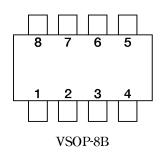
# IC for Control of Lithium-ion Betteries Charging

# Monolithic IC MM1438

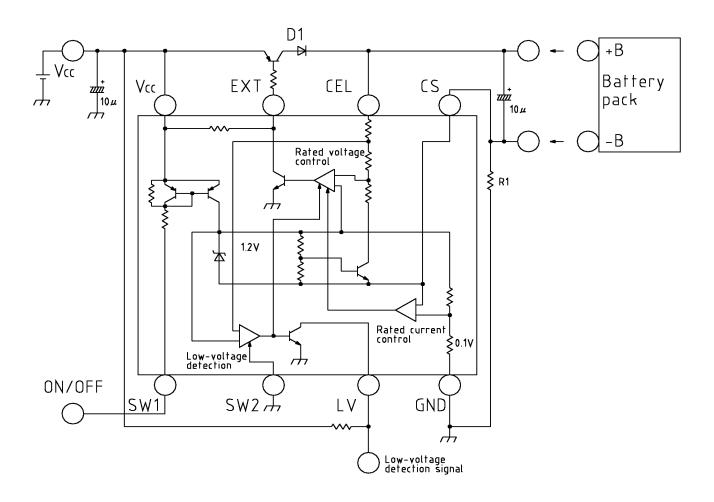
### 

This IC is used to control charging of lithium-ion batteries consisting of a single cell. It is a modification of the previous MM1332 charging-control IC, with improved charging voltage accuracy and a smaller package.

### 


1. Charging voltage accuracy (Ta=25°C) ±25mV/cell
2. Charging voltage accuracy (Ta=0 to 50°C) ±30mV/cell
3. Consumption current (charging on) 250μA typ.
4. Consumption current (charging off) 2μA typ.
5. Low-voltage detection 2.15V typ.
6. Leakage current between CEL and CS 1μA max.

### 


VSOP-8B

### 

IC for control of lithium-ion batteries charging.



| 1 | GND |
|---|-----|
| 2 | LV  |
| 3 | SW2 |
| 4 | SW1 |
| 5 | Vcc |
| 6 | EXT |
| 7 | CEL |
| 8 | CS  |



| Pin No. | Pin name | 1/0       | Pin Description                                                                     |                                                        |
|---------|----------|-----------|-------------------------------------------------------------------------------------|--------------------------------------------------------|
| 1       | GND      | Input     | Ground pin                                                                          |                                                        |
| 2       | LV       | Output    | Low voltage detection circuit output pin                                            |                                                        |
| _       | LV       |           | ON with NPN-Tr open collector output at low voltage                                 |                                                        |
| 3       | CWO Inc  | SW2       | Input                                                                               | Low voltage detection circuit ON/OFF control input pin |
|         | 3442     | Input     | SW2 = Vcc: OFF, SW2 = GND: ON                                                       |                                                        |
| 4       | SW1      | SW1 Input | ON/OFF control input pin for the IC                                                 |                                                        |
| 4       | 3W1      |           | SW1 = Vcc: OFF, SW1 = GND: ON                                                       |                                                        |
| 5       | Vcc      | Input     | Power supply input pin                                                              |                                                        |
| 6       | EXT      | Output    | Charging control output pin Controls external PNP-Tr to control charging.           |                                                        |
| 7       | 7 CEL    | CEL Input | Battery voltage input pin                                                           |                                                        |
| •       |          | Input     | Detects battery voltage and controls rated voltage to the prescribed voltage value. |                                                        |
|         | cs       | CS Input  | Current detection pin                                                               |                                                        |
| 8       |          |           | Detects current by drop in external resistor voltage and controls rated current.    |                                                        |
|         |          |           | Current value can be set at 0.1V/R1 typ.                                            |                                                        |

