

LCP1511D

Application Specific Discretes A.S.D.TM

PROGRAMMABLE TRANSIENT VOLTAGE SUPPRESSOR FOR SLIC PROTECTION

FEATURES

- DUAL PROGRAMMABLE TRANSIENT SUP-PRESSOR.
- WIDE NEGATIVE FIRING VOLTAGE RANGE : V_{MGL} = -80V max.
- LOW DYNAMIC SWITCHING VOLTAGES : VFP and VDGL.
- LOW GATE TRIGGERING CURRENT : I_{GT} = 5mA max.
- PEAK PULSE CURRENT: IPP = 30A for 10/1000µs surge.
- HOLDING CURRENT : I_H = 150mA.

DESCRIPTION

This device has been especially designed to protect subscriber line card interfaces (SLIC) against transient overvoltages.

Positive overloads are clipped with 2 diodes. Negative surges are suppressed by 2 thyristors, their breakdown voltage being referenced to -V_{BAT} through the gate.

This component presents a very low gate triggering current (I_{GT}) in order to reduce the current consumption on printed circuit board during the firing phase.

A particular attention has been given to the internal wire bonding. The "4-point" configuration ensures reliable protection, eliminating the overvoltage introduced by the parasitic inductances of the wiring (Ldi/dt), especially for very fast transients.

COMPLIES WITH THE FOLLOWING STANDARDS:

CCITT K20: 10/700μs 1kV 5/310μs 25A

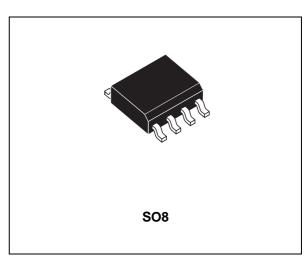
VDE 0433: 10/700us 2kV

5/310μs 38A (*)

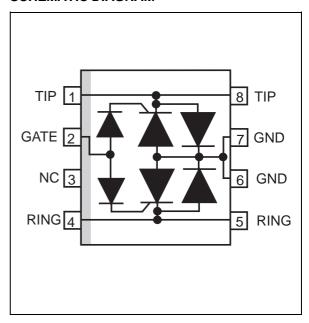
VDE 0878 : 1.2/50μs 1.5kV

1/20µs 40A

13124 : 0.5/700μs 1kV 0.2/310μs 25A


FCC part 68 : 2/10μs 2.5kV

2/10μs 170A (*)


BELLCORE

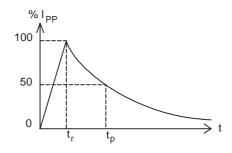
TR-NWT-001089: 2/10μs 2.5kV 2/10μs 170A (*)

(*) with series resistors or PTC.

SCHEMATIC DIAGRAM

TM: ASD is trademarks of SGS-THOMSON Microelectronics.

February 1998 Ed: 3 1/7

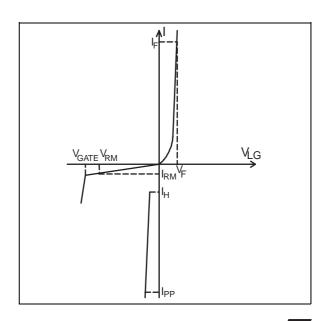

LCP1511D

ABSOLUTE MAXIMUM RATINGS ($T_{amb} = 25 \text{ }^{\circ}\text{C}$)

Symbol	Parameter	Value	Unit	
Ірр	Peak pulse current (see note 1)	30 38 170	А	
I _{TSM}	Non repetitive surge peak on-state current (F = 50Hz)	8 3.5	А	
I _{GSM}	Maximum gate current (half sine wave tp = 10ms	2	Α	
V _{MLG} V _{MGL}	Maximum voltage LINE / GROUND Maximum voltage GATE / LINE	-100 -80	V	
T _{stg} T _j	Storage temperature range Maximum junction temperature	- 55 to + 150 150	°C	
TL	Maximum lead temperature for soldering during 1	0s	260	°C

Note 1 : Pulse waveform :

10/1000μs	tr=10μs	tp=1000µs
5/310μs	tr=5μs	tp=310μs
2/10μs	tr=2μs	tp=10μs



THERMAL RESISTANCE

Symbol	Parameter	Value	Unit
R _{th (j-a)}	Junction to ambient	170	°C/W

ELECTRICAL CHARACTERISTICS (T_{amb} = 25°C)

