

SINGLE IGBT GATE DRIVER

The IL33153 is specifically designed as an IGBT driver for high power applications that include ac induction motor control, brushless dc motor control and uninterruptable power supplies. Although designed for driving discrete and module IGBTs, this device offers a cost effective solution for driving power MOSFETs and Bipolar Transistors. Device protection features include the choice of desaturation or overcurrent sensing and undervoltage detection. These devices are available in dual-inline and surface mount packages and include the following features:

FEATURES

- High Current Output Stage: 1.0 A Source/2.0 A Sink
- Protection Circuits for Both Conventional and Sense IGBTs
- Programmable Fault Blanking Time
- Protection against Overcurrent and Short Circuit
- Undervoltage Lockout Optimized for IGBT's
- Negative Gate Drive Capability
- Cost Effectively Drives Power MOSFETs and Bipolar Transistors

INTEGRAL

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage			V
v _{cc} to v _{EE}	V_{CC} - V_{EE}	20	
Kelvin Ground to v_{EE} (Note 1)	KGnd - V _{EE}	20	
Logic Input	Vin	V_{EE} -O,3 to V_{CC}	V
Current Sense Input	Vs	-0.3 to Vcc	V
Blanking/Desaturation Input	V _{BD}	-0.3 to Vcc	V
Gate Drive Output	I _O		А
Source Current		1.0	
Sink Current		2.0	
Diode Clamp Current		1.0	
Fault Output	I _{FO}		mA
Source Current		25	
Sink Curent		10	
Power Dissipation and Thermal Characteristics			
D Suffix SO-8 Package, Case 751			
Maximum Power Dissipation @ T _A = 50°C Thermal	P _D	0.56	W
Resistance, Junction-to-Air	R _{θJA}	180	°C/W
P Suffix DIP-8 Package, Case 626			
Maximum Power Dissipation @ $T_A = 50^{\circ}C$ Thermal	P _D	1.0	W
Resistance, Junction-to-Air	$R_{ ext{ heta}JA}$	100	°C/W
Operating Junction Temperature	TJ	+150	°C
Operating Ambient Temperature	Та	-40 to +105	°C
Storage Temperature Range	Tstg	-65 to +150	°C

Γ _A =25°C, for min/max values T _A is the operating ambient temp Characteristic	Symbol	Min	Тур	Max	Unit
LOGIC					
Input Threshold Voltage]					V
High State (Logic 1)	VIH	-	2.70	3.2	
Low State (Logic 0)	V _{IL}	1.2	2.30	-	
Input Current					μA
High State (v _⊮ = 3.0 V)	I _{IH}	-	130	500	F -
Low State (V_{ii} = 1.2 V)	I _{II}	-	50	100	
DRIVE (DUTPUT				
Dutput Voltage					V
Low State (Isink = 1.0 A)	V _{OL}	_	2.0	2.5	
High State (Isource = 500 mA)	V _{OH}	12	13.9	_	
Output Pull-Down Resistor	R _{PD}	-	100	200	kΩ
•					1.22
Dutput voltage					V
Low Slate (Isink = 5.0 mA)	V _{FL}	-	0.2	1.0	
High State (Isource = 20 mA)	V _{FH}	12	13.3	-	
		12	10.0		
Propagation Delay (50% Input to 50% Output $C_L = 1.0 \text{ nF}$)		1			ns
Logic Input to Drive Output Rise					115
Logic Input to Drive Output Rise	t _{PLH} (in/out) t _{PHL}		80	300	
Logic input to Drive Output Fail	(in/out)	-	120	300	
Drive Output Rise Time (10% to 90%) $C_L = 1.0 \text{ nF}$	tr	-	120	55	ns
Drive Output Fall Time (90% to 10%) $C_L = 1.0 \text{ nF}$	tf	-	17	55	ns
	u	-	17	55	
Propagation Delay	to		0.3	1.0	μS
Current Sense Input to Drive Output	tp _(OC)	-	0.3	1.0	
Fault Blanking/Desaturation Input to Drive Output		-	0.3	1.0	
Startup Voltage	v _{ss} start	11.3	12	12.6	V
Disable Voltage	V _{SS} dis	10.4	11	11.7	V
	RATORS	10.4		11.7	v
Dvercurrent Threshold Voltage (V _{pin8} > 7,0 V)	V _{SOC}	50	65	80	mV
Short Circuit Threshold Voltage (V _{pin8} > 7,0 V)	V _{SSC}	100	130	160	mV
Fault Blanking/Desaturation Threshold (Vpin1 > 100 mV)		6.0	6.5	7.0	V
Current Sense Input Current (Vsi = 0 V)	V _{th(FLT})	0.0	-1.4	-10	mA
FAULT BLANKING/DE	0.		-1.4	-10	IIIA
Current Source (Vpin8 = 0 V, Vpin4 = 0 V)	Ichg	-200	-270	-300	mA
Discharge Current (Vpin8 = 15 V, Vpin4 = 5.0 V)	Idschg	1.0	2.5	-300	mA
	DEVICE	1.0	2.0	-	ша
					m۸
Power Supply Current	Icc		7.2	14	mA
Standby (Vpin 4 = v_{cc} , output Open)		-	7.2	14	
Operating (C _L = 1.0 nF, f= 20 kHz)		-	7.9	20	

ELECTRICAL CHARACTERISTICS (Vcc=15V, V_{EE} =0V, Kelvin Gnd connected to V_{EE} . For typical values

NOTES: 1. Kelvin Ground must always be between V_{EE} and V_{cc} .

2.Low duty cycle pulse techniques are used during test to maintain the junction temperature as close to ambient as possible.

Tlow = -40°C lor IL33153 Thigh = +105°Clor IL33153

