FUJITSU SEMICONDUCTOR DATA SHEET

8-bit Proprietary Microcontroller

CMOS

F²MC-8L MB89820 Series

MB89821/823/P825/PV820

- DESCRIPTION

MB89820 series is a line of single-chip microcontrollers using the $\mathrm{F}^{2} \mathrm{MC}-8 \mathrm{~L}^{*}$ CPU core which can operate at low voltage but at high speed. In addition to an LCD controller/driver allowing 200-pixel display the microcontrollers contain a variety of peripheral functions such as timers, a UART, a serial interface, and an external interrupt. The configuration of the MB89820 series is therefore best suited to control of LCD display panels.
*: $\mathrm{F}^{2} \mathrm{MC}$ stands for FUJITSU Flexible Microcontroller.

■ FEATURES

- Minimum execution time: $0.8 \mu \mathrm{~s} / 5 \mathrm{MHz}(\mathrm{Vcc}=+5.0 \mathrm{~V})$
- $\mathrm{F}^{2} \mathrm{MC}$-8L family CPU core

Instruction set optimized for controllers

Multiplication and division instructions
16-bit arithmetic operations
Test and branch instructions
Bit manipulation instructions, etc.

- LCD controller/driver

Max. 50 segments $\times 4$ commons
Divided resistor for LCD power supply
(Continued)

PACKAGES

80-pin Plastic QFP

(FPT-80P-M11)

80-pin Ceramic MQFP

(MQP-80C-P01)

(Continued)

- Three types of timers

8 -bit PWM timer (also usable as a reload timer)
8 -bit pulse width count timer (also usable as a reload timer)
20-bit time-base timer

- Two serial interfaces

8 -bit synchronous serial interface (Switchable transfer direction allows communication with various equipment.) UART (5-, 7-, 8-bit transfer capable)

- External interrupt: 2 channels

Capable of wake-up from low-power consumption modes (with an edge detection function)

- Low-power consumption modes

Stop mode (Oscillation stops to minimize the current consumption.)
Sleep mode (The CPU stops to reduce the current consumption to approx. $1 / 3$ of normal.)

- PRODUCT LINEUP

Part number Parameter	MB89821	MB89823	MB89P825	MB89PV820
Classification	Mass production product (mask ROM products)		One-time PROM product	Piggyback/evaluation product for evaluation and development
ROM size	$4 \mathrm{~K} \times 8$ bits (internal mask ROM)	$8 \mathrm{~K} \times 8$ bits (internal mask ROM)	$16 \mathrm{~K} \times 8$ bits (internal PROM, programming with general-purpose EPROM programmer)	$32 \mathrm{~K} \times 8$ bits (external ROM)
RAM size	128×8 bits	256	$\times 8$ bits	1024×8 bits
CPU functions	Number of instructions: 136 Instruction bit length: 8 bits Instruction length: 1 to 3 bytes Data bit length: $1,8,16 \mathrm{bits}$ Minimum execution time: $0.8 \mu \mathrm{~s} / 5 \mathrm{MHz}(\mathrm{Vcc}=5.0 \mathrm{~V})$ Interrupt processing time: $7.2 \mu \mathrm{~s} / 5 \mathrm{MHz}(\mathrm{Vcc}=5.0 \mathrm{~V})$			
Ports	I/O ports (N-ch open-drain): 16 (All also serve as segment pins.) ${ }^{* 1}$ I/O ports (N-ch open-drain): 6 I/O ports (CMOS): 6 (5 ports also serve as peripheral I/O.) Input ports: 4 (1 port also serves as an external intal: 32 (max.)			
8-bit PWM timer	8 -bit reload timer operation (toggled output capable) 8-bit resolution PWM operation Operating clock (pulse width count timer output: $0.8 \mu \mathrm{~s}, 12.8 \mu \mathrm{~s}, 51.2 \mu \mathrm{~s} / 5 \mathrm{MHz}$)			
8-bit pulse width count timer	8 -bit reload timer operation 8-bit pulse width count operation (continuous measurement capable " H " width, "L" width, or single-cycle measurement capable) Operating clock ($0.8 \mu \mathrm{~s}, 3.2 \mu \mathrm{~s}, 25.6 \mu \mathrm{~s} / 5 \mathrm{MHz}$)			
8-bit serial I/O	8 bitsOne clock selectable from four transfer clocks(one external shift clock, three internal shift clock, three internal shift clocks: $1.6 \mu \mathrm{~s}, 6.4 \mu \mathrm{~s}, 25.6 \mu \mathrm{~s} / 5 \mathrm{MHz}$)LSB first/MSB first selectability			

(Continued)

Part number		MB89821	MB89823	MB89P825

*1: The function is selected by the mask option.
*2: Varies with conditions such as the operating frequency. (See section "■ Electrical Characteristics.")
*3: The operation at less than 2.2 V is assured separately. Please contact FUJITSU LIMITED.
■ PACKAGE AND CORRESPONDING PRODUCTS

Package	MB89821 MB89823 MB89P825	MB89PV820
FPT-80P-M11	\bigcirc	\times
MQP-80C-P01	\times	\bigcirc

\bigcirc : Available $\quad \times$: Not available
Note: For more information about each package, see section "■ Package Dimensions."

DIFFERENCES AMONG PRODUCTS

1. Memory Size

Before evaluating using the piggyback product, verify its differences from the product that will actually be used. Take particular care on the following points:

- On the MB89821, the register bank address upper than 0140н cannot be used. On the MB89823 and MB89P825, each register bank addresses upper than 0180н can be used.
- On the MB89P825, addresses BFF0н to BFF6н comprise the option setting area, option settings can be read by reading these addresses.
- The stack area, etc., is set at the upper limit of the RAM.

2. Current Consumption

- In the case of the MB89PV820, add the current consumed by the EPROM which is connected to the top socket.
- However, the current consumption in sleep/stop modes is the same. (For more information, see section "■ Electrical Characteristics."

3. Mask Options

Functions that can be selected as options and how to designate these options vary by the product.
Before using options check section "■ Mask Options."
Take particular care on the following point:

- Options are fixed on the MB89PV820.

PIN ASSIGNMENT

(Top view)

(FPT-80P-M11)

- Pin assignment on package top (MB89PV820 only)

Pin no.	Pin name						
81	N.C.	89	A2	97	N.C.	105	$\overline{\text { OE }}$
82	VPP	90	A1	98	O4	106	N.C.
83	A12	91	A0	99	O5	107	A11
84	A7	92	N.C.	100	O6	108	A9
85	A6	93	O1	101	O7	109	A8
86	A5	94	O2	102	O8	110	A13
87	A4	95	O3	103	CE	111	A14
88	A3	96	Vss	104	A10	112	Vcc

N.C.: Internally connected. Do not use.

PIN DESCRIPTION

Pin no.		Pin name	Circuit type	Function
QFP ${ }^{+1}$	MQFP ${ }^{2}$			
3	14	X0	A	Clock crystal oscillator pins
2	13	X1		
6	18	MOD0	B	Operating mode selection pins Connect directly to Vss.
5	17	MOD1		
4	16	$\overline{\mathrm{RST}}$	C	Reset I/O pin This pin is an N-ch open-drain type with a pull-up resistor, and a hysteresis input type. "L" is output from this pin by an internal reset source (optional function). The internal circuit is initialized by the input of "L".
39 to 32	50 to 43	$\begin{aligned} & \text { P00/SEG34 to } \\ & \text { P07/SEG41 } \end{aligned}$	D	General-purpose N-ch open-drain I/O ports Also serve as an LCD controller/driver segment output. The port and segment output are switched by mask option in 8 -bit unit.
31 to 24	42 to 35	$\begin{aligned} & \text { P10/SEG42 to } \\ & \text { P17/SEG49 } \end{aligned}$	D	General-purpose N-ch open-drain I/O ports Also serve as an LCD controller/driver segment output. The port and segment output are switched by mask option in 4 to 1 -bit unit.
22 to 17	34 to 29	P20 to P25	F	General-purpose N-ch open-drain I/O ports A pull-up resistor option is provided.
16	28	P30/INT0	H	General-purpose input port The input is hysteresis input. Also serves as an external interrupt input (INTO). A pull-up resistor option is provided.
15 to 13	27 to 25	P31 to P33	H	General-purpose input ports These pins are a hysteresis input type. A pull-up resistor option is provided.
12	24	P40	E	General-purpose I/O port A pull-up resistor option is provided.
11	23	P41/PWM	E	General-purpose I/O port A pull-up resistor option is provided. Also serves as an 8-bit PWM timer toggle output (PWM).
10	22	P42/PWC/INT1	E	General-purpose I/O port A pull-up resistor option is provided. Also serves as an 8-bit pulse width count timer input (PWC) and an external interrupt input (INT1). The PWC and INT1 input is hysteresis input.
9	21	P43/SI	E	General-purpose I/O port A pull-up resistor option is provided. Also serves as an 8-bit serial I/O and a UART data input (SI). The SI input is hysteresis input.

