Data Sheet July 1999 File Number 3603.3 ## Bidirectional Transient Surge Suppressors (TO-202 Surgector) These surgector devices are designed to protect telecommunication equipment, data links, alarm systems, power supplies and other sensitive electrical circuits from damage by switching transients, lightning strikes, load changes, commutation spikes and line crosses. Bidirectional surgector devices are constructed with a thyristor whose gate region contains a special diffused section which acts as a zener diode. This zener diode section permits anode voltage turn on of the structure. Initial clamping by the zener diode section, and fast turn on by the thyristor, provide excellent voltage limiting even on very fast rise time transients. The thyristor also features high holding current, which allows the surgector to recover to its high impedance off state after a transient. All these devices are supplied in a 2 lead, modified TO-202 package. # **Equivalent Schematic Symbols** ### **Features** - · Rated for Peak Transient Surge Current - · High Minimum Holding Current - · Low On-State Voltage - UL Recognized File #E135010 to STD 497B ## **Applications** - · Secondary Protectors for: - Telephone - FAX - Modem - Line Cards - SLIC - · Alarm Systems ## **Packaging** **MODIFIED TO-202** # SGT23B13, SGT27B13, SGT27B27 # **Absolute Maximum Ratings** $T_C = 25^{\circ}C$ | | SGT23B13 | SGT27B13 | SGT27B27 | UNITS | |---|------------|------------|------------|-------| | Continuous Off State Voltage: | | | | | | V _{DM} | 200 | 235 | 235 | V | | V _{RM} | 200 | 235 | 235 | V | | Transient Peak Surge Current | | | | | | 1μs x 2μs (Note 1) | 300 | 300 | 600 | Α | | 8µs x 20µs | 200 | 200 | 400 | Α | | 10μs x 560μs | 125 | 125 | 250 | Α | | 10μs x 1000μs | 100 | 100 | 200 | Α | | One Half Cycle 50Hz to 60Hz (Note 2) | 60 | 60 | 60 | Α | | One Second | 30 | 30 | 30 | Α | | Operating Temperature (T _A) | -40 to 85 | -40 to 85 | -40 to 85 | οС | | Storage Temperature Range (T _{STG}) | -40 to 150 | -40 to 150 | -40 to 150 | oC | | NOTES: | | | | | ^{1.} Unit designed not to fail open below: 900A. CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. # **Electrical Specifications** At Case Temperature, $T_C = 25^{\circ}C$, Unless Otherwise Specified | PARAMETER | SYMBOL | TEST CONDITIONS | MIN | TYP | MAX | UNITS | |---|-----------------|---|-------------------|----------------|-------------------|----------------| | $T_{A} = 25^{\circ}C$ | | Maximum Rated V_{DM} , V_{RM} $T_A = 25^{\circ}C$ $T_A = 85^{\circ}C$ | | | 200
100 | nA
μA | | Clamping Voltage
SGT27B27
SGT23B13
SGT27B13 | V _Z | Ι _Ζ < 200μΑ | 270
230
270 | -
-
- | 325
270
325 | V
V
V | | Breakover Voltage
SGT27B27
SGT23B13
SGT27B13 | V _{BO} | dv/dt = 100V/μs | | -
-
- | 345
240
345 | V
V
V | | Holding Current
SGT27B27
SGT23B13
SGT27B13 | I _H | | 270
130
130 | -
-
- | -
-
- | mA
mA
mA | | On-State Voltage | V _T | I _T = 10A | - | - | 2 | V | | Main Terminal Capacitance
SGT27B27
SGT23B13
SGT27B13 | C _O | V _{DM} = V _{RM} = 50V,
Frequency = 1MHz | -
-
- | 80
50
50 | -
-
- | pF
pF
pF | ^{2.} One every 30s maximum. ### **Performance Curves** FIGURE 1. TYPICAL VOLT-AMPERE CHARACTERISTICS **FOR ALL TYPES** FIGURE 3. TYPICAL CAPACITANCE vs VOLTAGE FOR **SGT27B27** FIGURE 5. NORMALIZED $V_{\mbox{\footnotesize{BO}}}$ vs dv/dt FOR ALL TYPES FIGURE 2. TYPICAL CAPACITANCE vs VOLTAGE FOR SGT23B13 AND SGT27B13 FIGURE 4. NORMALIZED ZENER VOLTAGE vs **TEMPERATURE FOR ALL TYPES** FIGURE 6. NORMALIZED HOLDING CURRENT vs **TEMPERATURE FOR ALL TYPES** ### Mechanical Dimensions #### **TO-202 Modified** ### 2 LEAD JEDEC STYLE TO-202 SHORT TAB PLASTIC PACKAGE | | INCHES | | MILLIMETERS | | | |----------------|--------|-------|-------------|-------|---------| | SYMBOL | MIN | MAX | MIN | MAX | NOTES | | Α | 0.130 | 0.150 | 3.31 | 3.81 | - | | b | 0.024 | 0.028 | 0.61 | 0.71 | 2, 3 | | b ₁ | 0.045 | 0.055 | 1.15 | 1.39 | 1, 2, 3 | | b ₂ | 0.270 | 0.280 | 6.86 | 7.11 | - | | С | 0.018 | 0.022 | 0.46 | 0.55 | 1, 2, 3 | | D | 0.320 | 0.340 | 8.13 | 8.63 | - | | Е | 0.340 | 0.360 | 8.64 | 9.14 | - | | e ₁ | 0.200 | BSC | 5.08 | BSC | 4 | | H ₁ | 0.080 | 0.100 | 2.04 | 2.54 | - | | J ₁ | 0.039 | 0.049 | 1.00 | 1.24 | 5 | | L | 0.410 | 0.440 | 10.42 | 11.17 | - | | L ₁ | 0.080 | 0.100 | 2.04 | 2.54 | 1 | #### NOTES: - 1. Lead dimension and finish uncontrolled in L₁. - 2. Lead dimension (without solder). - 3. Add typically 0.002 inches (0.05mm) for solder coating. - 4. Position of lead to be measured 0.250 inches (6.35mm) from bottom of dimension D. - Position of lead to be measured 0.100 inches (2.54mm) from bottom of dimension D. - 6. Controlling dimension: Inch. - 7. Revision 3 dated 10-94. # Ordering Information ## Terms and Symbols **V_{DM}** (Maximum Off-State Voltage) - Maximum off-state voltage (DC or peak) which may be applied continuously. **V_{RM} (Maximum Reverse Voltage) -** Maximum reverse-blocking voltage (DC or peak) which may be applied. I_{TSM} (Maximum Peak Surge Current) - Maximum nonrepetitive current which may be allowed to flow for the time state. **T_A** (Ambient Operating Temperature) - Ambient temperature range permitted during operation in a circuit. **T_{STG}** (Storage Temperature) - Temperature range permitted during storage. I_{DM} (Off-State Current) - Maximum value of off-state current that results from the application of the maximum off-state voltage (V_{DM}). I_{RM} (Reverse Current) - Maximum value of reverse current that results from the application of the maximum reverse voltage (V_{RM}). **V_Z** (Clamping Voltage) - Off-state voltage at a specified current. **V_{BO}** (Breakdown Voltage) - Voltage at which the device switches from the off-state to the on-state. **I_H (Holding Current) -** Minimum on-state current that will hold the device in the on-state after it has been latched on. $\mbox{\bf V}_{\mbox{\bf T}}$ (On-State Voltage) - Voltage across the main terminals for a specified on-state current. **C_O** (Main Terminal Capacitance) - Capacitance between the main terminals at a specified off-state voltage.