HD44780U (LCD-II)

(Dot Matrix Liquid Crystal Display Controller/Driver)

Description

The HD44780U dot-matrix liquid crystal display controller and driver LSI displays alphanumerics, Japanese kana characters, and symbols. It can be configured to drive a dot-matrix liquid crystal display under the control of a 4- or 8-bit microprocessor. Since all the functions such as display RAM, character generator, and liquid crystal driver, required for driving a dot-matrix liquid crystal display are internally provided on one chip, a minimal system can be interfaced with this controller/driver.

A single HD44780U can display up to one 8-character line or two 8-character lines.

The HD44780U has pin function compatibility with the HD44780S which allows the user to easily replace an LCD-II with an HD44780U. The HD44780U character generator ROM is extended to generate 208.5×8 dot character fonts and 32.5×10 dot character fonts for a total of 240 different character fonts.

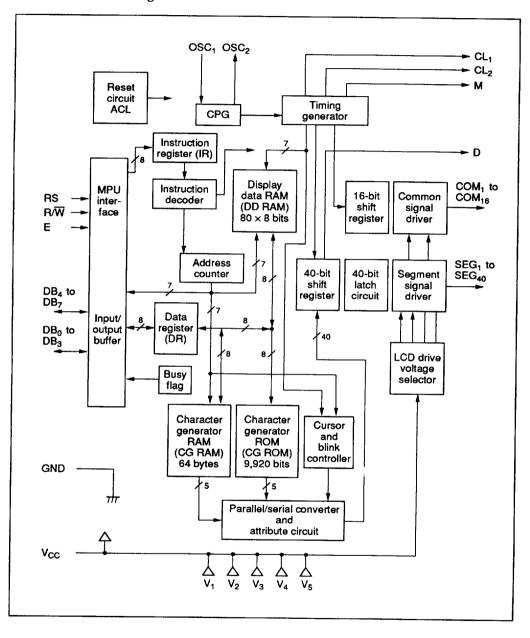
The low power supply (2.7 V to 5.5 V) of the HD44780U is suitable for any portable battery-driven product requiring low power dissipation.

Features

- 5 × 8 and 5 × 10 dot matrix possible
- Low power operation support:
 2.7 to 5.5 V
- Wide range of liquid crystal display driver power
 - 3.0 to 11 V
- · Liquid crystal drive waveform
 - A (One line frequency AC waveform)
- Correspond to high speed MPU bus interface
 2 MHz (when V_{CC} = 5 V)
- · 4-bit or 8-bit MPU interface enabled

- 80 × 8-bit display RAM (80 characters max.)
- 9,920-bit character generator ROM for a total of 240 character fonts
 - 208 character fonts (5 × 8 dot)
 - 32 character fonts (5 × 10 dot)
- 64 × 8-bit character generator RAM
 - -8 character fonts $(5 \times 8 \text{ dot})$
 - 4 character fonts (5 × 10 dot)
- 16-common × 40-segment liquid crystal display driver
- · Programmable duty cycles
 - -1/8 for one line of 5×8 dots with cursor
 - -1/11 for one line of 5×10 dots with cursor
 - -1/16 for two lines of 5×8 dots with cursor
- Wide range of instruction functions:
 - Display clear, cursor home, display on/off, cursor on/off, display character blink, cursor shift, display shift
- Pin function compatibility with HD44780S
- Automatic reset circuit that initializes the controller/driver after power on
- · Internal oscillator with external resistors
- Low power consumption

Ordering Information


Туре No.	Package	CG ROM
HD44780UA00FS HCD44780UA00 HD44780UA00TF*	FP-80B Chip TFP-80	Japanese standard font
HD44780UA01FS* HD44780UA02FS*	FP-80B FP-80B	Standard font for communica- tion, European standard font
HD44780UBxxFS HCD44780UBxx HD44780UBxxTF	FP-80B Chip TFP-80	Custom font

Note: * Under development xx: ROM code No.

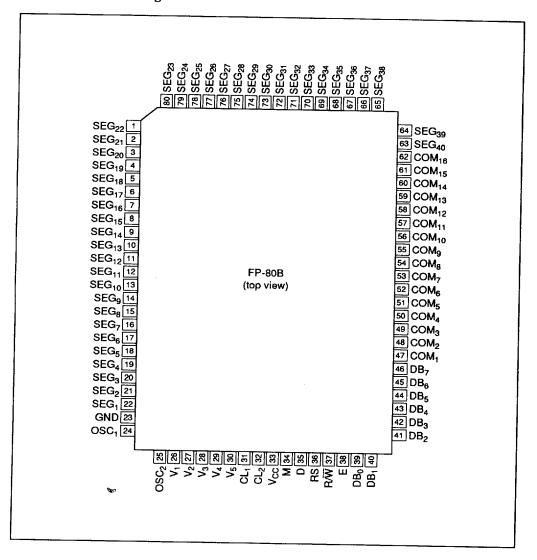
HITACHI

<u>____</u>

HD44780U Block Diagram

HITACHI

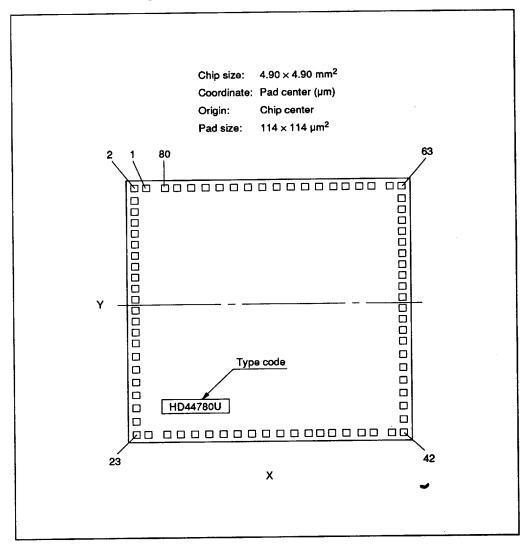
4496204 0046011 3TO 📟


LCD-II Family Comparison

Item			HD44780S	HD66780 (LCD-II/A)	HD44780U				
Power sup	ply voltag	je	5 V ±10%	5 V ±10%	2.7 to 5.5 V				
Liquid crys		1/4 bias	3.0 to 11.0 V	3.0 V to V _{CC}	3.0 to 11.0 V				
voltage V _L	CD	1/5 bias	4.6 to 11.0 V	3.0 V to V _{CC}	3.0 to 11.0 V				
Maximum digits per d			16 digits (8 digits × 2 lines)	16 digits (8 digits × 2 lines)	16 digits (8 digits × 2 lines)				
Display du	ty cycle		1/8, 1/11, and 1/16	1/8, 1/11, and 1/16	1/8, 1/11, and 1/16				
CGROM			7,200 bits (160 character fonts for 5 × 7 dot and 32 character fonts for 5 × 10 dot)	12,000 bits (240 character fonts for 5 × 10 dot)	9,920 bits (208 character fonts for 5×8 dot and 32 character fonts for 5×10 dot)				
CGRAM			64 bytes	64 bytes	64 bytes				
DDRAM			80 bytes	80 bytes	80 bytes				
Segment s	ignals		40	40	40				
Common s	ignals		16	16	16				
Liquid crys	tal drive v	waveform	Α	В	Α				
Oscillator	Clock s	ource	External resistor, external ceramic filter, or external clock	External resistor, external ceramic filter, or external clock	External resistor or external clock				
	R _f oscil frequen frequen	cy (frame	270 kHz ±30% (59 to 110 Hz for 1/8 and 1/16 duty cycles; 43 to 80 Hz for 1/11 duty cycle)	270 kHz ±30% (59 to 110 Hz for 1/8 and 1/16 duty cycles; 43 to 80 Hz for 1/11 duty cycle)	270 kHz ±30% (59 to 110 Hz for 1/8 and 1/16 duty cycles; 43 to 80 Hz for 1/11 duty cycle)				
R _f resistance			91 kΩ ±2%	82 kΩ ±2%	91 k Ω ±2% (when V _{CC} = 5 V) 75 k Ω ±2% (when V _{CC} = 3 V)				
nstructions			Fully compatible within	the HD44780S					
CPU bus ti	ming		1 MHz	2 MHz	1 MHz (when V _{CC} = 3 V) 2 MHz (when V _{CC} = 5 V)				
Package			FP-80	FP-80B	FP-80B				

HITACHI

... 4496204 0046012 237 **....**


HD44780U Pin Arrangement

HITACHI

4496204 0046013 173

HD44780U Pad Arrangement

HITACHI

218

📕 4496204 0046014 00T 💳

HCD44780U Pad Location Coordinates

		Co	ordinate
Pad No.	Function	X (um)	Y (um)
1	SEG ₂₂	-2100	2313
2	SEG ₂₁	-2280	2313
3	SEG ₂₀	-2313	2089
4	SEG ₁₉	-2313	1833
5	SEG ₁₈	-2313	1617
6	SEG ₁₇	-2313	1401
7	SEG ₁₆	-2313	1186
8	SEG ₁₅	-2313	970
9	SEG ₁₄	-2313	755
10	SEG ₁₃	-2313	539
11	SEG ₁₂	-2313	323
12	SEG ₁₁	-2313	108
13	SEG ₁₀	-2313	-108
14	SEG ₉	-2313	-323
15	SEG ₈	-2313	-539
16	SEG ₇	-2313	-755
17	SEG ₆	-2313	-970
18	SEG ₅	-2313	1186
19	SEG ₄	-2313	-1401
20	SEG ₃	-2313	-1617
21	SEG ₂	-2313	-1833
22	SEG ₁	-2313	-2073
23	GND	-2280	-2290
24	OSC ₁	2080	-2290
25	OSC ₂	-1749	-2290
26	V ₁	-1550	-2290
27	V ₂	-1268	-2290
28	V ₃	-941	-2290
29	V ₄	-623	-2290
30	V ₅	-304	-2290
31	CL ₁	-48	-2290
32	CL ₂	142	-2290
33	V _{CC}	309	-2290
34	М	475	-2290
35	D	665	-2290
36	RS	832	-2290
37	R/W	1022	-2290
38	E	1204	-2290
39	DB ₀	1454	-2290
40	DB ₁	1684	-2290

		Co	ordinate
Pad No.	Function	X (um)	Y (um)
41	DB ₂	2070	-2290
42	DB ₃	2260	-2290
43	DB ₄	2290	-2099
44	DB ₅	2290	-1883
45	DB ₆	2290	-1667
46	DB ₇	2290	-1452
47	COM ₁	2313	-1186
48	COM ₂	2313	-970
49	COM ₃	2313	-755
50	COM₄	2313	-539
51	COM ₅	2313	-323
52	COM ₆	2313	-108
53	COM ₇	2313	108
54	COM ₈	2313	323
55	COM ₉	2313	539
56	COM ₁₀	2313	755
57	COM ₁₁	2313	970
58	COM ₁₂	2313	1186
59	COM ₁₃	2313	1401
60	COM ₁₄	2313	1617
61	COM ₁₅	2313	1833
62	COM ₁₆	2313	2095
63	SEG ₄₀	2296	2313
64	SEG ₃₉	2100	2313
65	SEG ₃₈	1617	2313
66	SEG ₃₇	1401	2313
67	SEG ₃₆	1186	2313
68	SEG ₃₅	970	2313
69	SEG ₃₄	755	2313
70	SEG ₃₃	539	2313
71	SEG ₃₂	323	2313
72	SEG ₃₁	108	2313
73	SEG ₃₀	-108	2313
74	SEG ₂₉	-323	2313
75	SEG ₂₈	-539	2313
76	SEG ₂₇	755	2313
77	SEG ₂₆	-970	2313
78	SEG ₂₅	-1186	2313
79	SEG ₂₄	-1401	2313
80	SEG ₂₃	-1617	2313

HITACHI

■ 4496204 0046015 T46 **■**

Pin Functions

Signal	No. of Lines	VO	Device Interfaced with	Function
RS	1	ı	MPU	Selects registers. 0: Instruction register (for write) Busy flag: address counter (for read) 1: Data register (for write and read)
R/W	1	ı	MPU	Selects read or write. 0: Write 1: Read
E	1	Ī	MPU	Starts data read/write
DB ₄ to DB ₇	4	1/0	MPU	Four high order bidirectional tristate data bus pins. Used for data transfer and receive between the MPU and the HD44780U. DB ₇ can be used as a busy flag.
DB ₀ to DB ₃	4	1/0	MPU	Four low order bidirectional tristate data bus pins. Used for data transfer and receive between the MPU and the HD44780U. These pins are not used during 4-bit operation.
CL ₁	1	0	HD44100	Clock to latch serial data D sent to the HD44100 driver
CL ₂	1	0	HD44100	Clock to shift serial data D
M	1	0	HD44100	Switch signal for converting the liquid crystal drive waveform to AC
D	1	0	HD44100	Character pattern data corresponding to each segment signal
COM ₁ to COM ₁₆	16	0	LCD	Common signals that are not used are changed to non-selection waveforms. COM ₉ to COM ₁₆ are non-selection waveforms at 1/8 duty factor and COM ₁₂ to COM ₁₆ are non-selection waveforms at 1/11 duty factor.
SEG ₁ to SEG ₄₀	40	0	LCD	Segment signals
V ₁ to V ₅	5	_	Power supply	Power supply for LCD drive V _{CC} -V _S = 11 V (max)
V _{CC} , GND	2	_	Power supply	V _{CC} : 2.7 V to 5.5 V, GND: 0 V
OSC ₁ , OSC ₂	2	_	Oscillation resistor clock	When crystal oscillation is performed, a resistor must be connected externally. When the pin input is an external clock, it must be input to OSC ₁ .