*1: FPT-80P-M11
(Continued)
*2: MQP-80C-P01
(Continued)

Pin no.		Pin name	Circuit type	Function
QFP* ${ }^{*}$	MQFP ${ }^{2}$			
8	20	P44/SO	E	General-purpose I/O port A pull-up resistor option is provided. Also serves as a serial I/O and a UART data output (SO).
7	19	P45/SCK	E	General-purpose I/O port A pull-up resistor option is provided. Also serves as a serial I/O and a UART clock I/O (SCK). The SCK input is hysteresis input.
73 to 40	5 to 1, 54 to 51	$\begin{aligned} & \text { SEG0 to } \\ & \text { SEG33 } \end{aligned}$	G	LCD controller/driver segment output pins
77 to 74	9 to 6	$\begin{aligned} & \text { COM0 to } \\ & \text { COM3 } \end{aligned}$	G	LCD controller/driver common output pins
80 to 78	12 to 10	V1 to V3	-	LCD driving power supply pins
23	55	Vcc	-	Power supply pin
1	15	Vss	-	Power supply (GND) pin

*1: FPT-80P-M11
*2: MQP-80C-P01

- External EPROM pins (MB89PV820 only)

Pin no.	Pin name	I/O	Function
82	VPP	O	"H" level output pin
83 84 85 86 87 88 89 90 91	A12 A7 A6 A5 A4 A3 A2 A1 A0	O	Address output pins
$\begin{aligned} & 93 \\ & 94 \\ & 95 \end{aligned}$	$\begin{aligned} & \mathrm{O} 1 \\ & \mathrm{O} 2 \\ & \mathrm{O} 3 \end{aligned}$	1	Data input pins
96	Vss	0	Power supply (GND) pin
$\begin{gathered} 98 \\ 99 \\ 100 \\ 101 \\ 102 \end{gathered}$	$\begin{aligned} & \text { O4 } \\ & \text { O5 } \\ & 06 \\ & 07 \\ & 08 \end{aligned}$	I	Data input pins
103	$\overline{\text { CE }}$	0	ROM chip enable pin Outputs " H " during standby.
104	A10	O	Address output pin
105	$\overline{\text { OE }}$	O	ROM output enable pin Outputs "L" at all times.
$\begin{aligned} & 107 \\ & 108 \\ & 109 \end{aligned}$	$\begin{aligned} & \text { A11 } \\ & \text { A9 } \\ & \text { A8 } \end{aligned}$	0	Address output pins
110	A13	O	
111	A14	O	
112	Vcc	O	EPROM power supply pin
$\begin{gathered} 81 \\ 92 \\ 97 \\ 106 \end{gathered}$	N.C.	-	Internally connected pins Be sure to leave them open.

I/O CIRCUIT TYPE

Type	Circuit	Remarks
A		- Crystal oscillator circuit - At an oscillation feedback resistor of approximately $1 \mathrm{M} \Omega / 5.0 \mathrm{~V}$
B	$\square-\infty$	
C		- At an output pull-up resistor (P-ch) of approximately $50 \mathrm{k} \Omega / 5.0 \mathrm{~V}$ - Hysteresis input
D		- N-ch open-drain output - CMOS input - Segment output optional
E		- CMOS output - CMOS input - Hysteresis input (peripheral input) - Pull-up resistor optional

Type	Circuit	Remarks
F		- N-ch open-drain output - CMOS input - Pull-up resistor optional
G		- LCD controller/driver
H		- Hysteresis input - Pull-up resistor optional

■ HANDLING DEVICES

1. Preventing Latchup

Latchup may occur on CMOS ICs if voltage higher than V_{cc} or lower than V_{ss} is applied to input and output pins other than medium- to high-voltage pins or if higher than the voltage which shows on "1. Absolute Maximum Ratings" in section "■ Electrical Characteristics" is applied between Vcc and Vss.

When latchup occurs, power supply current increases rapidly and might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings.
Also, take care to prevent the analog power supply (AV Vc and AVR) and analog input from exceeding the digital power supply (Vcc) when the analog system power supply is turned on and off.

2. Treatment of Unused Input Pins

Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down resistor.

3. Treatment of Power Supply Pins on Microcontrollers with A / D and D / A Converters

Connect to be $\mathrm{AVcc}=\mathrm{DAVC}=\mathrm{Vcc}$ and $\mathrm{AV} \mathrm{ss}=\mathrm{AVR}=\mathrm{V}_{\mathrm{ss}}$ even if the A / D and D / A converters are not in use.

4. Treatment of N.C. Pins

Be sure to leave (internally connected) N.C. pins open.

5. Power Supply Voltage Fluctuations

Although Vcc power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC is therefore important. As stabilization guidelines, it is recommended to control power so that Vcc ripple fluctuations (P-P value) will be less than 10% of the standard Vcc value at the commercial frequency (50 to 60 Hz) and the transient fluctuation rate will be less than $0.1 \mathrm{~V} / \mathrm{ms}$ at the time of a momentary fluctuation such as when power is switched.

6. Precautions when Using an External Clock

Even when an external clock is used, oscillation stabilization time is required for power-on reset (optional) and wake-up from stop mode.

PROGRAMMING TO THE EPROM ON THE MB89P825

The MB89P825 is an OTPROM (one-time PROM) version for the MB89820 series.

1. Features

- 16-Kbyte PROM on chip
- Options can be set using the EPROM programmer.
- Equivalency to the MBM27C256A in EPROM mode (when programmed with the EPROM programmer)

2. Memory Space

Memory space in EPROM mode is diagrammed below.

Address	Single chip	EPROM mode (Corresponding addresses on EPROM programmer)	
$\begin{aligned} & \text { 0000н } \\ & 0080 \mathrm{H} \end{aligned}$	I/O		
	RAM		
0180н	Not available		
8000н	Not available		Vacancy (Read value FFH)
BFF6н	Option area		Option area
	Not available		Vacancy (Read value FFH)
C000H	$\begin{aligned} & \text { PROM } \\ & 16 \mathrm{~KB} \end{aligned}$		$\begin{gathered} \text { EPROM } \\ 16 \mathrm{~KB} \end{gathered}$
FFFFH		7FFFH	

3. Programming to the EPROM

In EPROM mode, the MB89P825 functions equivalent to the MBM27C256A. This allows the PROM to be programmed with a general-purpose EPROM programmer (the electronic signature mode cannot be used) by using the dedicated socket adapter.

- Programming procedure

(1) Set the EPROM programmer to the MBM27C256A.
(2) Load program data into the EPROM programmer at 4000 н to 7 FFFн (note that addresses $\mathbf{C 0 0 0}$ to FFFFн while operating as a single chip assign to 4000 н to 7 FFFн in EPROM mode).
Load option data into addresses 3FF0н to 3FF5н of the EPROM programmer. (For information about each corresponding option, see "7. OTPROM Option Bit Map."
(3) Program with the EPROM programmer.

4. Recommended Screening Conditions

High-temperature aging is recommended as the pre-assembly screening procedure for a product for a product with a blanked OTPROM microcomputer program.

5. Programming Yield

All bits cannot be programmed at Fujitsu shipping test to a blanked OTPROM microcomputer, due to its nature. For this reason, a programming yield of 100% cannot be assured at all times.

6. EPROM Programmer Socket Adapter

Package	Compatible socket adapter
FPT-80P-M11	ROM-80QF2-28DP-8L3

Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3802-5760

7. OTPROM Option Bit Map

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
3FFOH	Vacancy Readable	Reset pin output 1:Yes 0 : No	Oscillation stabilization time $1: 2^{17 / F c}$ 0: $2^{13} / \mathrm{Fc}$	Power-on reset 1:Yes 0: No				
3FF1H	Vacancy Readable							
3FF2н	Vacancy Readable							
3FF3н	Vacancy Readable	Vacancy Readable	$\begin{array}{\|l\|} \hline \text { P25 } \\ \text { Pull-up } \\ \text { 1: No } \\ \text { 0: Yes } \end{array}$	P24 Pull-up 1: No 0 : Yes	P23 Pull-up 1: No 0 :Yes	$\begin{array}{\|l\|} \hline \text { P22 } \\ \text { Pull-up } \\ \text { 1: No } \\ \text { 0:Yes } \end{array}$	P21 Pull-up 1: No 0 :Yes	$\begin{aligned} & \hline \text { P20 } \\ & \text { Pull-up } \\ & \text { 1: No } \\ & \text { 0:Yes } \end{aligned}$
3FF4H	Vacancy Readable	Vacancy Readable	P45 Pull-up 1: No 0 :Yes	P44 Pull-up 1: No 0: Yes	P43 Pull-up 1: No 0:Yes	P42 Pull-up 1: No 0:Yes	P41 Pull-up 1: No 0:Yes	P40 Pull-up 1: No 0:Yes
3FF5	Vacancy Readable	Vacancy Readable	Vacancy Readable	Vacancy Readable	P33 Pull-up 1: No 0:Yes	P32 Pull-up 1: No 0 :Yes	P31 Pull-up 1: No 0 :Yes	P30 Pull-up 1: No 0 : Yes

Notes: - Set each bit to 1 to erase.

