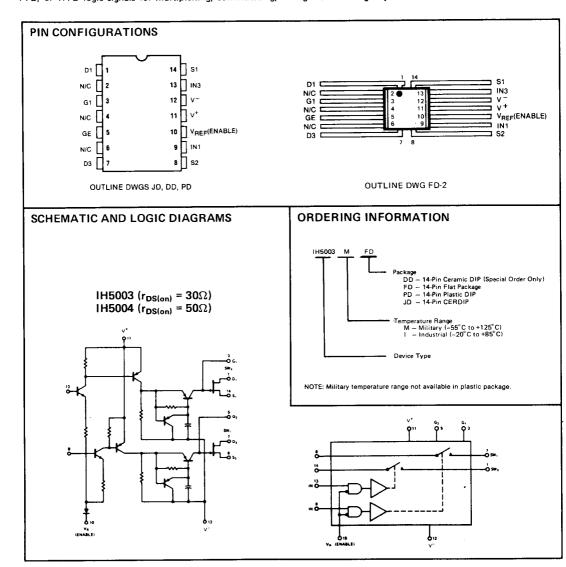


FEATURES

- Gate Lead Available for Nulling Charge Injection Voltage
- Each Channel Complete—Interfaces With Most Integrated Logic
- Low OFF Power Dissipation, —1 mW
- Switches Analog Signals up to 20 Volts Peak-to-Peak
- Low r_{DS(ON)}, 30Ω Max on 1H5003


GENERAL DESCRIPTION

These switching circuits contain two channels in one package, each channel consisting of a driver circuit controlling a SPST junction FET switch. The driver interfaces DTL, TTL, or RTL logic signals for multiplexing, commutating,

IH5003/IH5004 2-Channel Drivers with SPST FET Switches

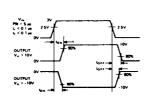
(Gate Available)

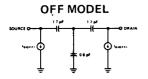
and D/A converter applications, which permits logic design directly with the switch function. Logic "1" at the input turns the FET switch ON, and logic "0" turns it OFF. The gate lead of the FETs has been brought out to enable the application of a referral resistor for nulling out offset voltage due to charge injection.

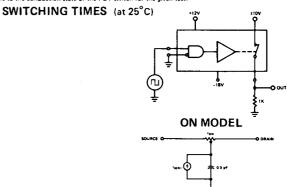
ABSOLUTE MAXIMUM RATINGS

Analog Signal Voltage $(V_A - V^- \text{ or } V^+ - V_A) \dots 30V$
Total Supply Voltage (V ⁺ – V ⁻)
Pos. Supply Voltage to Ref. Voltage (V ⁺ – V _R)25V
Ref. Voltage to Neg. Supply Voltage (V _R – V ⁻)
Power Dissipation (Note)
Current (Any Terminal)
Storage Temperature
Operating Temperature
Lead Temperature (Soldering, 10 sec) 300°C

NOTE: Dissipation rating assumes device is mounted with all lead welded or soldered to printed circuit board in ambient temperature below 70°C. For higher temperature, derate a rate of 10 mW°C.


Stresses above those listed under Absolute Maximum Ratin may cause permanent damage to the device. These are str ratings only, and functional operation of the device at these any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to about maximum rating conditions for extended periods maffect device reliability.


ELECTRICAL CHARACTERISTICS


Applied Voltages for all tests: $V^+ = +12V$, $V^- = -18V$, GND = 0. Input test condition which guarantees FET switch ON or OFF as specified is used for output and power supply specifications.

	SYMBOL (NOTE)	CHARACTERISTIC	TYPE	ABSOLUTE MAX LIMIT				
				-55°	25°	125°	UNITS	TEST CONDITIONS
- Z p O F	V _{IN(ON)}	Input Voltage-ON	Both Circuits	2.9 min	2.5 min	2.0 min	Volts	V- = -12V
	VIN(OFF)	Input Voltage-OFF		1.4	1.0	0.6 ،	Volts	V= = -12V
	I _{IN(ON)}	Input Current		120	60	60	μΑ	V _{IN} = 2.5V
	lin(OFF)	Input Leakage Current		0.1	0.1	2	μΑ	V _{IN} = 0.8V
03-101-20	FDS(ON)	Drain-Source ON Resistance	IH5003	30	30	50	Ω	V _D = 10V, I _S = 10 mA
			IH5004	50	50	85	Ω	
	IDION)+ISION)	Drive Leakage Current	Both Circuits		2	100	nA	V _D = V _S = -10V
	IS(OFF)	Source Leakage Current			1	100	nΑ	V _S = 10V, V _D = -10V
	ID(OFF)	Drain Leakage Current			1	100	nA	V _D = 10V, V _S = -10V
POWER SUPPLY	1*	Positive Power Supply Drain Current	Both Circuits		3		mA	One Driver ON, V _{IN} = 2.5V
	1-	Negative Power Supply Drain Current			-1.8		mA	
	IREF	Reference Power Supply Drain Current			-1.4		mA	
	I ⁺ LK	Positive Power Supply Leakage Current			25		μΑ	Both Drivers OFF V _{IN} = 0.8V
	I- _{LK}	Negative Power Supply Leakage Current			-25		μΑ	
	IRLK	Reference Power Sup- ply Leakage Current			-25		μΑ	
POSER	ton	Turn-ON Time	Both Circuits		0.3	0.5	μs	See Below
	toff	Turn-OFF Time			8.0	1.2	μs	
	P _{ON}	ON Driver Power	Both Circuits		175		mW	Both Inputs V _{IN} = 2.5
	Poff	OFF Driver Power			1		mW	Both Inputs V _{IN} = 1V
F E T	V _{GS(f)}	Gate Source Forward Voltage	Both Circuits		1.5		Volts	I _G = 1.0 mA, V _{DS} = 0

NOTE: (OFF) and (ON) subscript notation refers to the conduction state of the FET switch for the given test.