Function Description

Registers

The HD44780U has two 8-bit registers, an instruction register (IR) and a data register (DR).

The IR stores instruction codes, such as display clear and cursor shift, and address information for display data RAM (DD RAM) and character generator RAM (CG RAM). The IR can only be written from the MPU.

The DR temporarily stores data to be written into DD RAM or CG RAM and temporarily stores data to be read from DD RAM or CG RAM. Data written into the DR from the MPU is automatically written into DD RAM or CG RAM by an internal operation. The DR is also used for data storage when reading data from DD RAM or CG RAM. When address information is written into the IR. data is read and then stored into the DR from DD RAM or CG RAM by an internal operation. Data transfer between the MPU is then completed when the MPU reads the DR. After the read, data in DD RAM or CG RAM at the next address is sent to the DR for the next read from the MPU. By the register selector (RS) signal, these two registers can be selected (table 1).

Busy Flag (BF)

When the busy flag is 1, the HD44780U is in the internal operation mode, and the next instruction will not be accepted. When RS = 0 and $R/\overline{W} = 1$ (table 1), the busy flag is output to DB₇. The next instruction must be written after ensuring that the busy flag is 0.

Address Counter (AC)

The address counter (AC) assigns addresses to both DD RAM and CG RAM. When an address of an instruction is written into the IR, the address information is sent from the IR to the AC. Selection of either DD RAM or CG RAM is also determined concurrently by the instruction.

After writing into (reading from) DD RAM or CG RAM, the AC is automatically incremented by 1 (decremented by 1). The AC contents are then output to DB_0 to DB_6 when RS = 0 and $R/\overline{W} = 1$ (table 1).

Table 1 Register Selection

RS	R/W	Operation
0	0	IR write as an internal operation (display clear, etc.)
0	1	Read busy flag (DB ₇) and address counter (DB ₀ to DB ₆)
1	0	DR write as an internal operation (DR to DD RAM or CG RAM)
1	1	DR read as an internal operation (DD RAM or CG RAM to DR)

HITACHI

4496204 0046017 819 **=**

Display Data RAM (DD RAM)

Display data RAM (DD RAM) stores display data represented in 8-bit character codes. Its extended capacity is 80×8 bits, or 80 characters. The area in display data RAM (DD RAM) that is not used for display can be used as general data RAM. See figure 1 for the relationships between DD RAM addresses and positions on the liquid crystal display.

The DD RAM address (A_{DD}) is set in the address counter (AC) as hexadecimal.

- 1-line display (N = 0) (figure 2)
 - Case 1: When there are fewer than 80 display characters, the display begins at the head position. For example, if using only the HD44780, 8 characters are displayed. See figure 3.

When the display shift operation is performed, the DD RAM address shifts. See figure 3.

— Case 2: For a 16-character display, the HD44780 can be extended using one HD44100 and displayed. See figure 4.

When the display shift operation is performed, the DD RAM address shifts. See figure 4.

— Case 3: The relationship between the display position and DD RAM address when the number of display digits is increased through the use of two or more HD44100s can be considered as an extension of case #2.

Since the increase can be eight digits per additional HD44100, up to 80 digits can be displayed by externally connecting nine HD44100s. See figure 5.

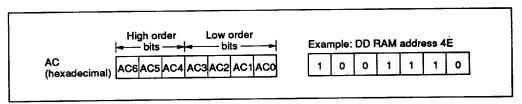


Figure 1 DD RAM Address

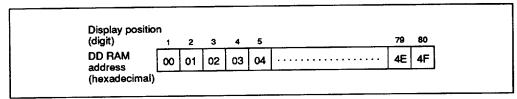


Figure 2 1-Line Display

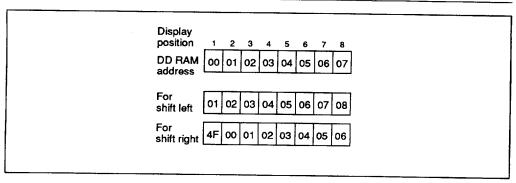


Figure 3 1-Line by 8-Character Display Example

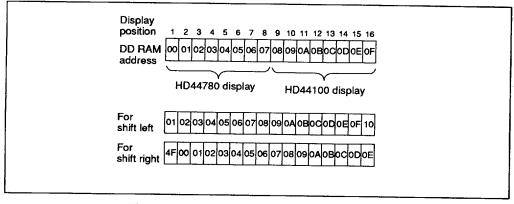


Figure 4 1-Line by 16-Character Display Example

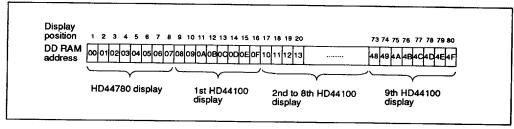


Figure 5 1-Line by 80-Character Display Example

2-line display (N = 1) (figure 6)

Case 1: When the number of display characters is less than 40×2 lines, the two lines are displayed from the head. Note that the first line end address and the second line start address are not

consecutive. For example, when just the HD44780 is used, 8 characters × 2 lines are displayed. See figure 7.

When display shift operation is performed, the DD RAM address shifts. See figure 7.

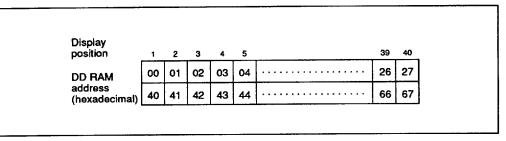


Figure 6 2-Line Display

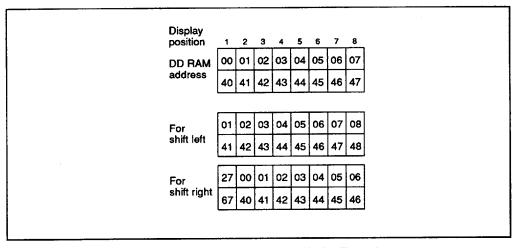


Figure 7 2-Line by 8-Character Display Example

 Case 2: For a 16-character × 2-line display, the HD44780 can be extended using one HD44100. See figure 8.

When display shift operation is performed, the DD RAM address shifts. See figure 8.

— Case 3: The relationship between the display position and DD RAM address

when the number of display digits is increased by using one HD44780U and two or more HD44100s, can be considered as an extension of case #2. See figure 9.

Since the increase can be 8 digits \times 2 lines for each additional HD44100, up to 40 digits \times 2 lines can be displayed by externally connecting four HD44100s.

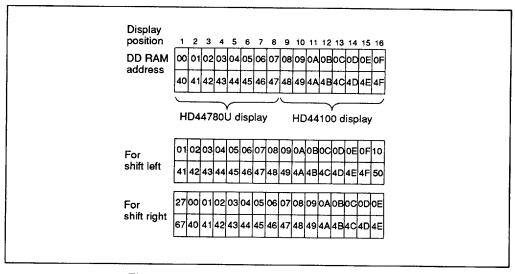


Figure 8 2-Line by 16-Character Display Example

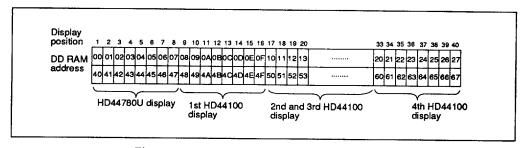


Figure 9 2-Line by 40-Character Display Example

HITACHI

■ 4496204 0046021 24T |

Character Generator ROM (CG ROM)

The character generator ROM generates 5×8 dot or 5×10 dot character patterns from 8-bit character codes (table 4). It can generate 208.5×8 dot character patterns and 32.5×10 dot character patterns. User-defined character patterns are also available by mask-programmed ROM.

Character Generator RAM (CG RAM)

In the character generator RAM, the user can rewrite character patterns by program. For 5×8 dots, eight character patterns can be written, and for 5×10 dots, four character patterns can be written.

Write into DD RAM the character codes at the addresses shown as the left column of table 4 to show the character patterns stored in CG RAM.

See table 5 for the relationship between CG RAM addresses and data and display patterns.

Areas that are not used for display can be used as general data RAM.

Modifying Character Patterns

Character pattern development procedure

The following operations correspond to the numbers listed in figure 10:

- Determine the correspondence between character codes and character patterns.
- Create a listing indicating the correspondence between EPROM addresses and data.
- Program the character patterns into the EPROM.
- Send the EPROM to Hitachi.
- Computer processing on the EPROM is performed at Hitachi to create a character pattern listing, which is sent to the user.
- 6. If there are no problems within the character pattern listing, a trial LSI is created at Hitachi and samples are sent to the user for evaluation. When it is confirmed by the user that the character patterns are correctly written, mass production of the LSI proceeds at Hitachi.

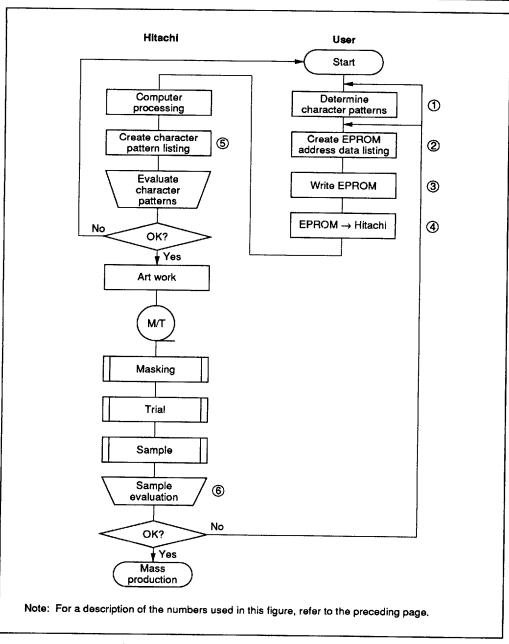


Figure 10 Character Pattern Development Procedure

HITACHI 1496204 0046023 012 ■

· Programming character patterns

This section explains the correspondence between addresses and data used to program character patterns in EPROM. The HD44780U character generator ROM can generate 208.5×8 dot character patterns and 32.5×10 dot character patterns for a total of 240 different character patterns.

- Character patterns

EPROM address data and character pattern data correspond with each other to form a 5×8 or 5×10 dot character pattern (tables 2 and 3).

Table 2 Example of Correspondence between EPROM Address Data and Character Pattern (5 × 8 dots)

				EPF	NOF	l Ad	dre	ss						Data	а			
A ₁₁	A ₁₀	Ag	, A ₈	A ₇	A ₆	A 5	Α4	A ₃	A ₂	Α1	Ao	04	03	02	01	LSB O ₀		
								0	0	0	0	3.	0	0	0	0		
								0	0	0	1		0	0	0	0		
								0	0	1	0		0	Ŧ.	ή,	0		
								0	0	1	1	1	×p.÷	0	0			
								0	1	0	0		0	0	0	13		
								0	1	0	1		0	0	0	1		
								0	1	1	0			1	1	0		
0	1	1	0	0	0	1	0	0	1	1	1	0	0	0	0	0	-	Cursor position
								1	0	0	0	0	0	0	0	0		
							İ	1	0	0	1	0	0	0	0	0		
								1	0	1	0	0	0	0	0	0		
								1	0	1	1	0	0	0	0	0		
								1		0	0	0	0	0	0	0		
								1		0	1	0	0	0	0	0		
								1			0	0	0	0	0	0		
								1	1	1	1	0	0	0	0	0		
	CI	hara	cter	cod	le				Line		1							

Notes: 1. EPROM addresses A₁₁ to A₃ correspond to a character code.