- Do not write 0 to the vacant bit.

The read value of the vacant bit is 1 , unless 0 is written to it.

PROGRAMMING TO THE EPROM WITH PIGGYBACK/EVALUATION DEVICE

1. EPROM for Use

MBM27C256A-20TV

2. Programming Socket Adapter

To program to the PROM using an EPROM programmer, use the socket adapter (manufacturer: Sun Hayato Co., Ltd.) listed below.

Package	Adapter socket part number
LCC-32 (Rectangle)	ROM-32LC-28DP-YG

Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3802-5760

3. Memory Space

Memory space in each mode, such as 32 Kbyte PROM, option area is diagrammed below.

4. Programming to the EPROM

(1) Set the EPROM programmer to the MBM27C256A.
(2) Load program data into the EPROM programmer at 0000н to 7FFFн.
(3) Program to 0000н to 7FFFн with the EPROM programmer.

BLOCK DIAGRAM

CPU CORE

1. Memory Space

The microcontrollers of the MB89820 series offer a memory space of 64 Kbytes for storing all of I/O, data, and program areas. The I/O area is located at the lowest address. The data area is provided immediately above the I/O area. The data area can be divided into register, stack, and direct areas according to the application. The program area is located at exactly the opposite end, that is, near the highest address. Provide the tables of interrupt reset vectors and vector call instructions toward the highest address within the program area. The memory space of the MB89820 series is structured as illustrated below.

2. Registers

The $\mathrm{F}^{2} \mathrm{MC}-8 \mathrm{~L}$ family has two types of registers; dedicated registers in the CPU and general-purpose registers in the memory. The following dedicated registers are provided:

Program counter (PC): A 16-bit register for indicating instruction storage positions
Accumulator (A): A 16-bit temporary register for storing arithmetic operations, etc. When the instruction is an 8 -bit data processing instruction, the lower byte is used.
Temporary accumulator (T): A 16-bit register which performs arithmetic operations with the accumulator When the instruction is an 8-bit data processing instruction, the lower byte is used.

Index register (IX):
Extra pointer (EP):
A 16-bit register for index modification
A 16-bit pointer for indicating a memory address
Stack pointer (SP):
A 16-bit register for indicating a stack area
Program status (PS):
A 16-bit register for storing a register pointer, a condition code

16 bits		Initial value
PC	: Program counter	FFFD
A	: Accumulator	Undefined
T	: Temporary accumulator	Undefined
IX	: Index register	Undefined
EP	: Extra pointer	Undefined
SP	: Stack pointer	Undefined
PS	: Program status I-flag	= 0, IL1, ILO

The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for use as a condition code register (CCR). (See the diagram below.)

Structure of the Program Status Register

The RP indicates the address of the register bank currently in use. The relationship between the pointer contents and the actual address is based on the conversion rule illustrated below.

Rule for Conversion of Actual Addresses of the General-purpose Register Area

		"0" "0	0 " "0		"0		"0	"0		"0"			RP							Lower OP codes							
					"1"					R4	R3	R	2	R1	R0			b1	b0								
	\downarrow		\downarrow	\downarrow				\downarrow	\downarrow			\downarrow	\downarrow		\downarrow	\downarrow		\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow		\downarrow	\downarrow	\downarrow
Generated addresses	A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0																										

The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and bits for control of CPU operations at the time of an interrupt.
H-flag: Set when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared otherwise. This flag is for decimal adjustment instructions.

I-flag: Interrupt is allowed when this flag is set to 1 . Interrupt is prohibited when the flag is set to 0 . Set to 0 when reset.

IL1, 0: Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is higher than the value indicated by this bit.

IL1	ILO	Interrupt level	High-low
0	0	1	High
0	1		
1	0	2	Low $=$ no interrupt
1	1	3	

N-flag: Set if the MSB is set to 1 as the result of an arithmetic operation. Cleared when the bit is set to 0 .
Z-flag: Set when an arithmetic operation results in 0 . Cleared otherwise.
V-flag: Set if the complement on 2 overflows as a result of an arithmetic operation. Reset if the overflow does not occur.

C-flag: Set when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared otherwise. Set to the shift-out value in the case of a shift instruction.

The following general-purpose registers are provided:
General-purpose registers: An 8-bit register for storing data
The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains eight registers and up to a total of 16 banks can be used on the MB89823 (RAM 256×8 bits). The bank currently in use is indicated by the register bank pointer (RP).

Note: The number of register banks that can be used varies with the RAM size.

MB89821	0100 н to 013FH	8 banks
MB89823	0100 to 017F	16 banks
MB89P825	0100 to 017F	16 banks
MB89PV820	0100 to 01 FF $_{H}$	32 banks

Register Bank Configuration

Address	Read/write	Register name	Register description
00H	(R/W)	PDR0	Port 0 data register
01H			Vacancy
02н	(R/W)	PDR1	Port 1 data register
03н			Vacancy
04н	(R/W)	PDR2	Port 2 data register
05			Vacancy
06н			Vacancy
07 ${ }^{\text {}}$			Vacancy
08H	(R/W)	STBC	Standby control register
09н	(R/W)	WDTC	Watchdog timer control register
$0 \mathrm{AH}^{\text {¢ }}$	(R/W)	TBCR	Time-base timer control register
OBн			Vacancy
$0 \mathrm{CH}_{\mathrm{H}}$	(R)	PDR3	Port 3 data register
ODH			Vacancy
ОЕн	(R/W)	PDR4	Port 4 data register
OF\%	(W)	DDR4	Port 4 data direction register
10н			Vacancy
11H			Vacancy
12н	(R/W)	CNTR	PWM timer control register
13H	(W)	COMR	PWM timer compare register
14 H	(R/W)	PCR1	PWC pulse width control register 1
15 н	(R/W)	PCR2	PWC pulse width control register 2
16 +	(R/W)	RLBR	PWC reload buffer register
17H	(R/W)	NCCR	PWC noise cancellation control register
18н			Vacancy
19н			Vacancy
$1 \mathrm{AH}^{\text {}}$			Vacancy
$1 \mathrm{Bн}$			Vacancy
1 CH	(R/W)	SMR	Serial mode register
1䉼	(R/W)	SDR	Serial data register
$1 \mathrm{E}_{\text {н }}$			Vacancy
1FH			Vacancy

(Continued)
(Continued)

Address	Read/write	Register name	Register description
$2 \mathrm{H}^{\text {H}}$	(R/W)	SMC1	UART serial mode control register 1
21H	(R/W)	SRC	UART serial rate control register
22 н	(R/W)	SSD	UART serial status/data register
23H	(R/W)	SIDR/SODR	UART serial data register
24-	(R/W)	SMC2	UART serial mode control register 2
25 H			Vacancy
26			Vacancy
27 ${ }^{\text {}}$			Vacancy
28H			Vacancy
29н			Vacancy
2 Ан			Vacancy
$2 \mathrm{Bн}$			Vacancy
2 CH			Vacancy
2D			Vacancy
2Ен			Vacancy
2 F			Vacancy
30	(R/W)	EIC1	External interrupt 1 control register
31 н to 5FH			Vacancy
60н to 78н	(R/W)	VRAM	Display data RAM
79н	(R/W)	LCR1	LCD controller/driver control register
7Ан	(R/W)	SEGR	Segment output selection register
7Вн			Vacancy
7С	(W)	ILR1	Interrupt level setting register 1
7D	(W)	ILR2	Interrupt level setting register 2
7Ен	(W)	ILR3	Interrupt level setting register 3
7F			Vacancy

Note: Do not use vacancies.