Symbol	Parameter
Igt	Gate triggering current
Ін	Holding current
I _{RM}	Reverse leakage current LINE/GND
I _{RG}	Reverse leakage current GATE/LINE
V _{RM}	Reverse voltage LINE/GND
VF	Forward drop voltage LINE/GND
V_{GT}	Gate triggering voltage
V_{FP}	Peak forward voltage LINE/GND
V_{DGL}	Dynamic switching voltage GATE/LINE
VGATE	GATE/GND voltage
VLG	LINE/GND voltage
С	Off-state capacitance LINE/GND

1 - PARAMETERS RELATED TO THE DIODE LINE/GND (Tamb = 25 °C)

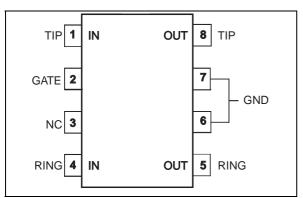
Symbol		Te	est condition	Maximum	Unit	
VF	I _F =5A	t _p =500μs			3	V
V _{FP}	10/700μs 1.2/50μs 2/10μs	1.5kV 1.5kV 2.5kV	$R_p=10\Omega$ $R_p=10\Omega$ $R_p=62\Omega$	(see note 1)	5 7 12	V

Note 1 : See test circuit 2 for V_{FP} ; R_p is the protection resistor located on the line card.

2 - PARAMETERS RELATED TO THE PROTECTION THYRISTOR ($T_{amb} = 25$ °C)

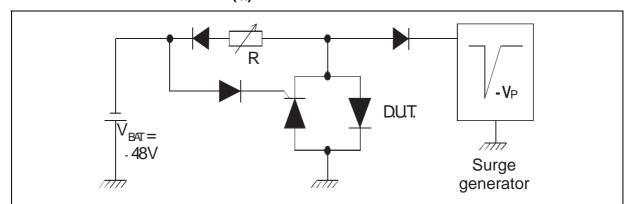
Symbol	Test conditions	Min.	Max.	Unit
IgT	V _{GND} /LINE = -48V	0.2	5	mA
lΗ	V _{GATE} =-48V (see note 2)	150		mA
VgT	at IgT		2.5	V
I _{RG}	$T_c=25^{\circ}C$ $V_{RG}=-75V$ $T_c=70^{\circ}C$ $V_{RG}=-75V$		5 50	μΑ
V _{DGL}	VGATE= -48V (see note 3) 10/700μs 1.5kV Rp=10Ω I _{PP} =30A 1.2/50μs 1.5kV Rp=10Ω I _{PP} =30A 2/10μs 2.5kV Rp=62Ω I _{PP} =38A		10 20 25	V

Note 2: See the functional holding current (I_H) test circuit 2.


Note 3:

See test circuit 1 for $V_{\rm DGL}$. The oscillations with a time duration lower than 50ns are not taken into account.

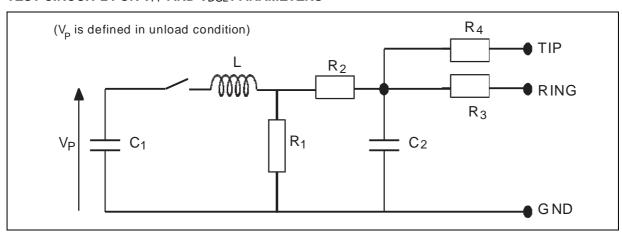
3 - PARAMETERS RELATED TO DIODE AND PROTECTION THYRISTOR (Tamb = 25 °C)


Symbol		Test condit	Maximum	Unit	
I _{RM}	-	VGATE/LINE = -1V VGATE/LINE = -1V	V _{RM} =-75V V _{RM} =-75V	5 50	μΑ
С	V _R =-3V V _R =-48V	F=1MHz F=1MHz		100 50	pF

APPLICATION NOTE

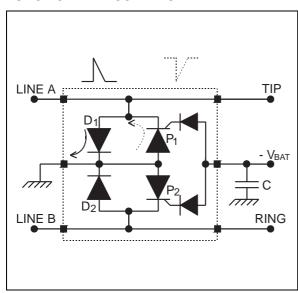
In order to take advantage of the "4 point" structure of the LCP, the TIP and RING lines go across the device. In such case, the device will eliminate the overvoltages generated by the parasitic inductances of the wiring (Ldi/dt), especially for very fast transients.

FUNCTIONAL HOLDING CURRENT (IH) TEST CIRCUIT 1: GO-NO GO TEST



This is a GO-NO GO test which allows to confirm the holding current (I_H) level in a functional test circuit.