- 2. EPROM addresses A₃ to A₀ specify a line position of the character pattern.
- 3. EPROM data O₄ to O₀ correspond to character pattern data.
- EPROM data O₅ to O₇ must be specified as 0.
- 5. A lit display position (black) corresponds to a 1.
- 6. Line 9 and the following lines must be blanked with 0s for a 5 x 8 dot character fonts.

HITACHI

228

4496204 0046024 T59 **III**

- Handling unused character patterns
- 1. EPROM data outside the character pattern area: Always input 0s.
- 2. EPROM data in CG RAM area: Always input 0s. (Input 0s to EPROM addresses 00H to FFH.)
- 3. EPROM data used when the user does not use any HD44780U character pattern: According to the user application, handled in one of the two ways listed as follows.
- i. When unused character patterns are not programmed: If an unused character code is written into DD RAM, all its dots are lit. By not programing a character pattern, all of its bits become lit. (This is due to the EPROM being filled with 1s after it is erased.)
- ii. When unused character patterns are programmed as 0s: Nothing is displayed even if unused character codes are written into DD RAM. (This is equivalent to a space.)

Table 3 Example of Correspondence between EPROM Address Data and Character Pattern $(5 \times 10 \text{ dots})$

				EP	RON	A A	idre	SS						Dat	а]	
A ₁₁	A ₁ (Α,	A	3 A	7 A ₆	A 5	Α4	Α ₃	A ₂	Α1	Αo	04	03	02	01	LSB O ₀		
								0	0	0	0	0	0	0	0	0		
								0	0	0	1	0	0	0	0	0		
								0	0	1	0	0	No.	H	0			
							j	0	0	1	1		0	0	11	1		
								0	1	0	0	1.	0	0	0			
								0	1	0	1		0	0	0			
								0	1	1	0	0		1	1	1		
0	1	0	1	0	0	1	0	0	1	1	1	0	0	0	0	ġ.		
								1	0	0	0	0	0	0	0	j.		
								1	0	0	1	0	0	0	0			
							- [1	0	1	0	0	0	0	0	0	-	 Cursor posit
								1	0	1	1	0	0	0	0	0		
							İ	1	1	0	0	0	0	0	0	0		
								1	1	0	1	0	0	0	0	0		
								1	1	1 (0	0	0	0	0	0		
								1	1 '	1	1	0	0	0	0	0		
	Cł	nara	cter	coc	le				Line	1	_							

position

Notes: 1. EPROM addresses A₁₁ to A₃ correspond to a character code.

- 2. EPROM addresses A₃ to A₀ specify a line position of the character pattern.
- EPROM data O₄ to O₀ correspond to character pattern data.
- EPROM data O₅ to O₇ must be specified as 0.
- 5. A lit display position (black) corresponds to a 1.
- 6. Line 11 and the following lines must be blanked with 0s for a 5 x 10 dot character fonts.

HITACHI

4496204 0046025 995 1

Table 4 Correspondence between Character Codes and Character Patterns (ROM code: A00)

Lower Bits	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
xxxx0000	CG RAM (1)			Ø	āl	F	*.	F.					7	Ξ,	œ	۲
xxxx0001	(2)			1	H	Q	3	9				F	于	4	iŲ.	q
xxxx0010	(3)		11	2	B	R	b	r -			r	1	ij	×	ø	Ð
xxxx0011	(4)		#	3		5	C .	5			ı	Ϋ́	Ŧ	E	ιώ	60
xxxx0100	(5)		\$	4	D	T	d	t.			•	I	 -	†	-4	Ω
xxxx0101	(6)		1	5	E		e	u			•	7	;	1	Ð	Ü
xxxx0110	(7)		8.	6	F	Ü	f.	Ų			7	ŢŢ	****	3	ρ	Σ
xxxx0111	(8)			7	G	Į,j	ā	W			7	#	X	7	9	π
xxxx1000	(1)		ζ	8	H	X	h	X			4	.7	丰	ij	ŗ.	X
xxxx1001	(2))	9	I	Ÿ	i	Ή			÷	Ţ	ļ	ıĿ	-1	Ч
xxxx1010	(3)		*	=	J	Z	j.	Z			I		ľì	1	j	Ŧ
xxxx1011	(4)		+	7	K		k.	4			7	#			×	<u>.</u>
xxxx1100	(5)		7	<		¥					t	=,	Ţ	7	4	Ħ
xxxx1101	(6)			=	14		M	}			ュ	Z	^,	1=	Ł	··
xxxx1110	(7)			>	Н		n	÷			3	t	. †.		Fi	
xxxx1111	(8)		. *	•	U		0	+			""	<u>'</u> .J	7		Ö	

Note: The user can specify any pattern for character-generator RAM.

HITACHI

230

= 4496204 0046026 821 **=**

Table 4 Correspondence between Character Codes and Character Patterns (ROM code: A01)

Lower Upper	4 0000	0001	0010	0011	0100	0404	10440		T	1	T					
4 Bits	-	1000	10010			0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
xxxx0000	CG RAM (1)	13	<u> </u>	1.1	11	F'		E	1	E			9	Ξ.	月	.7
xxxx0001	(2)	i	İ	1	Ĥ	Q	æ		ü	产	0	F	手	4	日	于
xxxx0010	(3)	Ó	11	2	B	R	Ŀ	ŀ ~.	é	Æ	Γ	4	ij	у,	ÿ	ij
xxxx0011	(4)	Ú	#	3	C.	S	C.	5	ä	ô		ņ	Ŧ	E	円	÷
xxxx0100	(5)	ñ	李	4	D	I	겁	<u>t.</u>	∺	ö	•.	I	ŀ.	†·	中	Ŀ
xxxx0101	(6)	Ñ	7	5	E		ū	니	ij	Ò	=	7	ナ	1		2
xxxx0110	(7)	III	&	6	E	IJ	£.	Ų,I	ä	ü	亨	ţ	_	3	,	巴
cxxx0111	(8)	0	7	7	G	Ш	9	ĻJ	Ç.	<u>.</u>	ア	‡	X	5	ŧ	4.
xxx1000	(1)	ċ.	(8	Н	X	h	×	ë	<u>:</u>	.4	7	示	IJ	7	N.
xxx1001	(2)	8)	9	I	<u>''</u>	i	<u>'</u>	ë	Ö	pring	<u>'</u> T	J	IL.	• 🕇	#:
xxx1010	(3)	1-1	*		J	Z	j.	Z	ė	Ü	I		ù		j	1
xxx1011	(4)		+	7	K		Ŀ	•	ï	<u>+</u>	7	††	E		#	E
xxx1100	(5)	ŧ.		<		¥	1		i	Ŷ	†•	_,ı	Ţ	ņ	= ,1	7
xxx1101	(6)	i	_	=	11	1	m		i	*]	Z			7	
xxx1110	(7)	*		>	bl.	^	ti.	;	Ä	1:	3	†	†.		ţē.	Ţ.
ox1111	(8)	. .	••	?	0		<u>.</u>	÷	Ä	Ų,	1		ر ان		. j	

Table 4 Correspondence between Character Codes and Character Patterns (ROM code: A02)

Lower 4 Bits	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
xxxx0000	CG RAM (1)	þ		Ø	a	F	*.	Ė	Ш	Q		Ü	À	Ð	à	Ä
xxxx0001	(2)	4	I	1	Ĥ	Q	a	-1		-		+	Á	N	á	ñ
xxxx0010	(3)	££	11	2	В	R	Ŀ	t ~.	111	Γ	‡ .	2	Ä	Ò	ä	ċ
xxxx0011	(4)	77	#	3	C	S	C.	<u>:=.</u>		π	£	ii)	ìŒ	Ó	ä	ó
xxxx0100	(5)	土	\$	4	D	T	러	<u>t.</u>	H	Σ	<u></u> ,m;	Fŧ	Ä	ô	ä	ô
xxxx0101	(6)	Ŧ	7	5	E		₽	L	Й	σ	¥	14	Å	õ	å	õ
xxxx0110	(7)	#	8.	6	F	Ų	ť.	Ų	J	J	I I	9	Æ	Ö	æ	ö
xxxx0111	(8)	护	?	7	G	W	9	<u>L.J.</u>	П	τ.	8	=	S	X	宁	
xxxx1000	(1)	†	(8	H	X	h	×	3,1	#	; F	ω	Ė	₹	è	*
xxxx1001	(2)	4.)	9	I	Y	i	<u>'</u>	Ц	8	H	1	Ė	Ù	ė	Ù
xxxx1010	(3)	÷	*		J	Z	j.	Z	4	Ω	三	9	Ė	Ú	ė	ü
xxxx1011	(4)	÷	+	7	K	Г	k	{	Ш	δ	«	*	Ë	Û	ë	\Box
xxxx1100	(5)	<u> </u>	,	<	L	•	1		Щ	67	Ю	4	Ì	Ü	i	ij
xxxx1101	(6)	<u>></u>	_	=	M	1	m	}	Ъ	#	Я	×	Í	Ÿ	i	Ÿ
xxxx1110	(7)	土		Σ	Ы	•*•	h		Ы	ε.		34	Î	Þ	i	ŀ
xxxx1111	(8)	Ŧ		?	0		O	Û	3	Π	£.	ċ	Ϊ	8	ï	ÿ

Table 5 Relationship between CG RAM Addresses, Character Codes (DD RAM) and Character Patterns (CG RAM data)

For 5 x 8 dot character patterns

	C	ha (Di	ra D I	RA	er (Co da	des ta)	-		C	G F	?AN	I A	ddr	ess				cte				s	
7	6	5	5	4	3	2	1	0	i	5	4	3	2	1	0	7	6	5	4	3	2	1	0	
	ligt	1					Lo	w		F	ligi	1		Lo	w		ligh	1				L	ow	
0	0	0	١ (0	*	0	o	0		0	0	0	0 0 0 1 1 1		0	*	*	*	1 1 1 0	1001000	10011000		0 0	Character pattern (1)
0	0	0	C)	*	o	0	1		0	0	1	0 0 0 1 1 1	0 0 1 1 0 0 1 1	0 1 0 1 0 1 0	*	*	*	0	00-00		0 1 0 0	0 1 0	 Character pattern (2) Cursor position
				_		=					=		0	0	0	*	*	*				Ŭ	_ <u>`</u>	y consult postuon
0	0	0	0		•	1	1	1		1	1	1	1 1 1 1	0 0 1 1	0 1 0 1	*	*	*						

- Notes: 1. Character code bits 0 to 2 correspond to CG RAM address bits 3 to 5 (3 bits: 8 types).
 - 2. CG RAM address bits 0 to 2 designate the character pattern line position. The 8th line is the cursor position and its display is formed by a logical OR with the cursor. Maintain the 8th line data, corresponding to the cursor display position, at 0 as the cursor display. If the 8th line data is 1, 1 bits will light up the 8th line regardless of the cursor presence.
 - 3. Character pattern row positions correspond to CG RAM data bits 0 to 4 (bit 4 being at the left).
 - 4. As shown table 5, CG RAM character patterns are selected when character code bits 4 to 7 are all 0. However, since character code bit 3 has no effect, the R display example above can be selected by either character code 00H or 08H.
 - 5. 1 for CG RAM data corresponds to display selection and 0 to non-selection.
 - * Indicates no effect

Table 5 Relationship between CG RAM Addresses, Character Codes (DD RAM) and Character Patterns (CG RAM data) (cont)

For 5 × 10 dot character patterns

	Character Codes (DD RAM data)						CG RAM Address							Character Patterns (CG RAM data)														
7	6		5	4	3	3	2	1	()	5	4	3	:	2	1	0		7	6	5	4	3	2	1	0	1	
+	ligt	1						L	ow		Н	igt	1			Lo	w		H	ligh	1				Lo	w		
-					_					+			; 0		0	0	0		*	*	*	; 0	0	0	0	0	1	1
													C		0	0	1			•		0	0		0	0		
													Ċ	1	0	1	0		Ì				0			0		
													C	1	0	1	1					41	1	0	0			
													C		1	0	0						0	-	0			Character
0	0	(0	0	*	k	0	0	•	*	0	0	C	1	1	0	1						0	0	Ú			pattern
										1			C	1	1	1	0			1				Service States				
													C		1	1	1						0		0	0		
													1		0	0	0		Ì				0	-	0	0		
													1		0	0	1			7		. 0	0	_	0	0	<	
										-	 				<u>0</u>	. <u>- 1</u> .	. <u>0</u> 1			*		-÷-					1	Cursor position
										-			1		1	ó	ò			A		-		À				
ĺ										-			1		1	ō	1			-		i						
													1		1	1	o			¥				¥				
													1		1	1	1		*	*	*		*	*	*	*	}	
\vdash										1			ļ)	0	0	0		*	*	*						1	
					_	_	_	_	_	_	 _	_	$\frac{1}{2}$)	0	0	1		ļ	•		-						
_														=	=	=	_		L	\perp		1_					1	
0	0	1	0	0	*	*	1	1		*	1	1	1		0	0	1			*		Т						
L										_	 ļ		41		0	. 1	0	 	*			- ¦				 -	-	
													1		С	1	1		*	*	*	*	*	*	*	*		
													1		1	0	0			Ť				Ť				
1											}		1		1	0	1			1				1				
											1		1		1	1	0			7								
L					_			_			L_				1_	_1	_1	<u> </u>	-	_				*	_		١	

Notes: 1. Character code bits 1 and 2 correspond to CG RAM address bits 4 and 5 (2 bits: 4 types).