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Parameter	Symbol	Value		Unit	Remarks
		Min.	Max.		
Power supply voltage	Vcc	$\mathrm{V}_{\text {ss }}-0.3$	Vss +7.0	V	
LCD power supply voltage	V3	Vss -0.3	Vss +7.0	V	V3 pin
Input voltage	V_{11}	Vss - 0.3	V cc +0.3	V	V_{11} must not exceed $\mathrm{V}_{\text {ss }}+7.0 \mathrm{~V}$. Except P00 to P07 and P10 to P17 for the MB89P825/PV820, and P20 to P25 without a pull-up resistor
	V12	Vss - 0.3	Vss +7.0	V	P00 to P07 and P10 to P17 (when selected as ports) for the MB89821/ 823, and P20 to P25 without a pullup resistor
	V13	Vss - 0.3	$\mathrm{V} 3+0.3$	V	P00 to P07 and P10 to P17 for the MB89P825/PV820
Output voltage	Vo1	Vss - 0.3	$\mathrm{Vcc}+0.3$	V	Vo1 must not exceed Vss +7.0 V . Except P00 to P07 and P10 to P17 for the MB89P825/PV820, and P20 to P25 without a pull-up resistor
	Vo2	Vss - 0.3	Vss +7.0	V	P00 to P07 and P10 to P17 (when selected as ports) for the MB89821/ 823, and P20 to P25 without a pullup resistor
	Vo3	Vss - 0.3	$\mathrm{V} 3+0.3$	V	P00 to P07 and P10 to P17 for the MB89P825/PV820
"L" level output current	loL	-	10	mA	Except power supply pins
"L" level average output current	lolav	-	4	mA	Average value (operating current \times operating rate) Except power supply pins
Total "L" level output current	EloL	-	40	mA	
"H" level output current	Іон	-	-5	mA	Except power supply pins
" H " level average output current	lohav	-	-2	mA	Average value (operating current \times operating rate) Except power supply pins
Total "H" level output current	Eloh	-	-10	mA	
Power consumption	PD	-	300	mW	
Operating temperature	$\mathrm{T}_{\text {A }}$	-40	+85	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55	+150	${ }^{\circ} \mathrm{C}$	

Precautions: Permanent device damage may occur if the above "Absolute Maximum Ratings" are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

2. Recommended Operating Conditions

Parameter	Symbol	Value		Unit	Remarks
		Min.	Max.		
Power supply voltage	Vcc	2.2*	6.0*	V	Normal operation assurance range*
		1.5	6.0	V	Retains the RAM state in stop mode
LCD power supply voltage	V3	Vss	6.0	V	V3 pin LCD power supply range. The optimum value is dependent on the element in use.
Operating temperature	T_{A}	-40	+85	${ }^{\circ} \mathrm{C}$	

*: The minimum operating power supply voltage varies with the operating frequency.

Figure 1 Operating Voltage vs. Clock Operating Frequency
Figure 1 indicates the operating frequency of the external oscillator at an instruction cycle of $4 / \mathrm{Fc}$.

MB89820 Series

3. DC Characteristics

Parameter		Pin	Condition	Value			Unit	Remarks
	Symbol							
				Min.	Typ.	Max.		
" H " level input voltage	VIH	P00 to P07, P10 to P17, P20 to P25, P30 to P33, P40 to P45	-	$0.7 \mathrm{Vcc}^{*}{ }^{1}$	-	$\mathrm{Vcc}+0.3^{+1}$	V	
	Vihs	RST, MODO, MOD1, INTO, SCK, SI, PWC/INT1	-	0.8 Vcc	-	V cc +0.3	V	
"L" level input voltage	VIL	P00 to P07, P10 to P17, P22 to P25, P30 to P33, P40 to P45	-	V cc -0.3	-	$0.3 \mathrm{Vcc}^{*}{ }^{1}$	V	
	Vıls	RST, MODO, MOD1, INT0, SCK, SI, PWC/INT1	-	Vss-0.3	-	0.2 Vcc	V	
Open-drain output pin application voltage	V	P20 to P25, P00 to P07, P10 to P17	-	Vss-0.3	-	V cc +6.0	V	P00 to P07 and P10 to P17 (when selected as ports) for the MB89821/823, and P20 to P25 without pull-up resistor
"H" level output voltage	Vон	P40 to P45	$\mathrm{loH}=-2 \mathrm{~mA}$	2.4	-	-	V	
"L" level output voltage	Voli	P00 to P07, P10 to P17, P20 to P25, P40 to P45	$\mathrm{loL}=1.8 \mathrm{~mA}$	-	-	0.4	V	
	Vol2	$\overline{\text { RST }}$	$\mathrm{loL}=4 \mathrm{~mA}$	-	-	0.4	V	
Input leakage current (Hi-z output leakage current)	ILıI	$\begin{aligned} & \text { MOD0, MOD1, } \\ & \text { P30 to P33, } \\ & \text { P40 to P45 } \end{aligned}$	$0.0 \mathrm{~V}<\mathrm{V}_{1}<\mathrm{V}_{\text {cc }}$	-	-	± 5	$\mu \mathrm{A}$	Without pull-up resistor for the MB89821/823
		MOD0, MOD1, P00 to P07, P10 to P17, P30 to P33, P40 to P45		-	-	± 5	$\mu \mathrm{A}$	Without pull-up resistor for the MB89P825/PV820
	Llı 2	$\begin{aligned} & \text { P00 to P07, } \\ & \text { P10 to P17, } \\ & \text { P20 to P25 } \end{aligned}$	$0.0 \mathrm{~V}<\mathrm{V}_{1}<6.0 \mathrm{~V}$	-	-	± 1	$\mu \mathrm{A}$	Without pull-up resistor for the MB89821/823
		P20 to P25		-	-	± 1	$\mu \mathrm{A}$	Without pull-up resistor for the MB89P825/PV820

(Continued)

Parameter	Symbol	Pin	Condition				Unit	Remarks
				Value				
				Min.	Typ.	Max.		
Pull-up resistance	Rpull	$\begin{array}{\|l} \hline \text { P20 to P25, } \\ \text { P30 to P33, } \\ \text { P40 to P45, } \\ \text { RST } \end{array}$	$\mathrm{V} 1=0.0 \mathrm{~V}$	25	50	100	$\mathrm{k} \Omega$	With pull-up resistor
Common output impedance	Rvcom	COM0 to COM3	V 1 to $\mathrm{V} 3=+5.0 \mathrm{~V}$	-	-	2.5	k Ω	
Segment output impedance	Rvseg	SEG0 to SEG49	V 1 to $\mathrm{V} 3=+5.0 \mathrm{~V}$	-	-	15	k Ω	
LCD divided resistance	Rlco	-	Between V3 and Vss	30	60	120	$\mathrm{k} \Omega$	
LCD leakage current	ILcdL	V1 to V3, COM0 to COM3, SEG0 to SEG49	-	-	-	± 1	$\mu \mathrm{A}$	
Power supply current²	Icc	Vcc	$\begin{aligned} & \mathrm{FC}_{\mathrm{C}}=5 \mathrm{MHz} \\ & \text { tinst }^{3}=0.8 \mu \mathrm{~s} \end{aligned}$	-	3.5	5.0	mA	MB89821, MB89823, MB89PV820
				-	4.0	6.5	mA	MB89P825
	Iccs		$\begin{aligned} & \mathrm{Fc}=5 \mathrm{MHz} \\ & \text { tinst }{ }^{3}=0.8 \mu \mathrm{~s} \\ & \text { Sleep mode } \end{aligned}$	-	1.1	1.7	mA	MB89821, MB89823, MB89PV820, MB89P825
	Icch		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ Stop mode	-	0.1	1	$\mu \mathrm{A}$	$\begin{aligned} & \text { MB89821, } \\ & \text { MB89823 } \end{aligned}$
				-	0.1	10	$\mu \mathrm{A}$	MB89PV820, MB89P825
Input capacitance	Cin	Other than V_{cc} and $V_{\text {ss }}$	$\mathrm{f}=1 \mathrm{MHz}$	-	10	-	pF	

*1: The input voltage to P00 to P07 and P10 to P17 for the MB89P825/PV820 must not exceed the LCD power supply voltage (V3 pin voltage).
*2: The measurement condition of power supply current is as follows: the external clock, open output pins and the external LCD dividing resistor.
In the case of the MB89PV820, the current consumed by the connected EPROM and ICE is not included.
*3: For information on tinst, see "(4) Instruction Cycle" in "4. AC Characteristics."

4. AC Characteristics

(1) Reset Timing

Parameter	Symbol	Condition	Value		Unit	Remarks
			Min.	Max.		
$\overline{\mathrm{RST}}$ "L" pulse width	tzlzH	-	48 txcyL	-	ns	

(2) Power-on Reset

Parameter	Symbol	Condition	Value		Unit	Remarks
			Min.	Max.		
Power supply rising time	tr	-	-	50	ms	Power-on reset function only
Power supply cut-off time	toff		1	-	ms	Due to repeated operations

Note: Make sure that power supply rises within the selected oscillation stabilization time.
If power supply voltage needs to be varied in the course of operation, a smooth voltage rise is recommended.

