

Discrete POWER & Signal **Technologies**

MPSH24

MMBTH24

NPN RF Transistor

This device is designed for common-emitter low noise amplifier and mixer applications with collector currents in the 100 μA to 20 mA range to 300 MHz, and low frequency drift common-base VHF oscillator applications with high output levels for driving FET mixers. Sourced from Process 47. See MPSH11 for characteristics.

Absolute Maximum Ratings*

TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V_{CEO}	Collector-Emitter Voltage	30	V
V _{CBO}	Collector-Base Voltage	40	V
V _{EBO}	Emitter-Base Voltage	4.0	V
I _C	Collector Current - Continuous	50	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

Thermal Characteristics

TA = 25°C unless otherwise noted

Symbol	Characteristic	Max		Units
		MPSH24	*MMBTH24	
P_D	Total Device Dissipation	625	225	mW
	Derate above 25°C	5.0	1.8	mW/°C
$R_{\theta JC}$	Thermal Resistance, Junction to Case	83.3		°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	200	556	°C/W

^{*}Device mounted on FR-4 PCB 1.6" X 1.6" X 0.06."

¹⁾ These ratings are based on a maximum junction temperature of 150 degrees C.

2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations

NPN RF Transistor (continued)

Electrical Characteristics

TA = 25°C unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Max	Units
OEE CHA	RACTERISTICS				
V _{(BR)CEO}	Collector-Emitter Sustaining Voltage*	$I_C = 1.0 \text{ mA}, I_B = 0$	30		V
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_C = 100 \mu\text{A}, I_E = 0$	40		V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_E = 10 \mu A, I_C = 0$	4.0		V
I _{CBO}	Collector Cutoff Current	$V_{CB} = 15 \text{ V}, I_{E} = 0$		50	nA
ON CHAF	RACTERISTICS				
h _{FE}	DC Current Gain	$I_C = 8.0 \text{ mA}, V_{CE} = 10 \text{ V}$	30		
		$I_C = 8.0 \text{ mA}, V_{CE} = 10 \text{ V}$	30		
	DC Current Gain	$I_C = 8.0 \text{ mA}, V_{CE} = 10 \text{ V}$ $I_C = 8.0 \text{ mA}, V_{CE} = 10 \text{ V},$ $f = 100 \text{ MHz}$	30		MHz

^{*}Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%