- 2. CG RAM address bits 0 to 3 designate the character pattern line position. The 11th line is the cursor position and its display is formed by a logical OR with the cursor. Maintain the 11th line data corresponding to the cursor display position at 0 as the cursor display. If the 11th line data is "1", "1" bits will light up the 11th line regardless of the cursor presence. Since lines 12 to 16 are not used for display, they can be used for general data RAM.
- 3. Character pattern row positions are the same as 5×8 dot character pattern positions.
- 4. CG RAM character patterns are selected when character code bits 4 to 7 are all 0. However, since character code bits 0 and 3 have no effect, the P display example above can be selected by character codes 00H, 01H, 08H, and 09H.
- 5. 1 for CG RAM data corresponds to display selection and 0 to non-selection.
- * Indicates no effect.

Timing Generation Circuit

The timing generation circuit generates timing signals for the operation of internal circuits such as DD RAM, CG ROM and CG RAM. RAM read timing for display and internal operation timing by MPU access are generated separately to avoid interfering with each other. Therefore, when writing data to DD RAM, for example, there will be no undesirable interferences, such as flickering, in areas other than the display area. This circuit also generates timing signals for the operation of the externally connected HD44100 driver.

Liquid Crystal Display Driver Circuit

The liquid crystal display driver circuit consists of 16 common signal drivers and 40 segment signal drivers. When the character font and number of lines are selected by a program, the required common signal drivers automatically output drive waveforms, while the other common signal drivers continue to output non-selection waveforms.

The segment signal driver has essentially the same configuration as the HD44100 driver. Character pattern data is sent serially through a 40-bit shift register and latched when all needed data has

arrived. The latched data then enables the driver to generate drive waveform outputs. The serial data can be sent to externally cascaded HD44100s used for displaying extended digit numbers.

Sending serial data always starts at the display data character pattern corresponding to the last address of the display data RAM (DD RAM).

Since serial data is latched when the display data character pattern corresponding to the starting address enters the internal shift register, the HD44780U drives from the head display. The rest of the display, corresponding to latter addresses, are added with each additional HD44100.

Cursor/Blink Control Circuit

The cursor/blink control circuit generates the cursor or character blinking. The cursor or the blinking will appear with the digit located at the display data RAM (DD RAM) address set in the address counter (AC).

For example (figure 11), when the address counter is 08H, the cursor position is displayed at DD RAM address 08H.

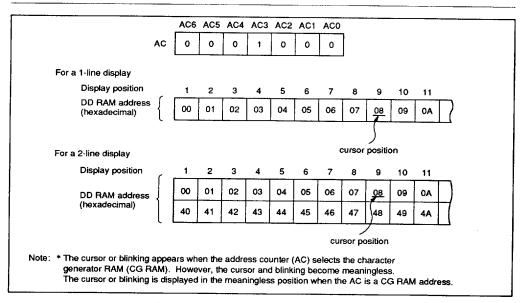


Figure 11 Cursor/Blink Display Example

HITACHI

235

••• 4496204 0046031 199 **•••**

Interfacing to the MPU

The HD44780U can send data in either two 4-bit operations or one 8-bit operation, thus allowing interfacing with 4- or 8-bit MPUs.

For 4-bit interface data, only four bus lines $(DB_4 \text{ to } DB_7)$ are used for transfer. Bus lines DB₀ to DB₃ are disabled. The data transfer between the HD44780U and the MPU is completed after the 4-bit data has been transferred twice. As for the order of data transfer, the four high order bits (for 8-bit operation, DB₄ to DB₇) are transferred before the four low order bits (for 8-bit operation, DB_0 to DB_3).

The busy flag must be checked (one instruction) after the 4-bit data has been transferred twice. Two more 4-bit operations then transfer the busy flag and address counter data.

For 8-bit interface data, all eight bus lines (DB₀ to DB₇) are used.

Reset Function

Initializing by Internal Reset Circuit

An internal reset circuit automatically initializes the HD44780U when the power is turned on. The following instructions are executed during the initialization. The busy flag (BF) is kept in the busy state until the initialization ends (BF = 1). The busy state lasts for 10 ms after V_{CC} rises to 4.5 V.

- 1. Display clear
- Function set:

DL = 1: 8-bit interface data

N = 0; 1-line display

F = 0: 5×8 dot character font

Display on/off control:

D = 0; Display off

C = 0; Cursor off

B = 0; Blinking off

4. Entry mode set: I/D = 1; Increment by 1

S = 0: No shift

Note: If the electrical characteristics conditions listed under the table Power Supply Conditions Using Internal Reset Circuit are not met, the internal reset circuit will not operate normally and will fail to initialize the HD44780U. For such a case, initialization must be performed by the MPU as explained in the section, Initializing by Instruction.

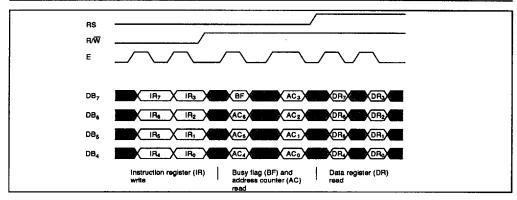


Figure 12 4-Bit Transfer Example

HITACHI

236

4496204 0046032 025 **I**

Instructions

Outline

Only the instruction register (IR) and the data register (DR) of the HD44780U can be controlled by the MPU. Before starting the internal operation of the HD44780U, control information is temporarily stored into these registers to allow interfacing with various MPUs, which operate at different speeds, or various peripheral control devices. The internal operation of the HD44780U is determined by signals sent from the MPU. These signals, which include register selection signal (RS), read/write signal (R/\overline{W}), and the data bus (DB₀ to DB₇), make up the HD44780U instructions (table 6). There are four categories of instructions that:

- Designate HD44780U functions, such as display format, data length, etc.
- Set internal RAM addresses
- · Perform data transfer with internal RAM
- · Perform miscellaneous functions

Normally, instructions that perform data transfer with internal RAM are used the most. However,

auto-incrementation by 1 (or auto-decrementation by 1) of internal HD44780U RAM addresses after each data write can lighten the program load of the MPU. Since the display shift instruction (table 11) can perform concurrently with display data write, the user can minimize system development time with maximum programming efficiency.

When an instruction is being executed for internal operation, no instruction other than the busy flag/address read instruction can be executed.

Because the busy flag is set to 1 while an instruction is being executed, check it to make sure it is 0 before sending another instruction from the MPU.

Note: Be sure the HD44780U is not in the busy state (BF = 0) before sending an instruction from the MPU to the HD44780U. If an instruction is sent without checking the busy flag, the time between the first instruction and next instruction will take much longer than the instruction time itself. Refer to table 6 for the list of each instruction execution time.

HITACHI

4496204 0046033 T61 🖿

Table 6 Instructions

					Co	ode						Execution Time (max) (when f _{cp} or
Instruction	RS	R/W	DB ₇	DB ₆	DB ₅	DB ₄	DB_3	DB_2	DB ₁	DB ₀	Description	f _{OSC} is 270 kHz)
Clear display	0	0	0	0	0	0	0	0	0	1	Clears entire display and sets DD RAM address 0 in address counter.	15.2 ms
Return home	0	0	0	0	0	0	0	0	1	_	Sets DD RAM address 0 in address counter. Also returns display from being shifted to original position. DD RAM contents remain unchanged.	15.2 ms
Entry mode set	0	0	0	0	0	0	0	1	I/D	S	Sets cursor move direction and specifies display shift. These operations are performed during data write and read.	37 με
Display on/off control	0	0	0	0	0	0	1	D	С	В	Sets entire display (D) on/off, cursor on/off (C), and blinking of cursor position character (B).	37 με
Cursor or display shift	0	0	0	0	0	1	S/C	R/L	_	_	Moves cursor and shifts display without changing DD RAM contents.	37 μs
Function set	0	0	0	0	1	DL	N	F			Sets interface data length (DL), number of display lines (N), and character font (F).	37 με
Set CG RAM address	0	0	0	1	A _{CG}	Aca	Acg	A _{CG}	A _{CG}	Acg	Sets CG RAM address. CG RAM data is sent and received after this setting.	37 με
Set DD RAM address	0	0	1	A _{DO}	A _{DD}	Sets DD RAM address. DD RAM data is sent and received after this setting.	37 μs					
Read busy flag & address	0	1	BF	AC	Reads busy flag (BF) indicating internal operation is being performed and reads address counter contents.	0 µs						

Table 6 Instructions (cont)

					C	ode						Execution Time		
Instruction	RS	R/W	DB ₇	DB ₆	DB ₅	DB ₄	DB ₃	DB ₂	DB ₁	DB ₀	- Description	(max) (when f _{cp} or f _{OSC} is 270 kHz)		
Write data to CG or DD RAM	1	0	Write	data							Writes data into DD RAM or CG RAM.	37 μs t _{ADD} = 4 μs*		
Read data from CG or DD RAM	1	1	Read	l data						-	Reads data from DD RAM or CG RAM.	37 μs t _{ADO} = 4 μs*		
	I/D S S/C S/C R/L DL N F BF	= 1; li = 0; C = 1; A = 1; C = 0; C = 1; S = 0; S = 1; 8 = 1; 2 = 1; 1 = 0; In	ecremicomplisplay fursor hift to hift to bits, I lines, × 10 cternal	panie: shift move the ri the le DL = 0 N = 0 dots, f	ght ft : 4 b : 1 lii = 0:	its ne 5×8					DD RAM: Display data RAM CG RAM: Character generator RAM ACG: CG RAM address ADD: DD RAM address (corresponds to cursor address) AC: Address counter used for both DD and CG RAM addresses	When f_{cp} or f_{OSC} is 250 kHz, $37 \mu s \times \frac{270}{250} = 40 \mu s$		

Note: - indicates no effect.

^{*} After execution of the CG RAM/DD RAM data write or read instruction, the RAM address counter is incremented or decremented by 1. The RAM address counter is updated after the busy flag turns off. In figure 13, t_{ADD} is the time elapsed after the busy flag turns off until the address counter is updated.

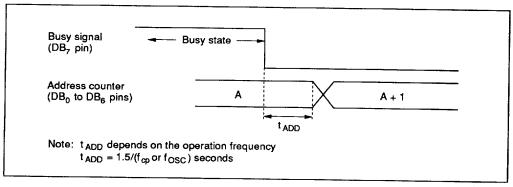


Figure 13 Address Counter Update

Instruction Description

Clear Display

Clear display writes space code 20H (character pattern for character code 20H must be a blank pattern) into all DD RAM addresses. It then sets DD RAM address 0 into the address counter, and returns the display to its original status if it was shifted. In other words, the display disappears and the cursor or blinking goes to the left edge of the display (in the first line if 2 lines are displayed). It also sets I/D to 1 (increment mode) in entry mode. S of entry mode does not change.

Return Home

Return home sets DD RAM address 0 into the address counter, and returns the display to its original status if it was shifted. The DD RAM contents do not change.

The cursor or blinking go to the left edge of the display (in the first line if 2 lines are displayed).

Entry Mode Set

I/D: Increments (I/D = 1) or decrements (I/D = 0) the DD RAM address by 1 when a character code is written into or read from DD RAM.