(3) Clock Timing

Parameter								
	$\begin{gathered} \text { Sym- } \\ \text { bol } \end{gathered}$	Pin	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
Clock frequency	Fc	$\mathrm{X} 0, \mathrm{X} 1$	-	1	-	5	MHz	
Clock cycle time	txcyL			200	-	1000	ns	Crystal or ceramic resonator
Input clock duty ratio*	duty	X0		30	-	70	\%	External clock
Input clock rising/ falling time	$\begin{aligned} & \text { tcR } \\ & \text { tcF } \end{aligned}$			-	-	10	ns	External clock

* : duty = Pwh/thcyL, PwL/thcyL

X0 and X1 Timing and Conditions

Clock Conditions

(4) Instruction Cycle

Parameter	Symbol	Value (typical)	Unit	Remarks
Instruction cycle (minimum execution time)	tinst	$4 / \mathrm{Fc}_{\mathrm{c}}$	$\mu \mathrm{s}$	tinst $=0.8 \mu \mathrm{~s}$ when operating at $\mathrm{Fc}_{\mathrm{c}}=5 \mathrm{MHz}$

MB89820 Series

(5) Serial I/O Timing

$\left(\mathrm{V} \mathrm{cc}=+5.0 \mathrm{~V} \pm 10 \%, \mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$							
Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
				Min.	Max.		
Serial clock cycle time	tscyc	SCK	Internal shift clock mode	2 tinst*	-	$\mu \mathrm{s}$	
SCK $\downarrow \rightarrow$ SO time	tstov	SCK, SO		-200	200	ns	
Valid SI \rightarrow SCK \uparrow	tivsh	SI, SCK		0.5 tinst*	-	$\mu \mathrm{s}$	
SCK $\uparrow \rightarrow$ valid SI hold time	tshix	SCK, SI		0.5 tinst*	-	$\mu \mathrm{s}$	
Serial clock "H" pulse width	tsHSL	SCK	External shift clock mode	1 tinst*	-	$\mu \mathrm{s}$	
Serial clock "L" pulse width	tslsh			1 tinst ${ }^{*}$	-	$\mu \mathrm{s}$	
SCK $\downarrow \rightarrow$ SO time	tsıov	SCK, SO		0	200	ns	
Valid SI \rightarrow SCK \uparrow	tivsh	SI, SCK		0.5 tinst ${ }^{*}$	-	$\mu \mathrm{s}$	
SCK $\uparrow \rightarrow$ valid SI hold time	tshix	SCK, SI		0.5 tinst*	-	$\mu \mathrm{s}$	

* : For information on tinst, see "(4) Instruction Cycle."
(6) UART Timing

$\left(\mathrm{V}\right.$ cc $=+5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\text {ss }}=0.0 \mathrm{~V}, \mathrm{~T}_{\text {A }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$							
Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
				Min.	Max.		
Serial clock cycle time	tscyc	SCK	Internal shift clock mode	2 tinst*	-	$\mu \mathrm{s}$	
SCK $\downarrow \rightarrow$ SO time	tsıov	SCK, SO		-200	200	ns	
Valid SI \rightarrow SCK \uparrow	tivsh	SI, SCK		0.5 tinst*	-	$\mu \mathrm{s}$	
SCK $\uparrow \rightarrow$ valid SI hold time	tshix	SCK, SI		0.5 tinst*	-	$\mu \mathrm{S}$	
Serial clock "H" pulse width	tshSL	SCK	External shift clock mode	1 tinst*	-	$\mu \mathrm{s}$	
Serial clock "L" pulse width	tslsh			1 tinst ${ }^{*}$	-	$\mu \mathrm{s}$	
SCK $\downarrow \rightarrow$ SO time	tslov	SCK, SO		0	200	ns	
Valid SI \rightarrow SCK \uparrow	tivsh	SI, SCK		0.5 tinst*	-	$\mu \mathrm{s}$	
SCK $\uparrow \rightarrow$ valid SI hold time	tshix	SCK, SI		0.5 tinst ${ }^{*}$	-	$\mu \mathrm{s}$	

* : For information on tinst, see "(4) Instruction Cycle."

Internal Shift Clock Mode

External Shift Clock Mode

MB89820 Series

(7) Peripheral Input Timing

Parameter	Symbol	Pin	Condition				Remarks
				Value		Unit	
				Min.	Max.		
Peripheral input " H " pulse width	tıцн	PWC/INT1 INTO	-	2 tinst*	-	$\mu \mathrm{s}$	
Peripheral input "L" pulse width	tiHIL			2 tinst ${ }^{*}$	-	$\mu \mathrm{s}$	

* : For information on tinst, see "(4) Instruction Cycle."

PWC/INT1
INT0

EXAMPLE CHARACTERISTICS

(1) "L" Level Output Voltage

(2) "H" Level Output Voltage

(4) "H" level Input Voltage/"L" Level Input Voltage (CMOS Hysteresis Input)

Vıнs: Threshold when input voltage in hysteresis characteristics is set to " H " level

VILs: Threshold when input voltage in hysteresis characteristics is set to " L " level
(5) Power Supply Current (External Clock)

(6) Pull-up Resistance

INSTRUCTIONS

Execution instructions can be divided into the following four groups:

- Transfer
- Arithmetic operation
- Branch
- Others

Table 1 lists symbols used for notation of instructions.
Table 1 Instruction Symbols

Symbol	Meaning
dir	Direct address (8 bits)
off	Offset (8 bits)
ext	Extended address (16 bits)
\#vct	Vector table number (3 bits)
\#d8	Immediate data (8 bits)
\#d16	Immediate data (16 bits)
dir: b	Bit direct address (8:3 bits)
rel	Branch relative address (8 bits)
@	Register indirect (Example: @A, @IX, @EP)
A	Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.)
AH	Upper 8 bits of accumulator A (8 bits)
AL	Lower 8 bits of accumulator A (8 bits)
T	Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the instruction in use.)
TH	Upper 8 bits of temporary accumulator T (8 bits)
TL	Lower 8 bits of temporary accumulator T (8 bits)
IX	Index register IX (16 bits)

(Continued)
(Continued)

Symbol	
EP	Extra pointer EP (16 bits)
PC	Program counter PC (16 bits)
SP	Stack pointer SP (16 bits)
PS	Program status PS (16 bits)
dr	Accumulator A or index register IX (16 bits)
CCR	Condition code register CCR (8 bits)
RP	Register bank pointer RP (5 bits)
Ri	General-purpose register Ri $(8$ bits, $\mathrm{i}=0$ to 7$)$
\times	Indicates that the very \times is the immediate data. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
(\times)	Indicates that the contents of \times is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
$((\times))$	The address indicated by the contents of \times is the target of accessing. $($ Whether its length is 8 or 16 bits is determined by the instruction in use.)

Columns indicate the following:

Mnemonic:	Assembler notation of an instruction
$\sim:$	Number of instructions
\#:	Number of bytes
Operation:	Operation of an instruction

TL, TH, AH: A content change when each of the TL, TH, and AH instructions is executed. Symbols in the column indicate the following:

- "-" indicates no change.
- dH is the 8 upper bits of operation description data.
- AL and AH must become the contents of AL and AH immediately before the instruction is executed.
- 00 becomes 00.
$\mathrm{N}, \mathrm{Z}, \mathrm{V}, \mathrm{C}: \quad$ An instruction of which the corresponding flag will change. If + is written in this column, the relevant instruction will change its corresponding flag.

OP code: Code of an instruction. If an instruction is more than one code, it is written according to the following rule:
Example: 48 to $4 \mathrm{~F} \leftarrow$ This indicates $48,49, \ldots 4 \mathrm{~F}$.

