BIPOLARICS, INC.

Part Number BRF504

NPN LOW NOISE SILICON MICROWAVE TRANSISTOR

PRODUCT DATA SHEET

FEATURES:

- High Gain Bandwidth Product $f_t = 10 \text{ GHz typ } @ I_C = 4mA$
- Low Noise Figure 1.6 dB typ at 1 GHz 2.0 dB typ at 2 GHz
- High Gain $|S_{21}|^2 = 18.1 \text{ dB} @ 1 \text{ GHz}$ 12.8 dB @ 2 GHz
- Dice, Plastic, Hermetic and Surface Mount packages available

PERFORMANCE DATA:

• Electrical Characteristics ($T_A = 25^{\circ}C$)

DESCRIPTION AND APPLICATIONS:

Bipolarics' BRF504 is a high performance silicon bipolar transistor intended for use in low noise application at VHF, UHF and microwave frequencies. High performance low noise performance can be realized at 2 mA or less making the BRF504 an excellent choice for battery application. From 4 mA to over 8mA, f_t is nominally 10 GHz. Maximum recommended continuous current is 16 mA. A broad range of packages are offered including SOT-23, SOT-143, plastic and ceramic 0.085" Micro-X, 0.070" Stripline and unencapsulated dice.

Absolute Maximum Ratings:

SYMBOL	PARAMETERS	RATING	UNITS
V _{CBO}	Collector-Base Voltage	10	V
V _{CEO}	Collector-Emitter Voltage	10	V
V _{EBO}	Emitter-Base Voltage	1.5	V
	Collector Current	8	mA
T	Junction Temperature	200	°C
т _{stg}	Storage Temperature	-65 to 150	°C

SYMBOL	PARAMETERS & CONDITION $V_{CE} = 8V, I_{C} = 4$ mA unless stated	S	UNIT	MIN.	ТҮР.	MAX.
ft	Gain Bandwidth Product		GHz		10	
S ₂₁ ²	Insertion Power Gain: $f = 1.0 \text{ GHz},$ f = 2.0 GHz,	$I_{C} = 4 \text{ mA}$ $I_{C} = 8 \text{ mA}$ $I_{C} = 4 \text{mA}$ $I_{C} = 8 \text{ mA}$			17.5 18.1 12.8 12.6	
P _{1dB}	Power output at 1dB compression: f	= 1.0 GHz	dBm		10	
G _{1dB}	Gain at 1dB compression: f	= 1.0 GHz	dBm		15	
NF	Noise Figure: V_{CE} =8V, I_{C} = 0.8mA	f = 1.0 GHz Z _S = 50Ω	dB		1.6	
h _{FE}	Forward Current Transfer Ratio: $V_{CE} = 8V, I_{C} = 4 \text{ mA}$	= 1MHz		50	100	250
I _{CBO}	Collector Cutoff Current : V _{CB} =8V		μΑ			0.2
I _{EBO}	Emitter Cutoff Current : $V_{EB} = 1V$		μΑ			1.0
C _{CB}	Collector Base Capacitance: $V_{CB} = 8V$	f = 1MHz	pF		0.07	