The cursor or blinking moves to the right when incremented by 1 and to the left when decremented by 1. The same applies to writing and reading of CG RAM.

S: Shifts the entire display either to the right (I/D = 0) or to the left (I/D = 1) when S is 1. The display does not shift if S is 0.

If S is 1, it will seem as if the cursor does not move but the display does. The display does not shift when reading from DD RAM. Also, writing into or reading out from CG RAM does not shift the display.

Display On/Off Control

D: The display is on when D is 1 and off when D is 0. When off, the display data remains in DD RAM, but can be displayed instantly by setting D to 1.

C: The cursor is displayed when C is 1 and not displayed when C is 0. Even if the cursor disappears, the function of I/D or other specifications will not change during display data write. The cursor is displayed using 5 dots in the 8th line for 5×8 dot character font selection and in the 11th line for the 5×10 dot character font selection (figure 16).

B: The character indicated by the cursor blinks when B is 1 (figure 16). The blinking is displayed as switching between all blank dots and displayed characters at a speed of 409.6-ms intervals when f_{cp} or f_{OSC} is 250 kHz. The cursor and blinking can be set to display simultaneously. (The blinking frequency changes according to f_{OSC} or the reciprocal of f_{cp} . For example, when f_{cp} is 270 kHz, $409.6 \times 250/270 = 379.2$ ms.)

Cursor or Display Shift

Cursor or display shift shifts the cursor position or display to the right or left without writing or reading display data (table 7). This function is used to correct or search the display. In a 2-line display, the cursor moves to the second line when it passes the 40th digit of the first line. Note that the first and second line displays will shift at the same time.

When the displayed data is shifted repeatedly each line moves only horizontally. The second line display does not shift into the first line position.

The address counter (AC) contents will not change if the only action performed is a display shift.

Function Set

DL: Sets the interface data length. Data is sent or received in 8-bit lengths (DB₇ to DB₀) when DL is 1, and in 4-bit lengths (DB₇ to DB₄) when DL is 0.

When 4-bit length is selected, data must be sent or received twice.

N: Sets the number of display lines.

HITACHI

240

4496204 0046036 770 📟

F: Sets the character font.

Note: Perform the function at the head of the program before executing any instructions (except for the read busy flag and address instruction). From this point, the function set instruction cannot be executed unless the interface data length is changed.

Set CG RAM Address

Set CG RAM address sets the CG RAM address binary AAAAAA into the address counter.

Data is then written to or read from the MPU for CG RAM.

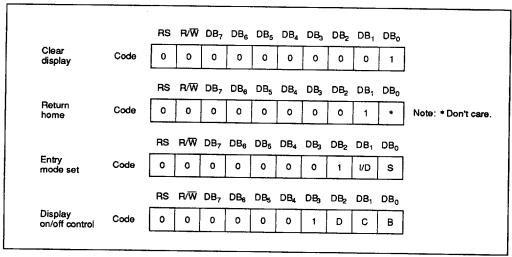


Figure 14

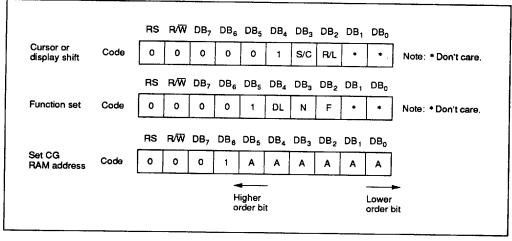


Figure 15

HITACHI

241

= 4496204 0046037 607 **=**

Set DD RAM Address

Set DD RAM address sets the DD RAM address binary AAAAAA into the address counter.

Data is then written to or read from the MPU for DD RAM.

However, when N is 0 (1-line display), AAAAAAA can be 00H to 4FH. When N is 1 (2-line display), AAAAAAA can be 00H to 27H for the first line, and 40H to 67H for the second line.

Read Busy Flag and Address

Read busy flag and address reads the busy flag (BF) indicating that the system is now internally operating on a previously received instruction. If BF is 1, the internal operation is in progress. The next instruction will not be accepted until BF is reset to 0. Check the BF status before the next write operation. At the same time, the value of the address counter in binary AAAAAAA is read out. This address counter is used by both CG and DD RAM addresses, and its value is determined by the previous instruction. The address contents are the same as for instructions set CG RAM address and set DD RAM address.

Table 7 Shift Function

S/C	R/L	
0	0	Shifts the cursor position to the left. (AC is decremented by one.)
0	1	Shifts the cursor position to the right. (AC is incremented by one.)
1	0	Shifts the entire display to the left. The cursor follows the display shift.
1	1	Shifts the entire display to the right. The cursor follows the display shift.

Table 8 Function Set

N	F	No. of Display Lines	Character Font	Duty Factor	Remarks
0	0	1	5 × 8 dots	1/8	
0	1	1	5 x 10 dots	1/11	
1	*	2	5 × 8 dots	1/16	Cannot display two lines for 5 × 10 dot character font

Note: * Indicates don't care.

HITACHI

242

4496204 0046038 543 📰

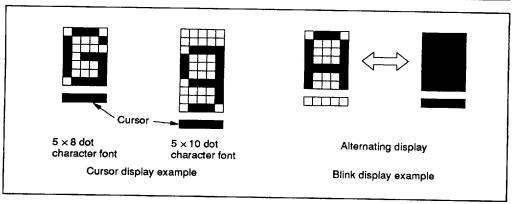


Figure 16 Cursor and Blinking

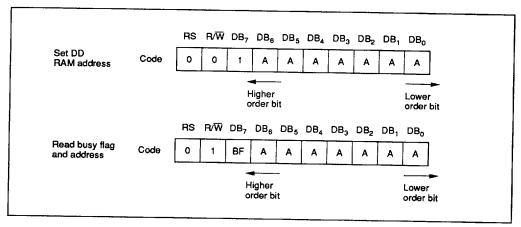


Figure 17

HITACHI ■ 4496204 0046039 48T ■

Write Data to CG or DD RAM

Write data to CG or DD RAM writes 8-bit binary data DDDDDDDD to CG or DD RAM.

To write into CG or DD RAM is determined by the previous specification of the CG RAM or DD RAM address setting. After a write, the address is automatically incremented or decremented by 1 according to the entry mode. The entry mode also determines the display shift.

Read Data from CG or DD RAM

Read data from CG or DD RAM reads 8-bit binary data DDDDDDDD from CG or DD RAM.

The previous designation determines whether CG or DD RAM is to be read. Before entering this read instruction, either CG RAM or DD RAM address set instruction must be executed. If not executed, the first read data will be invalid. When serially executing read instructions, the next address data is normally read from the second read. The address set instructions need not be

executed just before this read instruction when shifting the cursor by the cursor shift instruction (when reading out DD RAM). The operation of the cursor shift instruction is the same as the set DD RAM address instruction.

After a read, the entry mode automatically increases or decreases the address by 1. However, display shift is not executed regardless of the entry mode.

Note: The address counter (AC) is automatically incremented or decremented by 1 after the write instructions to CG RAM or DD RAM are executed. The RAM data selected by the AC cannot be read out at this time even if read instructions are executed. Therefore, to correctly read data, execute either the address set instruction or cursor shift instruction (only with DD RAM), then just before reading the desired data, execute the read instruction from the second time the read instruction is sent.

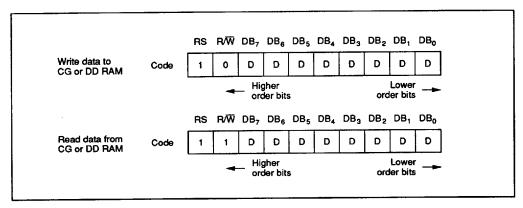


Figure 18

Interfacing the HD44780U

Interface to MPUs

Interfacing to an 8-bit MPU through a PIA

See figure 20 for an example of using a PIA or I/O port (for a single-chip microcomputer) as an interface device. The input and output of the device is TTL compatible.

In this example, PB_0 to PB_7 are connected to the data bus DB_0 to DB_7 , and PA_0 to PA_2 are connected to E, R/W, and RS, respectively.

Pay careful attention to the timing relationship between E and the other signals when reading or writing data using a PIA for the interface.

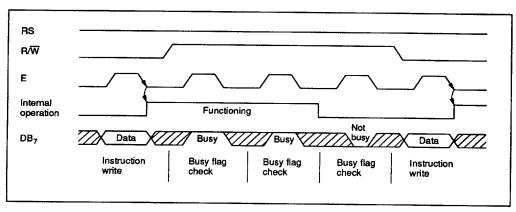


Figure 19 Example of Busy Flag Check Timing Sequence

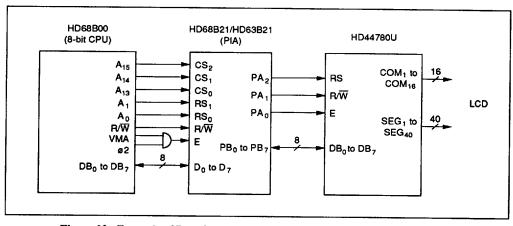


Figure 20 Example of Interface to HD68B00 Using PIA (HD68B21/HD63B21)

HITACHI

245

= 4496204 0046041 038 **=**

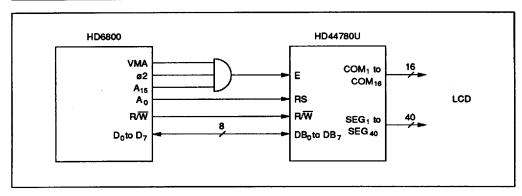


Figure 21 8-Bit MPU Interface

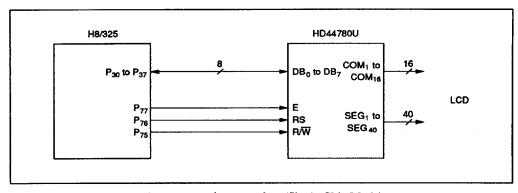


Figure 22 H8/325 Interface (Single-Chip Mode)

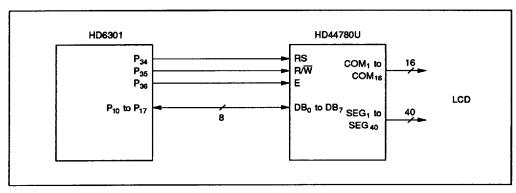


Figure 23 HD6301 Interface

Interfacing to a 4-bit MPU

The HD44780U can be connected to the I/O port of a 4-bit MPU. If the I/O port has enough bits, 8-bit data can be transferred. Otherwise, one data transfer must be made in two operations for 4-bit data. In this case, the timing sequence becomes somewhat complex. (See figure 24.)

See figure 25 for an interface example to the HMCS4019R.

Note that two cycles are needed for the busy flag check as well as for the data transfer. The 4-bit operation is selected by the program.

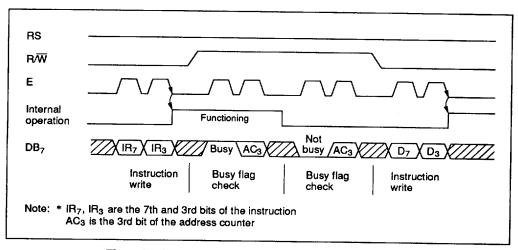


Figure 24 Example of 4-Bit Data Transfer Timing Sequence

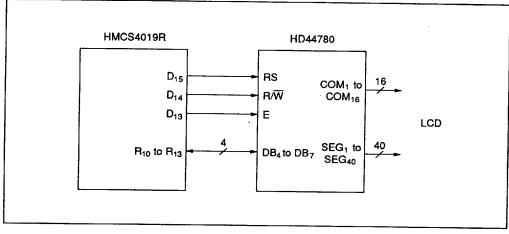


Figure 25 Example of Interface to HMCS4019R

HITACHI

247

= 4496204 0046043 900 **=**

Interface to Liquid Crystal Display

Character Font and Number of Lines: The HD44780U can perform two types of displays, 5×8 dot and 5×10 dot character fonts, each with a cursor.

Up to two lines are displayed for 5×8 dots and one line for 5×10 dots. Therefore, a total of three

types of common signals are available (table 9).

The number of lines and font types can be selected by the program. (See table 6, Instructions.)

Connection to HD44780 and Liquid Crystal Display: See figure 26 for the connection examples.

