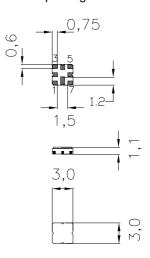


SAW Components

Data Sheet B1614

SAW Components B1614 **Low-Loss Filter** 1220,00 MHz

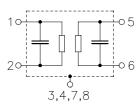
Data Sheet


SMD ceramic package QCC8D

Features

- Low loss RF filter for dual conversion
- Usable passband 8 MHz
- No matching network required for operation at 100 Ω
- Balanced to balanced operation
- Low group delay ripple
- Package for Surface Mounted Technology (SMT)

Terminals


■ Ni, gold-plated

Dimensions in mm, approx. weight 0,037 g

Pin configuration

1	Input
2	Input
5	Output
6	Output
3,7	To be grounded
4 8	Case - ground

Туре	_	Marking and Package according toMarking	Packing according to
B1614	B39122-B1614-U810	C61157-A7-A72	F61074-V8168-Z000

Electrostatic Sensitive Device (ESD)

Maximum ratings

Operable temperature range	T	-40/+85	°C	
Storage temperature range	$T_{\rm stg}$	-40/+85	°C	
DC voltage	$V_{\rm DC}$	0	V	
Source power	P_{S}	0	dBm	source impedance 100 Ω

SAW Components B1614

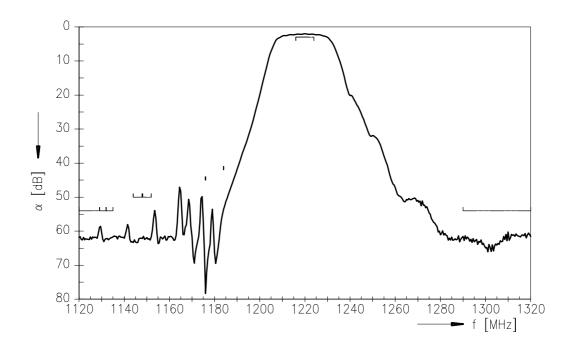
Low-Loss Filter 1220,00 MHz

Data Sheet

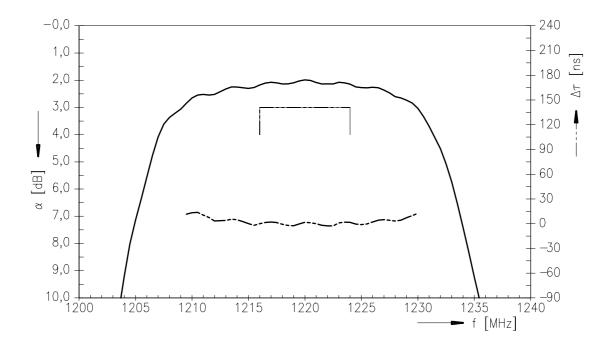
Characteristics

Operating temperature range: $T = -40 \,^{\circ}\text{C} \dots +85 \,^{\circ}\text{C}$

Terminating source impedance: $Z_{\rm S} = 100~\Omega$ Terminating load impedance: $Z_{\rm L} = 100~\Omega$


		min.	typ.	max.	
Nominal frequency	f_{N}	_	1220,00	_	MHz
Maximum insertion attenuation	α_{max}				
1216,00 1224,00 MHz		_	2,3	3,0	dB
Amplitude ripple in passband (p-p)	Δα				
1216,00 1224,00 MHz		_	0,3	1,0	dB
Attenuation*)	α				
500,00 f _N -91,00 MHz	u	54,0	58,0		dB
f _N -91,00 f _N -85,00 MHz		54,0	58,0	_	dB
f _N -76,00 f _N -68,00 MHz		50,0	54,0	_	dB
f _N -88,00 MHz		54,0	60,0	_	dB
f _N -72,00 MHz		50,0	60,0	_	dB
f _N -44,00 MHz		45,0	50,0	_	dB
f _N -36,00 MHz		42,0	48,0	_	dB
f _N +70,00 2000,00 MHz		54,0	60,0	_	dB
Group delay ripple (p-p)					
1216,00 1224,00 MHz		_	15,0	_	ns

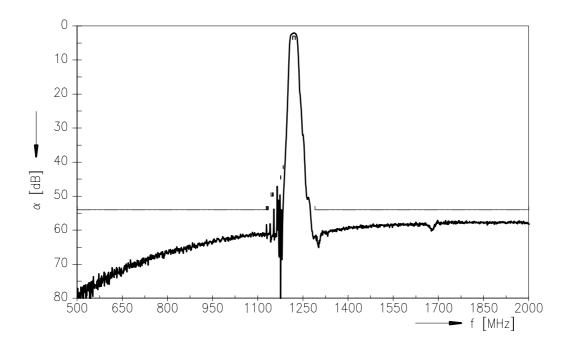
^{*)} The minimum value for the attenuation specification is derived from the worst point of the filter's stopband over temperature and production variation. This worst point is the peak of the spike, appearing in a stopband segment. The attenuation close beside this spike is better than stated in the specification for the stopband segment.



SAW Components		B1614
Low-Loss Filter		1220,00 MHz
Data Sheet	SMD	

Transfer function

Transfer function (passband)


SAW Components B1614

Low-Loss Filter 1220,00 MHz

Data Sheet

Transfer function (wideband)

SAW Components B1614
Low-Loss Filter 1220,00 MHz

Data Sheet

Published by EPCOS AG Surface Acoustic Wave Components Division, SAW MC PD 2 P.O. Box 80 17 09, 81617 Munich, GERMANY

© EPCOS AG 2005. Reproduction, publication and dissemination of this data sheet, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited.

Purchase orders are subject to the General Conditions for the Supply of Products and Services of the Electrical and Electronics Industry recommended by the ZVEI (German Electrical and Electronic Manufacturers' Association), unless otherwise agreed.

This brochure replaces the previous edition.

For questions on technology, prices and delivery please contact the Sales Offices of EPCOS AG or the international Representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our Sales Offices.