Table 2 Transfer Instructions (48 instructions)

Mnemonic	\sim	\#	Operation	TL	TH	AH	NZ V C	OP code
MOV dir,A	3	2	$(\mathrm{dir}) \leftarrow(\mathrm{A})$	-	-	-	----	45
MOV @IX +off,A	4	2	$($ (IX) +off) \leftarrow (A)	-	-	-	----	46
MOV ext,A	4	3	$(\mathrm{ext}) \leftarrow(\mathrm{A})$	-	-	-	----	61
MOV @EP,A	3	1	$($ (EP)) $\leftarrow(\mathrm{A})$	-	-	-	----	47
MOV Ri,A	3	1	$(\mathrm{Ri}) \leftarrow(\mathrm{A})$	-	-	-	----	48 to 4F
MOV A,\#d8	2	2	$(\mathrm{A}) \leftarrow \mathrm{d} 8$	AL	-	-	+	04
MOV A, dir	3	2	$(\mathrm{A}) \leftarrow$ (dir)	AL	-	-	+	05
MOV A,@IX +off	4	2	(A) $\leftarrow\left(\begin{array}{l}(I X)+0 f f) ~\end{array}\right.$	AL	-	-	+	06
MOV A, ext	4	3	(A) \leftarrow (ext)	AL	-	-	+ +	60
MOV A,@A	3	1	$(\mathrm{A}) \leftarrow\left(\begin{array}{l}\text { (})\end{array}\right)$	AL	-	-	+ + - -	92
MOV A,@EP	3	1	$(\mathrm{A}) \leftarrow\left(\begin{array}{l}(E P)\end{array}\right)$	AL	-	-	+ + - -	07
MOV A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{Ri})$	AL	-	-	+ + - -	08 to 0F
MOV dir,\#d8	4	3	(dir) $\leftarrow \mathrm{d} 8$	-	-	-	----	85
MOV @IX +off,\#d8	5	3	((IX) +off) $\leftarrow \mathrm{d} 8$	-	-	-	----	86
MOV @EP,\#d8	4	2	$($ (EP)) $\leftarrow \mathrm{d} 8$	-	-	-	----	87
MOV Ri,\#d8	4	2	(Ri) \leftarrow d8	-	-	-	----	88 to 8F
MOVW dir,A	4	2	$($ dir $) \leftarrow(\mathrm{AH}),($ dir +1$) \leftarrow(\mathrm{AL})$	-	-	-	----	D5
MOVW @IX +off,A	5	2	$\begin{aligned} & ((\mathrm{IX})+\mathrm{off}) \leftarrow(\mathrm{AH}), \\ & ((\mathrm{IX})+\mathrm{off}+1) \leftarrow(\mathrm{AL}) \end{aligned}$	-	-	-	----	D6
MOVW ext,A	5	3	$(\mathrm{ext}) \leftarrow(\mathrm{AH}),(\mathrm{ext}+1) \leftarrow(\mathrm{AL})$	-	-	-	----	D4
MOVW @EP,A	4	1	$((E P)) \leftarrow(A H),((E P)+1) \leftarrow(A L)$	-	-	-	----	D7
MOVW EP,A	2	1	$(\mathrm{EP}) \leftarrow(\mathrm{A})$	-	-	-	----	E3
MOVW A,\#d16	3	3	(A) \leftarrow d 16	AL	AH	dH	+ +	E4
MOVW A,dir	4	2	$(\mathrm{AH}) \leftarrow($ dir $),(\mathrm{AL}) \leftarrow(\mathrm{dir}+1)$	AL	AH	dH	+ + - -	C5
MOVW A,@IX +off	5	2	$\begin{aligned} & (\mathrm{AH}) \leftarrow((\mathrm{IX})+\mathrm{off}), \\ & (\mathrm{AL}) \leftarrow((\mathrm{IX})+\mathrm{off}+1) \end{aligned}$	AL	AH	dH	+ +	C6
MOVW A,ext	5	3	$(\mathrm{AH}) \leftarrow($ ext $),(\mathrm{AL}) \leftarrow(\mathrm{ext}+1)$	AL	AH	dH	+	C4
MOVW A,@A	4	1	$(\mathrm{AH}) \leftarrow((\mathrm{A}), \mathrm{l}(\mathrm{AL}) \leftarrow((\mathrm{A}) \mathrm{)}+1)$	AL	AH	dH	+ +	93
MOVW A,@EP	4	1	$(\mathrm{AH}) \leftarrow((\mathrm{EP})),(\mathrm{AL}) \leftarrow((\mathrm{EP})+1)$	AL	AH	dH	+ +	C7
MOVW A,EP	2	1	$(\mathrm{A}) \leftarrow(\mathrm{EP})$	-	-	dH	----	F3
MOVW EP,\#d16	3	3	$(E P) \leftarrow d 16$	-	-	-	----	E7
MOVW IX,A	2	1	$(\mathrm{IX}) \leftarrow(\mathrm{A})$	-	-	-	----	E2
MOVW A,IX	2	1	$(\mathrm{A}) \leftarrow(\mathrm{IX})$	-	-	dH	----	F2
MOVW SP,A	2	1	$(\mathrm{SP}) \leftarrow(\mathrm{A})$	-	-	-	----	E1
MOVW A,SP	2	1	$(\mathrm{A}) \leftarrow(\mathrm{SP})$	-	-	dH	----	F1
MOV @A,T	3	1	$($ (A)) \leftarrow (T)	-	-	-	----	82
MOVW @A,T	4	1	$((A)) \leftarrow(\mathrm{TH}),((\mathrm{A})+1) \leftarrow(\mathrm{TL})$	-	-	-	----	83
MOVW IX,\#d16	3	3	$(\mathrm{IX}) \leftarrow \mathrm{d} 16$	-	-	-	----	E6
MOVW A,PS	2	1	$(\mathrm{A}) \leftarrow(\mathrm{PS})$	-	-	dH	----	70
MOVW PS,A	2	1	$(\mathrm{PS}) \leftarrow(\mathrm{A})$	-	-	-	+ + + +	71
MOVW SP,\#d16	3	3	$(\mathrm{SP}) \leftarrow \mathrm{d} 16$	-	-	-	----	E5
SWAP	2	1	$(\mathrm{AH}) \leftrightarrow(\mathrm{AL})$	-	-	AL	----	10
SETB dir: b	4	2	(dir) $\mathrm{b} \leftarrow 1$	-	-	-	----	A8 to AF
CLRB dir: b	4	2	(dir) $: \mathrm{b} \leftarrow 0$	-	-	-	----	A0 to A7
XCH A,T	2	1	$(\mathrm{AL}) \leftrightarrow(\mathrm{TL})$	AL	-	-	----	42
XCHW A,T	3	1	$(\mathrm{A}) \leftrightarrow(\mathrm{T})$	AL	AH	dH	----	43
XCHW A,EP	3	1	(A) $\leftrightarrow(\mathrm{EP})$	-	-	dH	----	F7
XCHW A,IX	3	1	(A) $\leftrightarrow(\mathrm{IX})$	-	-	dH	----	F6
XCHW A,SP	3	1	$(\mathrm{A}) \leftrightarrow(\mathrm{SP})$	-	-	dH	----	F5
MOVW A,PC	2	1	$(\mathrm{A}) \leftarrow(\mathrm{PC})$	-	-	dH	----	F0

Notes: • During byte transfer to $\mathrm{A}, \mathrm{T} \leftarrow \mathrm{A}$ is restricted to low bytes.

- Operands in more than one operand instruction must be stored in the order in which their mnemonics are written. (Reverse arrangement of $\mathrm{F}^{2} \mathrm{MC}-8$ family)

Table 3 Arithmetic Operation Instructions (62 instructions)