Table 9 Common Signals

Number of Lines	Character Font	Number of Common Signals	Duty Factor
1	5 × 8 dots + cursor	8	1/8
1	5 x 10 dots + cursor	11	1/11
2	5 × 8 dots + cursor	16	1/16

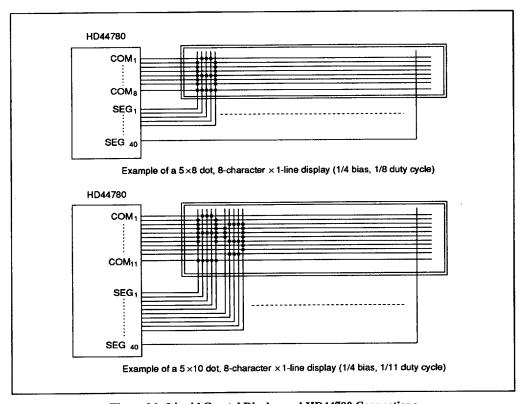


Figure 26 Liquid Crystal Display and HD44780 Connections

HITACHI ■ 4496204 0046044 847 ■

249

Since five segment signal lines can display one digit, one HD44780U can display up to 8 digits for a 1-line display and 16 digits for a 2-line display.

The examples in figure 26 have unused common signal pins, which always output non-

selection waveforms. When the liquid crystal display panel has unused extra scanning lines, connect the extra scanning lines to these common signal pins to avoid any undesirable effects due to crosstalk during the floating state (figure 27).

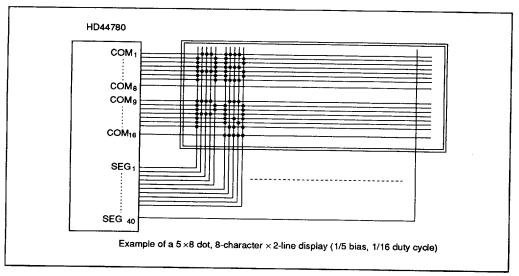


Figure 26 Liquid Crystal Display and HD44780 Connections (cont)

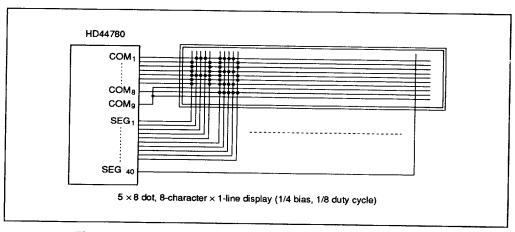


Figure 27 Using COM9 to Avoid Crosstalk on Unneeded Scanning Line

HITACHI ■ 4496204 0046045 783 ■

250

Connection of Changed Matrix Layout: In the preceding examples, the number of lines correspond to the scanning lines. However, the following display examples (figure 28) are made possible by altering the matrix layout of the liquid crystal display panel. In either case, the only change is the layout. The display characteristics

and the number of liquid crystal display characters depend on the number of common signals or on duty factor. Note that the display data RAM (DD RAM) addresses for 4 characters × 2 lines and for 16 characters × 1 line are the same as in figure 26.

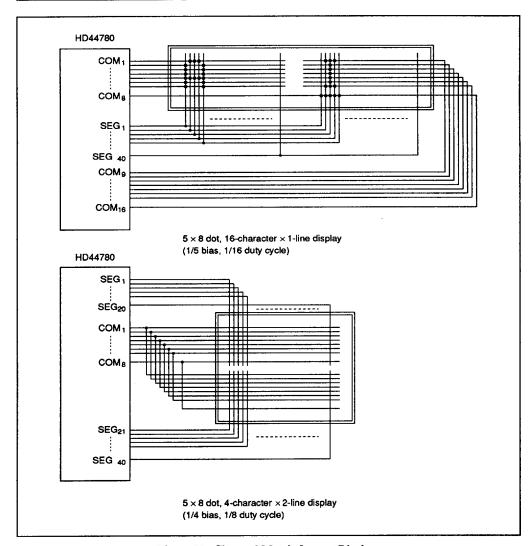


Figure 28 Changed Matrix Layout Displays

HITACHI

■ 4496204 0046046 61T ■

Power Supply for Liquid Crystal Display Drive

Various voltage levels must be applied to pins V_1 to V_5 of the HD44780U to obtain the liquid crystal display drive waveforms. The voltages must be changed according to the duty factor (table 10).

 $V_{\rm LCD}$ is the peak value for the liquid crystal display drive waveforms, and resistance dividing provides voltages V_1 to V_5 (figure 29).

Table 10 Duty Factor and Power Supply for Liquid Crystal Display Drive

	Duty Factor								
	1/8, 1/11	1/16							
		Blas							
Power Supply	1/4	1/5							
<u>V₁</u>	V _{CC} -1/4 V _{LCD}	V _{CC} -1/5 V _{LCD}							
V ₂	V _{CC} -1/2 V _{LCD}	V _{CC} -2/5 V _{LCD}							
V ₃	V _{CC} -1/2 V _{LCD}	V _{CC} -3/5 V _{LCD}							
V ₄	V _{CC} -3/4 V _{LCD}	V _{CC} -4/5 V _{LCD}							
V ₅	V _{CC} -V _{LCD}	V _{CC} -V _{LCD}							

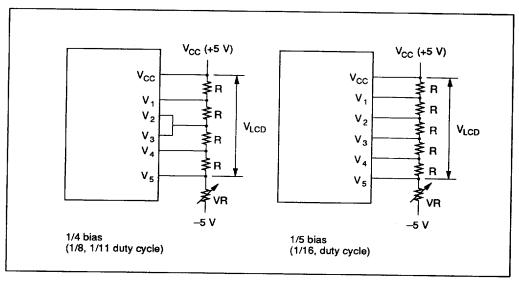


Figure 29 Drive Voltage Supply Example

HITACHI

251

- 4496204 0046047 556 **-**

Relationship between Oscillation Frequency and Liquid Crystal Display Frame Frequency

The liquid crystal display frame frequencies of figure 30 apply only when the oscillation

frequency is 270 kHz (one clock pulse of $3.7 \mu s$).

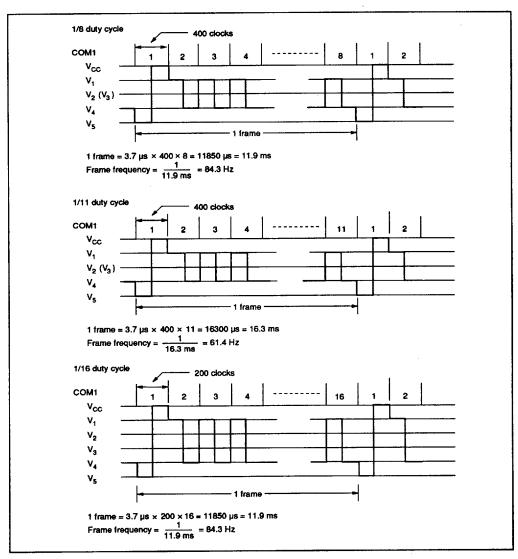


Figure 30 Frame Frequency

HITACHI

4496204 0046048 492 **1**

Connection with HD44100 Driver

By externally connecting an HD44100 liquid crystal display driver to the HD44780U, the number of display digits can be increased. The HD44100 is used as a segment signal driver when connected to the HD44780U. The HD44100 can be directly connected to the HD44780U since it supplies CL₁, CL₂, M, and D signals and power for the liquid crystal display drive (figure 31).

Caution: The connection of voltage supply pins V₁ through V₆ for the liquid crystal display drive is somewhat complicated.

Up to nine HD44100 units can be connected for a 1-line display (duty factor 1/8 or 1/11) and up to four units for a 2-line display (duty factor 1/16). The RAM size limits the HD44780U to a maximum of 80 character display digits. The connection method for both 1-line and 2-line displays or for 5×8 and 5×10 dot character fonts can remain the same (figure 26).

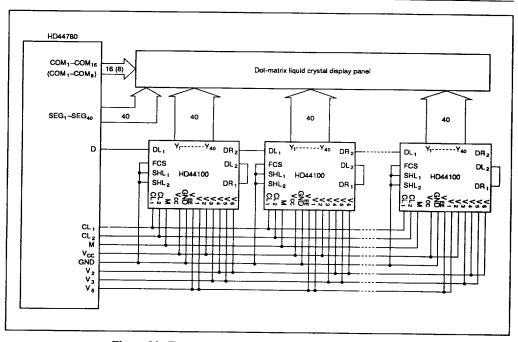


Figure 31 Example of Connecting HD44100s to HD44780

HITACHI

4496204 0046049 329 **m**

Instruction and Display Correspondence

 8-bit operation, 8-digit × 1-line display with internal reset

Refer to table 11 for an example of an 8-digit \times 1-line display in 8-bit operation. The HD44780U functions must be set by the function set instruction prior to the display. Since the display data RAM can store data for 80 characters, as explained before, the RAM can be used for displays such as for advertising when combined with the display shift operation.

Since the display shift operation changes only the display position with DD RAM contents unchanged, the first display data entered into DD RAM can be output when the return home operation is performed.

4-bit operation, 8-digit × 1-line display with internal reset

The program must set all functions prior to the 4-bit operation (table 12). When the power is turned on, 8-bit operation is automatically selected and the first write is performed as an 8-bit operation. Since DB₀ to DB₃ are not connected, a rewrite is then required. However, since one operation is completed in two accesses for 4-bit operation, a rewrite is needed to set the functions (see table 12). Thus, DB₄ to DB₇ of the function set instruction is written twice.

8-bit operation, 8-digit × 2-line display

For a 2-line display, the cursor automatically moves from the first to the second line after the 40th digit of the first line has been written. Thus, if there are only 8 characters in the first line, the DD RAM address must be again set after the 8th character is completed. (See table 13.) Note that the display shift operation is performed for the first and second lines. In the example of table 13, the display shift is performed when the cursor is on the second line. However, if the shift operation is performed when the cursor is on the first line. both the first and second lines move together. If the shift is repeated, the display of the second line will not move to the first line. The same display will only shift within its own line for the number of times the shift is repeated.

Note: When using the internal reset, the electrical characteristics in the Power Supply Conditions Using Internal Reset Circuit table must be satisfied. If not, the HD44780U must be initialized by instructions. See the section, Initializing by Instruction.

HITACHI

Table 11 8-Bit Operation, 8-Digit × 1-Line Display Example with Internal Reset

Step					nstru	ction	1					
No.	RS	R/	W DB	7 DBe	DB ₅	DB ₄	DB ₃	DB ₂	DB ₁	DB ₀	Display	Operation
1				on (tl		4478	30U i	s initi	alized	d by		Initialized. No display.
2	Fun 0	otioi 0	o set	0	1	1	0	0	*	*		Sets to 8-bit operation and selects 1-line display and 5 x 8 dot character font. (Number of display lines and character fonts cannot be changed after step #2.)
3	Disp 0	olay 0	on/off 0	contr 0		0	1	1	1	0		Turns on display and cursor. Entire display is in space mode because of initialization.
4	Entr 0	y mo O	ode s	et O	0	0	0	1	1	0		Sets mode to increment the address by one and to shift the cursor to the right at the time of write to the DD/CG RAM. Display is not shifted.
5	Write 1	e da O	ta to	CG RA				0	0	0	H	Writes H. DD RAM has already been selected by initialization when the power was turned on. The cursor is incremented by one and shifted to the right.
6	Write 1	e da	ta to (CG RA				0	0	1	HI_	Writes I.
7					:						:	
8	Write 1	dat 0	a to (G RA				0 (D	1	HITACHI_	Writes I.
	Entry 0	/ mo	de se		0 () (D	1	1	1	HITACHI_	Sets mode to shift display at the time of write.
	Write 1	dat 0	a to (G RA			••	0 () (0	ITACHI _	Writes a space.