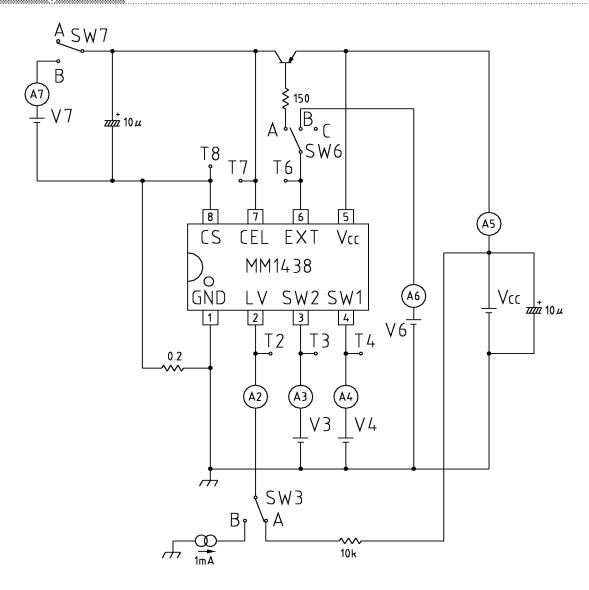
# (Ta=25°C)

| Item                  | Symbol    | Ratings      | Unit |
|-----------------------|-----------|--------------|------|
| Storage temperature   | Tstg      | -40~+125     | °C   |
| Operating temperature | Topr      | -20~+70      | °C   |
| Power supply voltage  | Vcc max.  | -0.3~+18     | V    |
| CFL pin input voltage | Vcel max. | -0.3~+13     | V    |
| SW input voltage      | Vsw       | -0.3~Vcc+0.3 | V    |
| Allowable loss        | Pd        | 300          | mW   |

## Recommended Operating Conditions

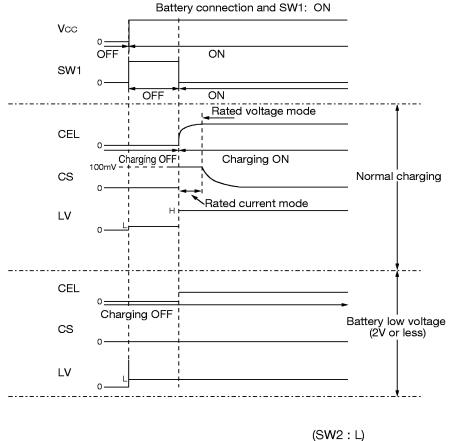
| Item                               | Symbol             | Ratings | Unit |
|------------------------------------|--------------------|---------|------|
| Operating temperature              | Topr               | -20~+70 | °C   |
| Charging control operating voltage | $V_{\mathrm{OPR}}$ | 2.5~+17 | V    |

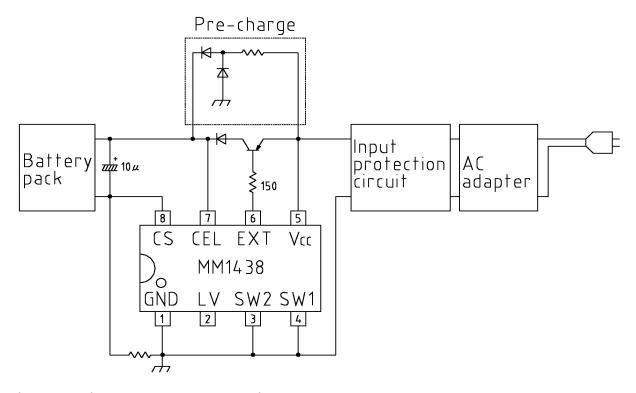
Note: Operating voltage minimum value is during rated current control.