Mnemonic	\sim	\#	Operation	TL	TH	AH	NZVC	OP code
ADDC A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})+(\mathrm{Ri})+\mathrm{C}$	-	-	-	+ + + +	28 to 2F
ADDC A,\#d8	2	2	$(\mathrm{A}) \leftarrow(\mathrm{A})+\mathrm{d} 8+\mathrm{C}$	-	-	-	+ + + +	24
ADDC A,dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{A})+($ dir $)+C$	-	-	-	+ + + +	25
ADDC A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{A})+((\mathrm{X})+$ off $)+\mathrm{C}$	-	-	-	+ + + +	26
ADDC A,@EP	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})+((\mathrm{EP}))+\mathrm{C}$	-	-	-	+ + + +	27
ADDCW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})+(\mathrm{T})+\mathrm{C}$	-	-	dH	+ + + +	23
ADDC A	2	1	$(\mathrm{AL}) \leftarrow(\mathrm{AL})+(\mathrm{TL})+\mathrm{C}$	-	-	-	+ + + +	22
SUBC A,Ri	3	1	$(A) \leftarrow(A)-(R i)-C$	-	-	-	+ + + +	38 to 3F
SUBC A,\#d8	2	2	$(\mathrm{A}) \leftarrow(\mathrm{A})-\mathrm{d} 8-\mathrm{C}$	-	-	-	+ + + +	34
SUBC A,dir	3	2	$(A) \leftarrow(A)-($ dir $)-C$	-	-	-	+ + + +	35
SUBC A,@IX +off	4	2	(A) $\leftarrow\left(\begin{array}{l}\text { (}) ~-~(~(I X) ~+o f f ~\end{array}\right)-\mathrm{C}$	-	-	-	+ + + +	36
SUBC A,@EP	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})-((E P))-C$	-	-	-	+ + + +	37
SUBCW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{T})-(\mathrm{A})-\mathrm{C}$	-	-	dH	+ + + +	33
SUBC A	2	1	$(\mathrm{AL}) \leftarrow(\mathrm{TL})-(\mathrm{AL})-\mathrm{C}$	-	-	-	+ + + +	32
INC Ri	4	1	$(\mathrm{Ri}) \leftarrow(\mathrm{Ri})+1$	-	-	-	+ + +	C8 to CF
INCW EP	3	1	$(E P) \leftarrow(E P)+1$	-	-	-	----	C3
INCW IX	3	1	$(\mathrm{IX}) \leftarrow(\mathrm{IX})+1$	-	-	-	----	C2
INCW A	3	1	(A) $\leftarrow(\mathrm{A})+1$	-	-	dH	+ +	C0
DEC Ri	4	1	$(\mathrm{Ri}) \leftarrow(\mathrm{Ri})-1$	-	-	-	+ + +	D8 toDF
DECW EP	3	1	$(E P) \leftarrow(E P)-1$	-	-	-	----	D3
DECW IX	3	1	$(\mathrm{IX}) \leftarrow(\mathrm{IX})-1$	-	-	-	----	D2
DECW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})-1$	-	-	dH	+	D0
MULU A	19	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \times(\mathrm{TL})$	-	-	dH	----	01
DIVU A	21	1	$(\mathrm{A}) \leftarrow(\mathrm{T}) /(\mathrm{AL}), \mathrm{MOD} \rightarrow(\mathrm{T})$	dL	00	00	----	11
ANDW A	3	1	$(A) \leftarrow(A) \wedge(T)$	-	-	dH	$++\mathrm{R}-$	63
ORW A	3	1	$(A) \leftarrow(A) \vee(T)$	-	-	dH	$++\mathrm{R}-$	73
XORW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A}) \forall(\mathrm{T})$	-	-	dH	$++\mathrm{R}-$	53
CMP A	2	1	(TL) - (AL)	-	-	-	+ + + +	12
CMPW A	3	1	(T) - (A)	-	-	-	+ + + +	13
RORC A	2	1	$\square \mathrm{C} \rightarrow \mathrm{A} \square$	-	-	-	+ + +	03
ROLC A	2	1	$\square \mathrm{C} \leftarrow \mathrm{A} \leftarrow$	-	-	-	+ + +	02
CMP A,\#d8	2	2	(A) - d8	-	-	-	+ + + +	14
CMP A,dir	3	2	(A) - (dir)	-	-	-	+ + + +	15
CMP A,@EP	3	1	(A) $-($ (EP) $)$	-	-	-	+ + + +	17
CMP A,@IX +off	4	2	(A) - ((IX) +off)	-	-	-	+ + + +	16
CMP A,Ri	3		(A) - (Ri)	-	-	-	+ + + +	18 to 1F
DAA	2		Decimal adjust for addition	-	-	-	+ + + +	84
DAS	2	1	Decimal adjust for subtraction	-	-	-	+ + + +	94
XOR A	2	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall(\mathrm{TL})$	-	-	-	$++\mathrm{R}-$	52
XOR A,\#d8	2	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall \mathrm{d} 8$	-	-	-	$++\mathrm{R}-$	54
XOR A,dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall$ (dir)	-	-	-	$++\mathrm{R}-$	55
XOR A,@EP	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall((\mathrm{EP}))$	-	-	-	$++\mathrm{R}-$	57
XOR A,@IX +off	4	2	(A) \leftarrow (AL) \forall ((IX) + off)	-	-	-	$++\mathrm{R}-$	56
XOR A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall(\mathrm{Ri})$	-	-	-	$++\mathrm{R}-$	58 to 5F
AND A	2		$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge(\mathrm{TL})$	-	-	-	$++\mathrm{R}-$	62
AND A,\#d8	2	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge \mathrm{d} 8$	-	-	-	$++\mathrm{R}-$	64
AND A,dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge($ dir $)$	-	-	-	+ + R -	65

(Continued)

Mnemonic	\sim	\#	Operation	TL	TH	AH	NZVC	OP code
AND A,@EP	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge((\mathrm{EP})$)	-	-	-	+ + R -	67
AND A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge((\mathrm{IX})+\mathrm{off})$	-	-	-	+ + R -	66
AND A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge(\mathrm{Ri})$	-	-	-	$++\mathrm{R}-$	68 to 6F
OR A	2	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee(\mathrm{TL})$	-	-	-	$++\mathrm{R}-$	72
OR A,\#d8	2	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee \mathrm{d} 8$	-	-	-	$++\mathrm{R}-$	74
OR A,dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee($ dir $)$	-	-	-	+ + R -	75
OR A,@EP	3	1	$(A) \leftarrow(A L) \vee((E P))$	-	-	-	$++\mathrm{R}-$	77
OR A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee((\mathrm{IX})+$ off $)$	-	-	-	$++\mathrm{R}-$	76
OR A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee(\mathrm{Ri})$	-	-	-	+ + R -	78 to 7F
CMP dir,\#d8	5	3	(dir) - d8	-	-	-	+ + + +	95
CMP @EP,\#d8	4	2	((EP)) - d8	-	-	-	+ + + +	97
CMP @IX +off,\#d8	5	3	((IX) +off) - d8	-	-	-	+ + + +	96
CMP Ri,\#d8	4	2	(Ri) - d8	-	-	-	+ + + +	98 to 9F
INCW SP	3	1	$(\mathrm{SP}) \leftarrow(\mathrm{SP})+1$	-	-	-	----	C1
DECW SP	3	1	$(\mathrm{SP}) \leftarrow(\mathrm{SP})-1$	-	-	-	----	D1

Table 4 Branch Instructions (17 instructions)

Mnemonic	\sim	\#	Operation	TL	TH	AH	NZVC	OP code
BZ/BEQ rel	3	2	If $Z=1$ then $P C \leftarrow P C+$ rel	-	-	-	----	FD
BNZ/BNE rel	3	2	If $Z=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FC
BC/BLO rel	3	2	If $\mathrm{C}=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	F9
BNC/BHS rel	3	2	If $\mathrm{C}=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}$ + rel	-	-	-	----	F8
BN rel	3	2	If $\mathrm{N}=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}$ + rel	-	-	-	----	FB
BP rel	3	2	If $\mathrm{N}=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FA
BLT rel	3	2	If $V \forall \mathrm{~N}=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{rel}$	-	-	-	----	FF
BGE rel	3	2	If $V \forall \mathrm{~N}=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FE
BBC dir: b,rel	5	3	If (dir: b) $=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{rel}$	-	-	-	-+--	B0 to B7
BBS dir: b,rel	5	3	If (dir: b) $=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	_	- + - -	B 8 to BF
JMP @A	2	1	$(\mathrm{PC}) \leftarrow(\mathrm{A})$	-	-	-	----	E0
JMP ext	3	3	$(\mathrm{PC}) \leftarrow \mathrm{ext}$	-	-	-	----	21
CALLV \#vct	6	1	Vector call	-	-	-	----	E8 to EF
CALL ext	6	3	Subroutine call	-	-	-	----	31
XCHW A,PC	3	1	$(\mathrm{PC}) \leftarrow(\mathrm{A}),(\mathrm{A}) \leftarrow(\mathrm{PC})+1$	-	-	dH	--- -	F4
RET	4	1	Return from subrountine	_	_	-		20
RETI	6	1	Return form interrupt	-	-	-	Restore	30

Table 5 Other Instructions (9 instructions)

Mnemonic	\sim	$\#$	Operation	TL	TH	AH	NZ V C	OP code
PUSHW A	4	1		-	-	-	----	40
POPW A	4	1			-	dH	----	50
PUSHW IX	4	1			-	-	-	----
POPW IX	4	1		-	-	-	----	51
NOP	1	1		-	-	-	----	00
CLRC	1	1			-	-	-	$----S$
SETC	1	1			-	-	-	----
CLRI	1	1			-	-	-	----
SETI	1	1				91		