HITACHI

Table 11 8-Bit Operation, 8-Digit × 1-Line Display Example with Internal Reset (cont)

Step		Instruction										
No.	RS	R/Ÿ	V DB	DB ₆	DB ₅	DB ₄	DB ₃	DB ₂	DB ₁	DB ₀	Display	Operation
11	Writ 1	e da 0	ta to (CG R	AM/D	DR/ 0	AM 1	1	0	1	TACHI M_	Writes M.
12	****				:						:	
13	Writ 1	e da 0	ta to 0	CG R	AM/D	D RA	AM 1	1	1	1	MICROKO_	Writes O.
14	Cur 0	sor c	r disp	lay sl	hift O	1	0	0	*	*	МІСКОКО	Shifts only the cursor position to the left.
15	Cur:	sor c	r disp	lay si 0	hift O	1	0	0		*	MICRO <u>K</u> O	Shifts only the cursor position to the left.
16	Writ 1	e da 0	ta to (CG R	AM/D	D RA	AM 0	0	1	1	ICROCO	Writes C over K. The display moves to the left.
17	Cur 0	sor c	r disp	lay sl	hift O	1	1	1	*	*	MICROCO	Shifts the display and cursor position to the right.
18	Cur:	sor c	r disp	łay si 0	hift O	1	0	1	*	*	MICROCO_	Shifts the display and cursor position to the right.
19	Writ 1	e da 0	ta to (CG R	AM/D	D RA	AM 1	1	0	1	ICROCOM_	Writes M.
20					:		-				:	
21	Reti 0	urn h	ome 0	0	0	0	0	0	1	0	HITACHI	Returns both display and cursor to the original position (address 0).

Table 12 4-Bit Operation, 8-Digit × 1-Line Display Example with Internal Reset

Step					Ins	truction			
No.	RS	F	√W DI	8 ₇ D	B ₆ D	B ₅ DB ₄		— Display	Operation
1	Po the	wer int	suppi ernal i	y on eset	(the	HD44780 it)	U is initialized by		Initialized. No display.
2	0	0	on set 0	0	1	0			Sets to 4-bit operation. In this case, operation is handled as 8 bits by initialization, and only this instruction completes with one write.
3	Fui 0 0	o O	on set 0 0	0	1 *	0 *			Sets 4-bit operation and selects 1-line display and 5 × 8 dot character font. 4-bit operation starts from this step and resetting is necessary. (Number of display lines and character fonts cannot be changed after step #3.)
4		•	on/of			_			Turns on display and cursor.
	0	0	1	0	0	0		L.=.	Entire display is in space mode because of initialization.
5	Ent 0	ry m O	ode s 0	et 0	^	•			Sets mode to increment the
	ŏ 	0	0	1	0	0			 address by one and to shift the cursor to the right at the time of write to the DD/CG RAM. Display is not shifted.
6	Writ	e da O	ata to	CG F	MAF 0	DD RAM		Н	Writes H.
	<u>i</u>	ŏ	1	ò	ő	Ŏ		<u> </u>	The cursor is incremented by one and shifts to the right.

Note: The control is the same as for 8-bit operation beyond step #6.

HITACHI

■ 4496204 0046053 85T ■

Table 13 8-Bit Operation, 8-Digit × 2-Line Display Example with Internal Reset

Step				h	nstru	ction	1			_	_	
No.	RS	R/W	DB ₇	DB ₆	DB ₅	DB ₄	DB ₃	DB ₂	DB ₁	DB_0	Display	Operation
1			ipply o)4478	30U i:	s initia	alizec	i by		Initialized. No display.
2	Fun 0	ction 0	set 0	0	1	1	1	0	*	*		Sets to 8-bit operation and selects 2-line display and 5×8 dot character font.
3	Dier	day (on/off	contr	ol							Turns on display and cursor.
•	0	0	0	0	0	0	1	1	1	0		All display is in space mode because of initialization.
4	Enti		de se	et						_		Sets mode to increment the
	0	0	0	0	0	0	0	1	1	0		address by one and to shift the cursor to the right at the time of write to the DD/CG RAM. Display is not shifted.
5	Writ	e da	ta to (CG R	AM/E	D R	٩M				[H_	Writes H. DD RAM has
	1	0	0	1	0	0	1	0	0	0		already been selected by initialization when the power was turned on. The cursor is incremented by one and shifted to the right.
6					:						:	
	14/		ta to	CC P	A LA/E	ח פ	A 1.4					Writes I.
′	1	O O	0	1	0	0	1	0	0	1	HITACHI_	
8	Set	DD	RAM	addre	ss						HITACHI	Sets DD RAM address so that
	0	0	1	1	0	0	0	0	0	0		the cursor is positioned at the head of the second line.

Table 13 8-Bit Operation, 8-Digit × 2-Line Display Example with Internal Reset (cont)

Step		Instruction													
No.	RS	R/	W D	B ₇	DB_6	DB ₅	DB ₄	DB ₃	DB ₂	DB ₁	DB ₀	- Display	Operation		
9	Wri	Write data to CG RAM/DD RAM										Writes M.			
	1	0	0		1	0	0	1	1	0	1	HITACHI M_	771100 IVI.		
10									_			 -			
						:						•			
11	Writ	e da	ata to	- C	G RA	M/D	D RA	M					Writes O.		
	1	0	0			_			1	1	1	MICROCO_	Writes O.		
12	Entr	y m	ode	set									Sate made to shift disclass at		
	0	0	0	(0	0	0	0	1	1	1	MICROCO_	Sets mode to shift display at the time of write.		
13	Writ	e da	ta t	o C	G R/	AM/D	D RA	M				<u> </u>	Writes M. Dienley is abite 14		
	1	0	0	1					1	0	1	ITACHI ICROCOM_	Writes M. Display is shifted to the left. The first and second lines both shift at the same time.		
14						•						•	and dame time.		
						:						: :			
15	Retu	rn h	ome	,									Returns both disalar and		
	0	0	0	C) ()	1 (0	HITACHI MICROCOM	Returns both display and cursor to the original position (address 0).		

HITACHI

■ 4496204 0046055 622 **■**

Initializing by Instruction

If the power supply conditions for correctly operating the internal reset circuit are not met, initialization by instructions becomes necessary.

Refer to figures 32 and 33 for the procedures on 8-bit and 4-bit initializations, respectively.

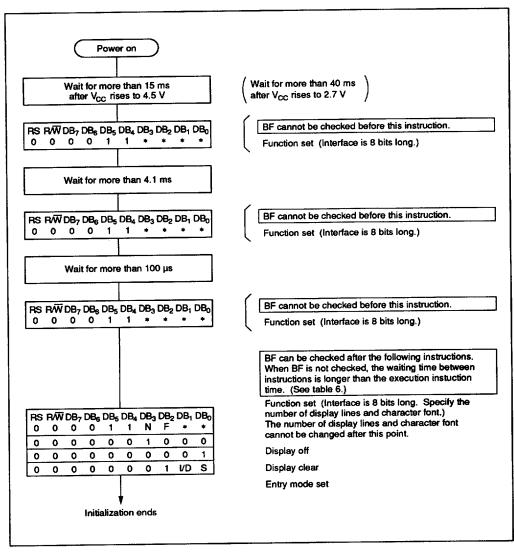


Figure 32 8-Bit Interface

HITACHI ■ 4496204 0046056 569 ■

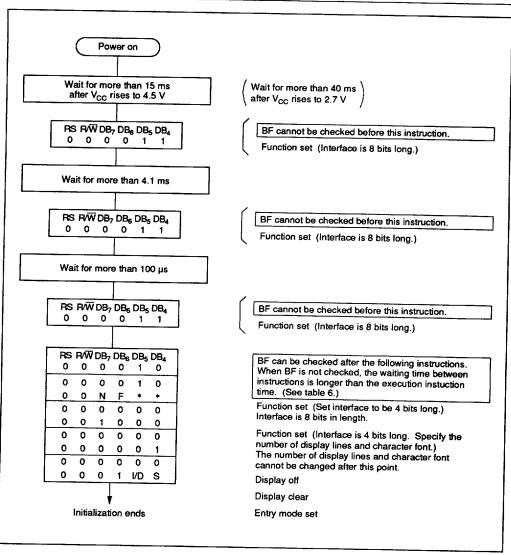


Figure 33 4-Bit Interface

Absolute Maximum Ratings*

Item	Symbol	Value	Unit	Notes
Power supply voltage (1)	V _{CC} -GND	-0.3 to +7.0	٧	1
Power supply voltage (2)	V _{CC} -V ₅	-0.3 to +13.0	V	1, 2
Input voltage	V _t	-0.3 to V _{CC} +0.3	V	1
Operating temperature	T _{opr}	-20 to +75	°C	3
Storage temperature	T _{stg}	-55 to +125	°C	4

Note: If the LSI is used above these absolute maximum ratings, it may become permanently damaged.

Using the LSI within the following electrical characteristic limits is strongly recommended for normal operation. If these electrical characteristic conditions are also exceeded, the LSI will malfunction and cause poor reliability.

DC Characteristics ($V_{CC} = 2.7 \text{ V to } 4.5 \text{ V}, T_a = -20 \text{ to } +75^{\circ}\text{C}^{*3}$)

Item	Symbol	Min	Тур	Max	Unit	Test Condition	Notes*
Input high voltage (1) (except OSC ₁)	V _{IH1}	0.7V _{CC}	_	V _{CC}	V		6
Input low voltage (1) (except OSC ₁)	V _{IL1}	-0.3	_	0.55	V		6
Input high voltage (2) (OSC ₁)	V _{IH2}	0.7V _{CC}	_	V _{CC}	V		15
Input low voltage (2) (OSC ₁)	V _{IL2}	_		0.2V _{CC}	٧		15
Output high voltage (1) (DB ₀ -DB ₇)	V _{OH1}	0.75V _{CC}	_		V	-l _{OH} = 0.1 mA	7
Output low voltage (1) (DB ₀ -DB ₇)	V _{OL1}	_	_	0.2V _{CC}	٧	I _{OL} = 0.1 mA	7
Output high voltage (2) (except DB ₀ -DB ₇)	V _{OH2}	0.8V _{CC}	_	_	٧	-l _{OH} = 0.04 mA	8
Output low voltage (2) (except DB ₀ –DB ₇)	V _{OL2}		_	0.2V _{CC}	٧	l _{OL} = 0.04 mA	8
Driver on resistance (COM)	R _{COM}	_	_	20	kΩ	$\pm id = 0.05 \text{ mA},$ $V_{LCD} = 4 \text{ V}$	13
Driver on resistance (SEG)	R _{SEG}	_	_	30	kΩ	±ld = 0.05 mA, V _{LCD} = 4 V	13
input leakage current	I _{LI}	-1	_	1	μА	V _{IN} = 0 to V _{CC}	9
Pull-up MOS current (DB ₀ -DB ₇ , RS, R/W)	-lp	10	50	120	μА	V _{CC} = 3 V	
Power supply current	lcc		0.15	0.30	mA	R _f oscillation, external clock V _{CC} = 3V, f _{OSC} = 270 kH	10, 14 I z
LCD voltage	V _{LCD1}	3.0		11.0	٧	V _{CC} -V ₅ , 1/5 bias	16
	V _{LCD2}	3.0	_	11.0	٧	V _{CC} -V ₅ , 1/4 bias	16

Note: * Refer to the Electrical Characteristics Notes section following these tables.

HITACHI

= 4496204 0046058 331 **==**

AC Characteristics (V_{CC} = 2.7 V to 4.5 V, T_a = -20 to +75°C*3)

Clock Characteristics

Item		Symbol	Min	Тур	Max	Unit	Test Condition	Note*
External	External clock frequency	f _{cp}	125	250	350	kHz		11
clock operation	External clock duty	Duty	45	50	55	%	_	
operation	External clock rise time	t _{rcp}		_	0.2	μs	•	
	External clock fall time	t _{fcp}			0.2	μs	-	
R _f oscillation	Clock oscillation frequency	fosc	190	270	350	kHz	$R_f = 75 \text{ k}\Omega,$ $V_{CC} = 3 \text{ V}$	12

Note: * Refer to the Electrical Characteristics Notes section following these tables.