TEST PROCEDURE:

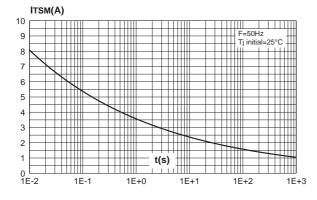

- Adjust the current level at the I_{H} value by short circuiting the D.U.T.
- Fire the D.U.T. with a surge current : I_{PP} = 10A, 10/1000μs.
 The D.U.T. will come back to the off-state within a duration of 50ms max.

TEST CIRCUIT 2 FOR V_{FP} AND V_{DGL} PARAMETERS

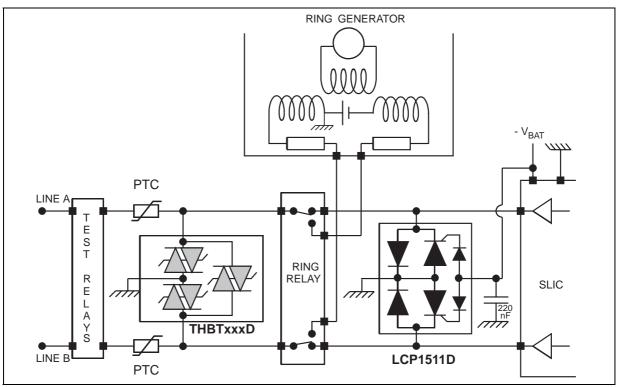
Pulse	e (μs)	V p	C ₁	C ₂	L	\mathbf{R}_1	R_2	R_3	R_4	I PP	R p
t r	t p	(V)	(μF)	(nF)	(μH)	(Ω)	(Ω)	(Ω)	(Ω)	(A)	(Ω)
10	700	1500	20	200	0	50	15	25	25	30	10
1.2	50	1500	1	33	0	76	13	25	25	30	10
2	10	2500	10	0	1.1	1.3	0	3	3	38	62

FUNCTIONAL DESCRIPTION

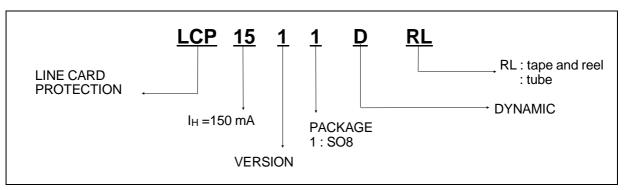
LINE A PROTECTION:


- For positive surges versus GND, the diode D1 will conduct.
- For negative surges versus GND, the protection device P1 will trigger at a voltage fixed by the -V_{BAT} reference.

LINE B PROTECTION:

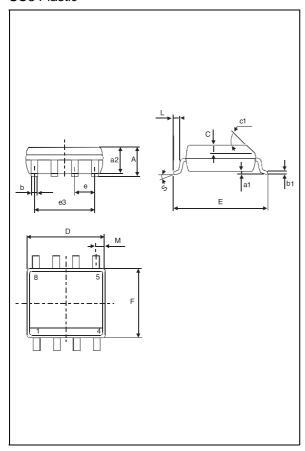

 For surges on line B, the operating mode is the same, D2 or P2 is activated.

It is recommended to add a capacitor (C=220nF) close to the gate of the LCP, in order to speed up the triggering.


Surge peak current versus overload duration.

APPLICATION CIRCUIT: typical SLIC protection concept

ORDER CODE



MARKING

Package	Type	Marking
SO8	LCP1511D	CP151D

PACKAGE MECHANICAL DATA

SO8 Plastic

	DIMENSIONS							
REF.	Mi	Millimetres			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.		
Α			1.75			0.069		
a1	0.1		0.25	0.004		0.010		
a2			1.65			0.065		
b	0.35		0.48	0.014		0.019		
b1	0.19		0.25	0.007		0.010		
С		0.50			0.020			
c1			45°	(typ)				
D	4.8		5.0	0.189		0.197		
Е	5.8		6.2	0.228		0.244		
е		1.27			0.050			
e3		3.81			0.150			
F	3.8		4.0	0.15		0.157		
L	0.4		1.27	0.016		0.050		
М			0.6			0.024		
S	8° (max)							

Weight = 0.08 g.

Packaging: Product supplied in antistatic tubes or tape and reel.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.

STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© 1998 STMicroelectronics - Printed in Italy - All rights reserved.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