INSTRUCTION MAP

レ		\sum_{i}^{0}	$\sum_{\sum^{0}}^{\frac{x}{\alpha_{2}^{\prime}}}$						$\sum_{0}^{\text {o }}$	O	－	玄	$\sum_{\mathrm{m}}^{\text {인 }}$	N	흔	$\stackrel{\square}{\square}$
ш	$\begin{aligned} & \stackrel{\boxed{8}}{8} \\ & \sum_{\lambda}^{0} \end{aligned}$	$\sum_{\sum_{2}^{0}}^{\substack{\infty \\ \infty}}$	$\sum_{\sum_{2}^{0}}^{\substack{x}}$	$\sum_{i}^{\text {® }}$					㤩			寻		华	首	$\begin{aligned} & \text { \# } \\ & \text { 完 } \end{aligned}$
－	$3_{\substack{\text { un }}}^{\ll}$	${\underset{\substack{0 \\ 0}}{\text { n }}}^{\text {n }}$	$\overbrace{\substack{\text { 3 } \\ \text { 品 }}}^{\times}$	${\underset{\sim}{u}}_{\text {岂 }}^{\text {邑 }}$	$\sum_{\sum_{i}^{\circ}}^{\stackrel{\boxed{4}}{\boxed{8}}}$				오 움		$\underbrace{\text { ベ }}_{\text {ベ }}$	$\underbrace{\substack{\text { ® } \\ 0}}_{\text {® }}$		$\underbrace{\text { ® }}_{\text {® }}$	$\underbrace{\stackrel{\circ}{\square}}_{\text {O }}$	
0	${\underset{U}{\text { < }}}^{\text {4 }}$		${\underset{i}{\text { 亿 }}}_{\substack{x}}$		$\sum_{\sum_{2}^{0}}^{\stackrel{\text { K }}{8}}$	$\sum_{\sum_{i}^{0}}^{\text {シ" }}$			$\begin{aligned} & \text { 온 } \\ & \underline{\mathrm{O}} \end{aligned}$	$\begin{aligned} & \overline{\text { r }} \\ & \underline{0} \end{aligned}$	$\begin{aligned} & \text { ̃ } \\ & \underline{\mathbb{I}} \end{aligned}$	$\begin{aligned} & \text { 毋ٌ } \\ & \underset{\geqq}{\text { ® }} \end{aligned}$	$\begin{aligned} & \stackrel{ \pm}{ \pm} \\ & \underline{\underline{\Sigma}} \end{aligned}$			$\begin{aligned} & \hat{x} \\ & \underline{\underline{x}} \end{aligned}$
\boldsymbol{m}																
《	$\underbrace{\text { 号 }}$	$\underbrace{\text { 品 }}$					${\underset{\sim}{\underset{\sim}{0}}}^{\stackrel{i+i}{\bar{\circ}}}$									
の	忎	O		$\sum_{\sum_{2}^{0}}^{\stackrel{区}{\otimes}}$	$\stackrel{\infty}{0}$			$\sum_{0}^{\frac{\infty}{c}}$		$\sum_{i}^{\frac{\infty}{0}}$						$\sum_{0}^{\frac{\infty}{i+i}}$
∞	$\stackrel{\bar{x}}{\mathrm{~J}}$	$\begin{aligned} & \text { U } \\ & \text { U } \end{aligned}$		$\sum_{i}^{\stackrel{\llcorner }{0}}$	$\frac{\pi}{4}$				io	$\sum_{\sum}^{\frac{\text { D }}{\text { D }}}$		$\sum_{\Sigma}^{\text {ס }}$			ס	
N		$\sum_{\sum_{2}^{\infty}}^{\substack{\infty}}$	¢	${\underset{\underset{\sim}{0}}{\underset{\sim}{r}}}_{\substack{4}}$	$\underset{\sim}{\substack{\text { 亮 }}}$	$\stackrel{\text { 言 }}{\substack{\text { ® }}}$										
\bullet			${ }^{<}$	$\sum_{\sum_{<}^{2}}$	$\sum_{i}^{\frac{\text { 目 }}{\text { 若 }}}$			号苍苍	只苜	$\sum_{i}^{\stackrel{\Gamma}{<}}$						
15	3_{0}^{4}	$\begin{aligned} & \underset{0}{x} \\ & \substack{0 \\ 0} \end{aligned}$						苍								
ナ		${\underset{3}{3}}_{{\underset{N}{5}}_{\substack{2}}^{x}}$	$\stackrel{\leftarrow}{\substack{\text { ᄃ } \\ \text { 둣 }}}$						${\underset{\Sigma}{\text { ® }}}^{\text {cio }}$		${\underset{\Sigma}{\text { D }}}_{\substack{\text { ® }}}$		$\rangle_{\sum}^{\stackrel{\star}{\text { ® }}}$			
\cdots	$\underset{\sim}{\underset{\sim}{\mid}}$															
N	$\underset{\sim}{\text { ¢ }}$	$\sum_{=}^{\frac{0}{\frac{1}{ㄴ}}}{ }^{\frac{0}{\pi}}$	$\underbrace{\ll}$	$\begin{aligned} & z_{0}^{<} \\ & 0 \\ & \text { 芫 } \end{aligned}$	$\begin{aligned} & \text { 骂 } \\ & \text { 葉 } \\ & \text { 完 } \end{aligned}$			$\begin{aligned} & \text { 岂 } \\ & \text { 苍 } \\ & \text { 宅 } \end{aligned}$	呙䓘	Ợ	ợ			Oix		㑒䔎
－	$\underset{\infty}{\stackrel{0}{2}}$	$\gtrless_{0}^{<}$	\sum_{0}^{1}	\sum_{0}^{2}	$\sum_{0}^{\frac{\text { 另 }}{\text { 角 }}}$		$\sum_{0}^{\frac{\text { 훈 }}{x}}$	\sum_{0}^{n}	\sum_{0}°	$\sum_{0}^{\frac{\Gamma}{x}}$	\sum_{0}^{n}	$\sum_{0}^{\frac{\infty}{\mathbb{N}}}$	\sum_{0}^{n}	\sum_{0}^{n}	\sum_{0}^{n}	\sum_{0}^{n}
0	$\stackrel{0}{2}$		$\stackrel{1}{0}^{4}$		${\underset{\Sigma}{\text { ol }}}_{\substack{\text { 品 }}}$								$\sum_{\sum}^{\stackrel{\text { d }}{\text { ® }}}$	$\gtrless_{\sum}^{\text {ठ }}$		
	0	－	N	の	－	\ldots	\bullet	N	∞	の	＜	$\boldsymbol{\square}$	0	0	ш	レ

MASK OPTIONS

No.	Part number	MB89821/823	MB89P825	MB89PV820
	Specifying procedure	Specify when ordering masking	Set with EPROM programmer	$\begin{gathered}\text { Setting not } \\ \text { possible (Fixed) }\end{gathered}$
1	Pull-up resistors P20 to P25, P30 to P33, P40 to P45	Selectable by pin	Can be set per pin	Without pull-up resistor
2	Power-on reset With power-on reset Without power-on reset	Selectable	Can be set	With power-on reset
3	Oscillation stabilization time selection $\left(\mathrm{F}_{\mathrm{c}}=5 \mathrm{MHz}\right)^{+1}$ Approx. ${ }^{17 / F c}$ (Approx. 26.2 ms) Approx. $2^{13} / \mathrm{Fc}$ (Approx. 1.64 ms)	Selectable	Can be set	Oscillation stabilization time Approx. $2^{17 / F c}$ (Approx. 26.2 ms)
4	Reset pin output With reset output Without reset output	Selectable	Can be set	With reset output
5	Segment output switching 50 segments: No port selection 49 segments: Selection of P17 48 segments: Selection of P17 to P16 46 segments: Selection of P17 to P14 42 segments: Selection of P17 to P10 34 segments: Selection of P17 to P10 and P07 to P00	Selectable*2	Can be set ${ }^{3}$	Can be set ${ }^{3}$

*1: The oscillation settling time is generated by dividing the oscillation clock frequency. Since the oscillation period is not stable immediately after oscillation has been started, therefore, the oscillation settling time in the above list should be regarded as a reference.
*2: Port selection must be same setting of the segment output selection register of LCD controller.
*3: Note that, when ports are set, the input voltage value for the port pins are different from those for mask ROM products.
Ports are set by the register setting of the segment output selection register of LCD controller.

- ORDERING INFORMATION

Part number	Package	Remarks
MB89821PFM	80-pin Plastic QFP (FPT-80P-M11)	
MB89823PFM	MB89825PFM	80-pin Ceramic MQFP (MQP-80C-P01)

MB89820 Series

PACKAGE DIMENSIONS

80-pin Plastic QFP
 (FPT-80P-M11)

(c) 19.94 FII.IITSII IIMITFO F80n16S-1S.-2

Dimensions in mm (inches)

80-pin Ceramic MQFP

(MQP-80P-P01)

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-88, Japan
Tel: (044) 754-3753
Fax: (044) 754-3329
North and South America
FUJITSU MICROELECTRONICS, INC.
Semiconductor Division
3545 North First Street
San Jose, CA 95134-1804, U.S.A.
Tel: (408) 922-9000
Fax: (408) 432-9044/9045

Europe

FUJITSU MIKROELEKTRONIK GmbH
Am Siebenstein 6-10
63303 Dreieich-Buchschlag
Germany
Tel: (06103) 690-0
Fax: (06103) 690-122

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LIMITED \#05-08, 151 Lorong Chuan
New Tech Park
Singapore 556741
Tel: (65) 2810770
Fax: (65) 2810220

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.