Bus Timing Characteristics

Write Operation

Item	Symbol	Min	Тур	Max	Unit	Test Condition
Enable cycle time	t _{cycE}	1000			ns	Figure 34
Enable pulse width (high level)	PW _{EH}	450	_		-	· ·
Enable rise/fall time	t _{Er} , t _{Ef}	_		25	• .	
Address set-up time (RS, R/W to E)	t _{AS}	60	_			
Address hold time	t _{AH}	20			•	
Data set-up time	t _{DSW}	195	_			
Data hold time	t _H	10			•	

Read Operation

Item	Symbol	Min	Тур	Max	Unit	Test Condition
Enable cycle time	t _{cycE}	1000			ns	Figure 35
Enable pulse width (high level)	PW _{EH}	450	_	_	•	-
Enable rise/fall time	t _{Er} , t _{Ef}	_		25	•	
Address set-up time (RS, R/W to E)	t _{AS}	60			-	
Address hold time	t _{AH}	20			-	
Data delay time	tDOR			360		
Data hold time	t _{DHR}	5		_		

HITACHI

4496204 0046059 278 **5**

Interface Timing Characteristics with External Driver

Item		Symbol	Min	Тур	Max	Unit	Test Condition
Clock pulse width	High level	tcwн	800		_	ns	Figure 36
	Low level	tcwL	800	_	_	_	
Clock set-up time		tcsu	500			_	
Data set-up time		t _{SU}	300	_	_	_	
Data hold time		t _{DH}	300	_	_	_	
M delay time		t _{DM}	-1000	_	1000	_	
Clock rise/fall time		t _{ct}		_	200	_	

Power Supply Conditions Using Internal Reset Circuit

Item	Symbol	Min	Тур	Max	Unit	Test Condition
Power supply rise time	t _{rCC}	0.1	_	10	ms	Figure 37
Power supply off time	^t OFF	1	_			

HITACHI

DC Characteristics ($V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}, T_a = -20 \text{ to } +75^{\circ}\text{C}^{*3}$)

Item	Symbol	Min	Тур	Max	Unit	Test Condition	Notes
Input high voltage (1) (except OSC ₁)	V _{IH1}	2.2		V _{CC}	٧		6
Input low voltage (1) (except OSC ₁)	V _{IL1}	-0.3		0.6	V		6
Input high voltage (2) (OSC ₁)	V _{IH2}	V _{CC} -1.0		V _{CC}	٧		15
Input low voltage (2) (OSC ₁)	V _{IL2}			1.0	٧		15
Output high voltage (1) (DB ₀ -DB ₇)	V _{OH1}	2.4	_	_	V	-I _{OH} = 0.205 mA	7
Output low voltage (1) (DB ₀ -DB ₇)	V _{OL1}	_	_	0.4	V	I _{OL} = 1.2 mA	7
Output high voltage (2) (except DB ₀ -DB ₇)	V _{OH2}	0.9 V _{CC}	_	_	٧	-l _{OH} = 0.04 mA	8
Output low voltage (2) (except DB ₀ -DB ₇)	V _{OL2}		_	0.1 V _{CC}	٧	I _{OL} = 0.04 mA	8
Driver on resistance (COM)	R _{COM}	-		20	kΩ	±ld = 0.05 mA, V _{LCD} = 4 V	13
Driver on resistance (SEG)	R _{SEG}	_	_	30	kΩ	±ld = 0.05 mA, V _{LCD} = 4 V	13
Input leakage current	i _{LI}	-1	_	1	μА	V _{IN} = 0 to V _{CC}	9
Pull-up MOS current (DB ₀ -DB ₇ , RS, R/W)	-l _p	50	125	250	μА	V _{CC} = 5 V	
Power supply current	lcc	_	0.35	0.60	mA	R _f oscillation, external clock V _{CC} = 5 V, f _{OSC} = 270 kHz	10, 14
LCD voltage	V _{LCD1}	3.0	_	11.0	V	V _{CC} -V ₅ , 1/5 bias	16
	V _{LCD2}	3.0	_	11.0	٧	V _{CC} -V ₅ , 1/4 bias	16

Note: * Refer to the Electrical Characteristics Notes section following these tables.

AC Characteristics ($V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}, T_a = -20 \text{ to } +75^{\circ}\text{C}^{*3}$)

Clock Characteristics

Item		Symbol	Min	Тур	Max	Unit	Test Condition	Note*
External clock	External clock frequency	f _{cp}	125	250	350	kHz		11
operation	External clock duty	Duty	45	50	55	%		11
	External clock rise time	t _{rcp}	_	_	0.2	μs		11
	External clock fall time	t _{fcp}	_		0.2	μs		11
R _f oscillation	Clock oscillation frequency	fosc	190	270	350	kHz	$R_f = 91 \text{ k}\Omega$ $V_{CC} = 5.0 \text{ V}$	12

Note: * Refer to the Electrical Characteristics Notes section following these tables.

HITACHI

4496204 0046061 926

Bus Timing Characteristics

Write Operation

Item	Symbol	Min	Тур	Max	Unit	Test Condition
Enable cycle time	t _{cycE}	500	_		ns	Figure 34
Enable pulse width (high level)	PW _{EH}	230		_	_	
Enable rise/fall time	ter, ter	_	_	20	_	
Address set-up time (RS, RW to E)	tas	40			_	
Address hold time	t _{AH}	10	_			
Data set-up time	t _{DSW}	80		_	_	
Data hold time	t _H	10	_			

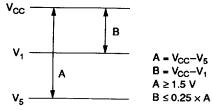
Read Operation

Item	Symbol	Min	Тур	Max	Unit	Test Condition
Enable cycle time	t _{cycE}	500	_	_	ns	Figure 35
Enable pulse width (high level)	PW _{EH}	230			_	
Enable rise/fall time	ter, ter			20	_	
Address set-up time (RS, R/W to E)	t _A s	40	_		_	
Address hold time	t _{AH}	10		_	_	
Data delay time	t _{DDR}		_	160	_	
Data hold time	t _{DHR}	5	_	_		

Interface Timing Characteristics with External Driver

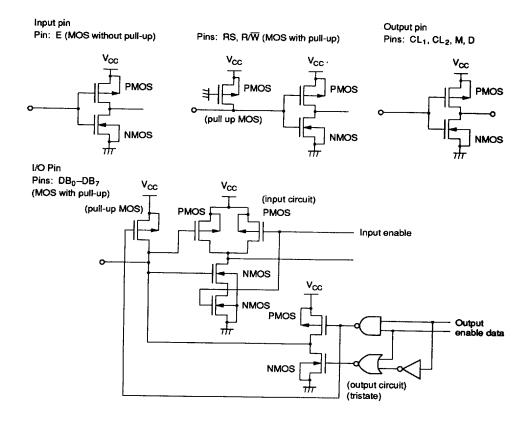
ltem		Symbol	Min	Тур	Max	Unit	Test Condition
Clock pulse width	High level	t _{CWH}	800		_	ns	Figure 36
	Low level	t _{CWL}	800				
Clock set-up time		^t csu	500	_			
Data set-up time		tsu	300				
Data hold time		t _{OH}	300	_			
M delay time		t _{DM}	-1000		1000	•	
Clock rise/fall time		t _{ct}	_		100		

Power Supply Conditions Using Internal Reset Circuit


item	Symbol	Min	Тур	Max	Unit	Test Condition
Power supply rise time	tcc	0.1	_	10	ms	Figure 37
Power supply off time	t _{OFF}	1				

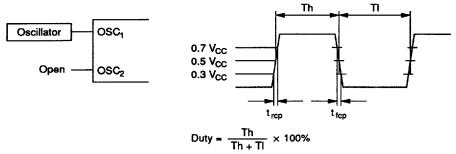
HITACHI

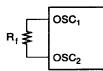
| 4496204 0046062 862 **|||**


Electrical Characteristics Notes

1. All voltage values are referred to GND = 0 V.

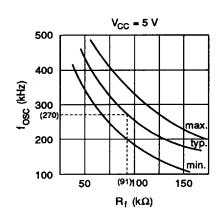
The conditions of V_1 and V_5 voltages are for proper operation of the LSI and not for the LCD output level. The LCD drive voltage condition for the LCD output level is specified as LCD voltage V_{LCD} .

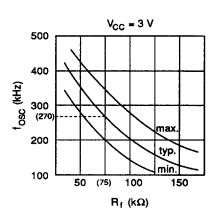

- 2. $V_{CC} \ge V_1 \ge V_2 \ge V_3 \ge V_4 \ge V_5$ must be maintained.
- 3. For die products, specified up to 75°C.
- 4. For die products, specified by the die shipment specification.
- 5. The following four circuits are I/O pin configurations except for liquid crystal display output.


HITACHI

1 4496204 0046063 7**19**

- Applies to input pins and I/O pins, excluding the OSC₁ pin.
- 7. Applies to I/O pins.
- 8. Applies to output pins.
- 9. Current flowing through pull-up MOSs, excluding output drive MOSs.
- 10. Input/output current is excluded. When input is at an intermediate level with CMOS, the excessive current flows through the input circuit to the power supply. To avoid this from happening, the input level must be fixed high or low.
- 11. Applies only to external clock operation.

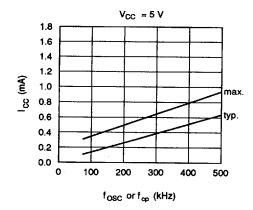


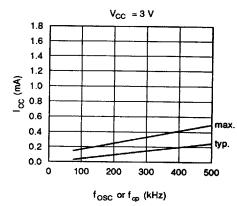

12. Applies only to the internal oscillator operation using oscillation resistor R_f.

 R_f : 75 k $\Omega \pm 2\%$ (when $V_{CC} = 3$ V) R_f : 91 k $\Omega \pm 2\%$ (when $V_{CC} = 5$ V)

Since the oscillation frequency varies depending on the OSC_1 and OSC_2 pin capacitance, the wiring length to these pins should be minimized.

HITACHI

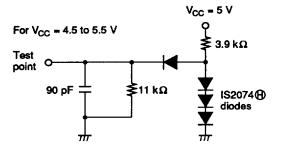

268


4496204 0046064 635

13. R_{COM} is the resistance between the power supply pins (V_{CC}, V₁, V₄, V₅) and each common signal pin (COM₁ to COM₁₆).

 R_{SEG} is the resistance between the power supply pins (V_{CC} , V_2 , V_3 , V_5) and each segment signal pin (SEG_1 to SEG_{40}).

14. The following graphs show the relationship between operation frequency and current consumption.

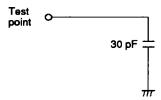

- 15. Applies to the OSC₁ pin.
- Each COM and SEG output voltage is within ±0.15 V of the LCD voltage (V_{CC}, V₁, V₂, V₃, V₄, V₅)
 when there is no load.

HITACHI

4496204 0046065 571 1

Load Circuits

Data Bus DB₀ to DB₇



For V_{CC} = 2.7 to 4.5 V

Test point O

50 pF

External driver control signals: CL1, CL2, D, M

Timing Characteristics

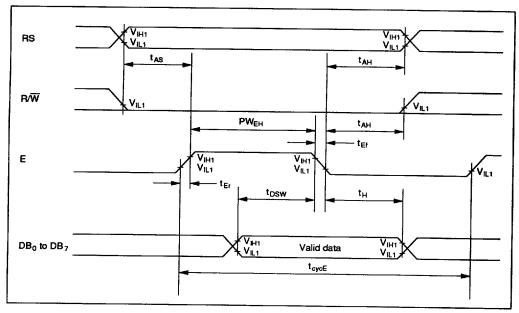


Figure 34 Write Operation

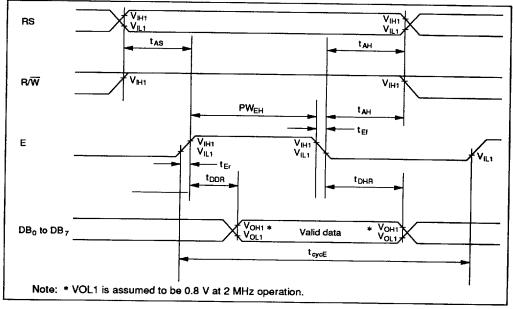


Figure 35 Read Operation

HITACHI 4496204 0046067 344 ■

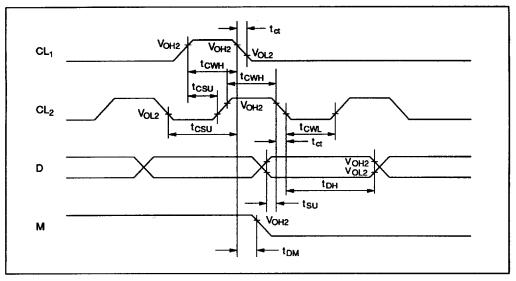


Figure 36 Interface Timing with External Driver

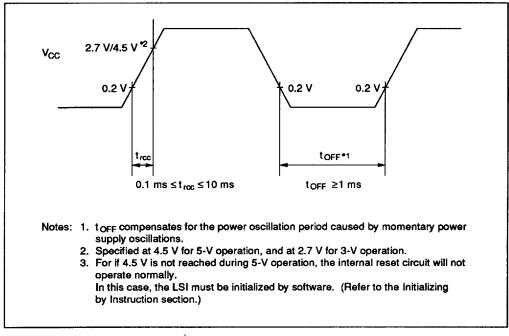


Figure 37 Internal Power Supply Reset