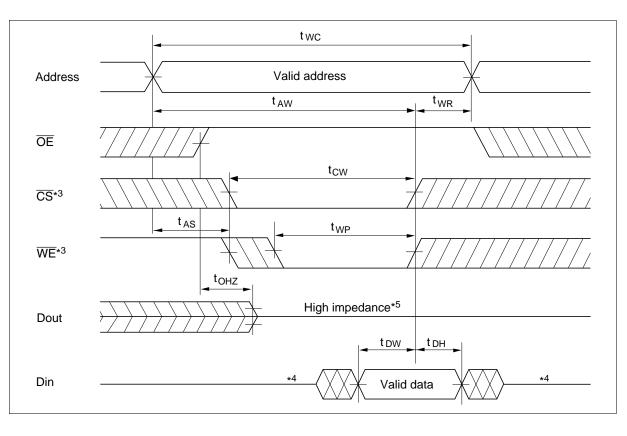

		-10		-12		-15			
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Write cycle time	t _{wc}	10	_	12	_	15	_	ns	
Address valid to end of write	t _{AW}	6	_	8	_	10	_	ns	
Chip select to end of write	t _{cw}	6	_	8	_	10	_	ns	9
Write pulse width	t _{wP}	6	_	8	_	10	_	ns	8
Address setup time	t _{AS}	0	_	0	_	0	_	ns	6
Write recovery time	t _{wR}	0	_	0	_	0	_	ns	7
Data to write time overlap	t _{DW}	5	_	6	_	8	_	ns	
Data hold from write time	t _{DH}	0	_	0	_	0	_	ns	
Write disable to output in low-Z	t _{ow}	3	_	3	_	3	_	ns	1
Output disable to output in high-Z	t _{OHZ}	_	5	_	6	_	8	ns	1
Write enable to output in high-Z	t _{wHZ}	_	5	_	6	_	8	ns	1

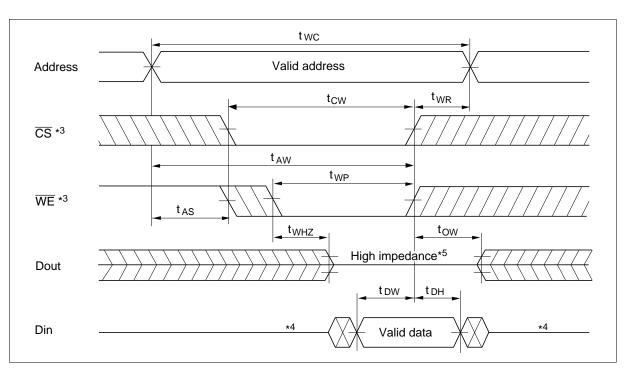
Note: 1. Transition is measured ±200 mV from steady voltage with Load (B). This parameter is sampled and not 100% tested.


- 2. Address should be valid prior to or coincident with $\overline{\text{CS}}$ transition low.
- 3. $\overline{\text{WE}}$ and/or $\overline{\text{CS}}$ must be high during address transition time.
- 4. if $\overline{\text{CS}}$ and $\overline{\text{OE}}$ are low during this period, I/O pins are in the output state. Then, the data input signals of opposite phase to the outputs must not be applied to them.
- 5. If the $\overline{\text{CS}}$ low transition occurs simultaneously with the $\overline{\text{WE}}$ low transition or after the $\overline{\text{WE}}$ transition, output remains a high impedance state.
- 6. t_{AS} is measured from the latest address transition to the later of \overline{CS} or \overline{WE} going low.
- 7. t_{WR} is measured from the earlier of \overline{CS} or \overline{WE} going high to the first address transition.
- 8. A write occurs during the overlap of a low \overline{CS} and a low \overline{WE} . A write begins at the latest transition among \overline{CS} going low and \overline{WE} going low. A write ends at the earliest transition among \overline{CS} going high and \overline{WE} going high. t_{WP} is measured from the beginning of write to the end of write.
- 9. t_{CW} is measured from the later of \overline{CS} going low to the end of write.

Timing Waveforms

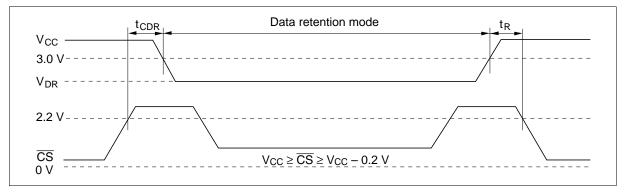

Read Timing Waveform (1) $(\overline{WE}=V_{IH})$


Read Timing Waveform (2) $(\overline{WE}=V_{IH},\overline{CS}=V_{IL},\overline{OE}=V_{IL})$


Read Timing Waveform (3) $(\overline{WE}=V_{IH},\overline{CS}=V_{IL},\overline{OE}=V_{IL})^{*2}$