# (Except where noted otherwise, Ta=25°C, Vcc=5V, SW3 : A, SW6 : A, SW7 : A)

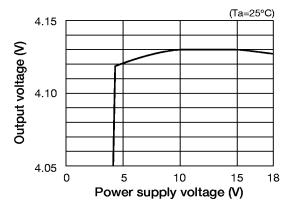
| Item                                               | Symbol            | Measurement conditions             | Min.    | Тур.  | Max.    | Unit |
|----------------------------------------------------|-------------------|------------------------------------|---------|-------|---------|------|
| Consumption current 1                              | Icc1              | VSW1=VSW2=0V (Charge : ON)         |         | 250   | 400     | μA   |
| Consumption current 2                              | Icc2              | VSW1=VSW2=Vcc (Charge : OFF)       |         | 2     | 10      | μA   |
| Output voltage 1                                   | V <sub>O1</sub>   | Ta=25°C                            | 4.100   | 4.125 | 4.150   | V    |
| Output voltage 2                                   | $V_{O2}$          | Ta=0~50°C                          | 4.095   | 4.125 | 4.155   | V    |
| Current limit                                      | Vcl               |                                    | 90      | 100   | 110     | mV   |
| Inflow current between CEL-CS during operation     | Icel1             |                                    | 3.0     | 5.0   | 7.0     | μA   |
| Leak current between CEL-CS                        | ICEL2             | Vcc=0V or OPEN                     |         | 0.01  | 1       | μA   |
| SW1 input current                                  | Isw1              |                                    |         | 20    | 30      | μA   |
| SW1 input voltage L                                | $V_{L1}$          | Charge : ON                        | -0.3    |       | 2.0     | V    |
| SW1 input voltage H                                | $V_{\rm H1}$      | Charge : OFF                       | Vcc-0.1 |       | Vcc+0.3 | V    |
| Low voltage detection voltage                      | Lv                |                                    | 2.0     | 2.15  | 2.3     | V    |
| SW2 input current                                  | Isw2              |                                    |         | 20    | 30      | μA   |
| SW2 input current L                                | $V_{L2}$          | Low voltage detection circuit: ON  | -0.3    |       | 2.0     | V    |
| SW2 input current H                                | $V_{\mathrm{H2}}$ | Low voltage detection circuit: OFF | Vcc-1.0 |       | Vcc+0.3 | V    |
| Low voltage detection<br>output leak current       | Ilv               |                                    |         |       | 0.5     | μA   |
| Low voltage detection<br>output saturation voltage | V <sub>LV</sub>   | Isink=1mA                          |         | 0.2   | 0.4     | v    |
| EXT pin inflow current                             | IEXT              |                                    | 10      | 20    |         | mA   |
| EXT pin output voltage                             | VEXT              | For no load                        | 0.3     |       | Vcc-0.3 | V    |

Note 1: Please insert a capacitor of several µF between power supply and ground when using.

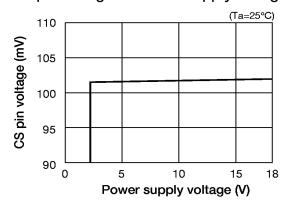

Note 2: Be sure that CS pin potential does not fall below -0.5V.


Note 3: If the IC is damaged and control is no longer possible, its safety can not be guaranteed. Please protect with something other than this IC.