Write Timing Waveform (1) (WE Controlled)

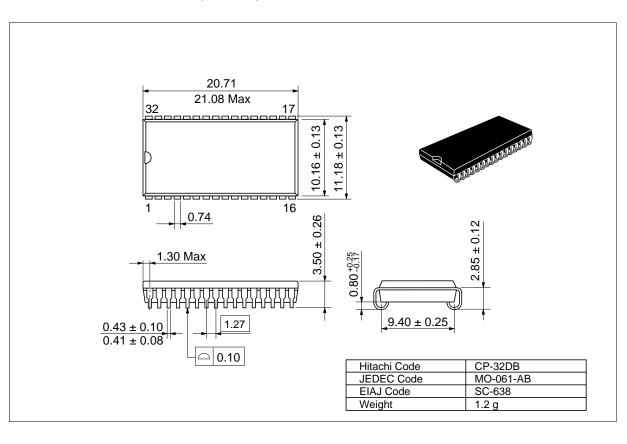
Write Timing Waveform (2) (\overline{CS} Controlled)


Low V_{cc} Data Retention Characteristics (Ta = 0 to 70°C)

This characteristics is guaranteed only for L-version.

Parameter	Symbol	Min	Typ*1	Max	Unit	Test conditions
V _{cc} for data retention	V_{DR}	2.0	_	_	V	$V_{CC} \ge \overline{CS} \ge V_{CC} - 0.2 \text{ V}$ (1) $0 \text{ V} \le \text{Vin} \le 0.2 \text{ V}$ or (2) $V_{CC} \ge \text{Vin} \ge V_{CC} - 0.2 \text{ V}$
Data retention current	CCDR	_	2	300	μΑ	$V_{cc} = 3 \text{ V}, V_{cc} \ge \overline{\text{CS}} \ge V_{cc} - 0.2 \text{ V}$ (1) $0 \text{ V} \le \text{Vin} \le 0.2 \text{ V} \text{ or}$ (2) $V_{cc} \ge \text{Vin} \ge V_{cc} - 0.2 \text{ V}$
Chip deselect to data retention time	t _{CDR}	0	_	_	ns	See retention waveform
Operation recovery time	t _R	5	_	_	ms	_

Note: 1. Typical values are at $V_{cc} = 3.0 \text{ V}$, $Ta = 25^{\circ}\text{C}$, and not guaranteed.


Low V_{CC} Data Retention Timing Waveform

Package Dimensions

HM62W1400HJP/HLJP Series (CP-32DB)

Unit: mm

When using this document, keep the following in mind:

- 1. This document may, wholly or partially, be subject to change without notice.
- 2. All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without Hitachi's permission.
- 3. Hitachi will not be held responsible for any damage to the user that may result from accidents or any other reasons during operation of the user's unit according to this document.
- 4. Circuitry and other examples described herein are meant merely to indicate the characteristics and performance of Hitachi's semiconductor products. Hitachi assumes no responsibility for any intellectual property claims or other problems that may result from applications based on the examples described herein.
- 5. No license is granted by implication or otherwise under any patents or other rights of any third party or Hitachi, Ltd.
- 6. MEDICAL APPLICATIONS: Hitachi's products are not authorized for use in MEDICAL APPLICATIONS without the written consent of the appropriate officer of Hitachi's sales company. Such use includes, but is not limited to, use in life support systems. Buyers of Hitachi's products are requested to notify the relevant Hitachi sales offices when planning to use the products in MEDICAL APPLICATIONS.

HITACHI

Hitachi, Ltd.

Semiconductor & IC Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100, Japan Tel: Tokyo (03) 3270-2111

Fax: (03) 3270-5109

For further information write to:

Hitachi America, Ltd. Semiconductor & IC Div. 2000 Sierra Point Parkway Brisbane, CA. 94005-1835 U S A

Tel: 415-589-8300 Fax: 415-583-4207 Hitachi Europe GmbH Electronic Components Group Continental Europe Dornacher Straße 3 D-85622 Feldkirchen München Tel: 089-9 91 80-0

Fax: 089-9 91 80-0

Hitachi Europe Ltd.
Electronic Components Div.
Northern Europe Headquarters
Whitebrook Park
Lower Cookham Road
Maidenhead
Berkshire SL6 8YA
United Kingdom
Tel: 0628-585000
Fax: 0628-778322

Hitachi Asia Pte. Ltd. 16 Collyer Quay #20-00 Hitachi Tower Singapore 0104 Tel: 535-2100 Fax: 535-1533

Hitachi Asia (Hong Kong) Ltd. Unit 706, North Tower, World Finance Centre, Harbour City, Canton Road Tsim Sha Tsui, Kowloon Hong Kong

Tel: 27359218 Fax: 27306071

Revision Record

Rev.	Date	Contents of Modification	Drawn by	Approved by
0.0	Apr. 28, 1997	Initial issue		