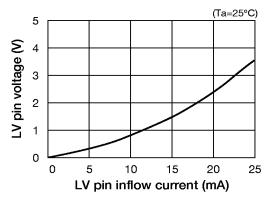



# (Except where noted otherwise, Ta=25°C, Vcc=5V, SW3 : A, SW6 : A, SW7 : A)

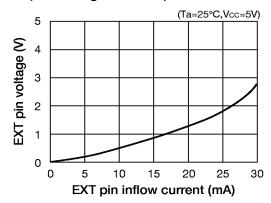
| ltem                          | Measurement Procedures                                                              |  |  |
|-------------------------------|-------------------------------------------------------------------------------------|--|--|
| Consumption current 1         | V3 = Vcc, V4 = 0V. Next, measure A5 current value Icc1 when V3 is changed           |  |  |
|                               | from $Vcc \rightarrow 0V$ .                                                         |  |  |
| Consumption current 2         | V3 = Vd = Vcc. Measure A6 current value Icc2 at this time.                          |  |  |
| Output voltage                | V3 = Vcc, V4 = 0V. Measure T7 voltage Vo at this time.                              |  |  |
| Current limit                 | V3 = Vcc, V4 = 0V. Set V7 voltage 1V lower than T7 (output voltage) potential       |  |  |
| Current iiniit                | and set SW7 to B. Measure T8 voltage Vcl at this time.                              |  |  |
| Inflow current between        | V3 = Vcc, V4 = 0V, SW6: C. V7 = 4.5V, SW7: B. Measure A7 current value              |  |  |
| CEL-CS during operation       | ICELI at this time.                                                                 |  |  |
| Look ourront botwoon CEL CS   | V3 = V4 = Vcc = 0V, SW6: C. V7 = 4.5V, SW7: B. Measure A7 current value             |  |  |
| Leak current between CEL-CS   | ICEL2 at this time.                                                                 |  |  |
| SW1 input current             | Measure A4 current value Isw1 when V4 = 0V.                                         |  |  |
| CW1 input valtage             | V3 = Vcc. Charge: ON (VL1) when V4 potential is varied and T7 voltage is the        |  |  |
| SW1 input voltage             | prescribed output voltage; Charge OFF ( $V_{\rm HI}$ ) when $0 \sim 0.05 V$ .       |  |  |
|                               | V3 = V4 = 0V. Set V7 voltage 1V lower than T7 (output voltage) potential, and       |  |  |
| Low voltage detection voltage | SW7: B.                                                                             |  |  |
| Low voltage detection voltage | Next gradually lower V7 voltage; V7 voltage is Lv when A7 current value is          |  |  |
|                               | within ±10μA.                                                                       |  |  |
| SW2 input current             | Measure A3 current value Isw2 when V3 = 0V.                                         |  |  |
|                               | V4 = 0V, V7 = 1V, SW7: B. Low voltage detection circuit: ON (V12) when V3           |  |  |
| SW2 input voltage             | voltage is varied and A7 current value is within ±10μA; low voltage detection       |  |  |
|                               | circuit: OFF (VH2) otherwise.                                                       |  |  |
| Low voltage detection         | V3 = Vcc, V4 = 0V. Measure A2 current value I <sub>LV</sub> when V3 is changed from |  |  |
| output leak current           | Vcc 0V.                                                                             |  |  |
| Low voltage detection         | V3 = V4 = 0V. SW3: B, SW7: B. Measure T2 voltage V <sub>LV</sub> when V7 voltage    |  |  |
| output saturation voltage     | v3 = v4 = 0v. Sw3. B, Sw7. B. Measure 12 voltage viv when v7 voltage is ov.         |  |  |
| EXT pin inflow current        | V3 = V4 = 0V. SW6: B, SW7: B, V6 = 4V, V7 = 3V. Measure A6 current value Iext.      |  |  |
| EXT pin output voltage        | V3 = V4 = 0V. SW6: C, SW7: B. T6 voltage when V7 = 3V and V7 = 5V is Vext.          |  |  |



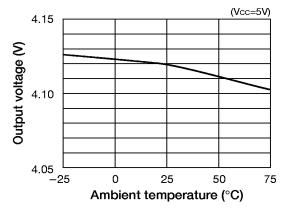




#### Output voltage vs Power supply voltage

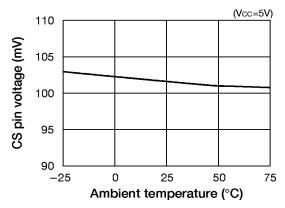



#### CS pin voltage vs Power supply voltage

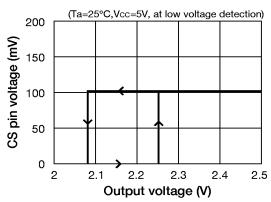



### LV pin voltage vs LV pin inflow current




#### EXT pin voltage vs EXT pin inflow current




#### Output voltage vs Ambient temperature



### CS pin voltage vs Ambient temperature



#### CS pin voltage vs Output voltage

