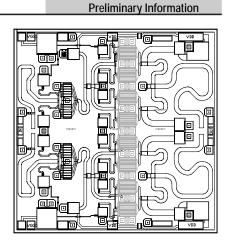


MAAPGM0060-DIE 903186 —


Features

- ◆ 5 Watt Saturated Output Power Level
- ◆ Variable Drain Voltage (6-10V) Operation
- MSAG Process

Description

The MAAPGM0060-DIE is a 2-stage, 5 W power amplifier with on-chip bias networks. This product is fully matched to 50 ohms on both the input and output. It can be used as a power amplifier stage or as a driver stage in high power applications.

Each device is 100% RF tested on wafer to ensure performance compliance. The part is fabricated using M/A-COM's repeatable, high performance and highly reliable GaAs Multifunction Self-Aligned Gate (MSAG) Process. This process provides polyimide scratch protection.

Primary Applications

- Point-to-Point Radio
- SatCom
- **Broadband Wireless Access**

Electrical Characteristics: $T_B = 40^{\circ}C^1$, $Z_0 = 50 \Omega$, $V_{DD} = 8V$, $Idq \approx 1.8A^2$, $P_{in} = 20 dBm$, $Rg = 100 \Omega$

Parameter	Symbol	Typical	Units
Bandwidth	f	4.8-6.7	GHz
Output Power	P _{OUT}	37	dBm
Power Added Efficiency	PAE	29	%
1-dB Compression Point	P1dB	37	dBm
Small Signal Gain	G	18	dB
Input VSWR	VSWR	3.0:1	
Output VSWR	VSWR	1.5:1	
Gate Supply Current	I_GG	< 4	mA
Drain Supply Current	I _{DD}	< 2.5	А

T_B = MMIC Base Temperature

Adjust V_{GG} between -2.6 and -1.5V to achieve specified Idq.

• North America Tel: 800.366.2266 / Fax: 978.366.2266

• Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

information.

MAAPGM0060-DIE 903186 — Preliminary Information

Maximum Operating Conditionss³

Parameter	Symbol	Absolute Maximum	Units
Input Power	P _{IN}	25.0	dBm
Drain Supply Voltage	V_{DD}	+12.0	V
Gate Supply Voltage	V_{GG}	-3.0	V
Quiescent Drain Current (No RF)	I _{DQ}	3	А
Quiescent DC Power Dissipated (No RF)	P _{DISS}	27	W
Junction Temperature	TJ	180	°C
Storage Temperature	T _{STG}	-55 to +150	°C

^{3.} Operation beyond these limits may result in permanent damage to the part.

Recommended Operating Conditions⁴

Characteristic	Symbol	Min	Тур	Max	Unit
Drain Supply Voltage	V_{DD}	6.0	8.0	10.0	V
Gate Supply Voltage	V_{GG}	-2.6	-1.8	-1.5	V
Input Power	P _{IN}		20.0	23.0	dBm
Junction Temperature	TJ			150	°C
Thermal Resistance	Θ_{JC}		3.7		°C/W
Package Base Temperature	T _B			Note 5	°C

- 4. Operation outside of these ranges may reduce product reliability.
- 5. Maximum MMIC Base Temperature = 150°C ⊖_{JC} * V_{DD} * I_{DQ}

Operating Instructions

This device is static sensitive. Please handle with care. To operate the device, follow these steps.

- 1. Apply $V_{GG} = -2.0 \text{ V}$, $V_{DD} = 0 \text{ V}$.
- 2. Ramp V_{DD} to desired voltage of 8 V.
- 3. Set RF input.
- 4. Power down sequence in reverse. Turn V_{GG} off

[•] Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

MAAPGM0060-DIE

903186 — Preliminary Information

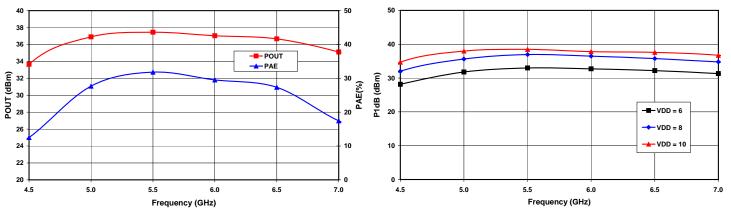
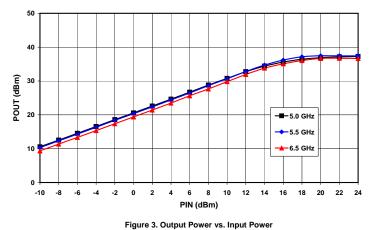



Figure 1. Output Power and Power Added Efficiency vs. Frequency at V_{DD} = 8V and P_{in} = 20 dBm

Figure 2. 1dB Compression Point vs. Drain Voltage

at V_{DD} = 8V

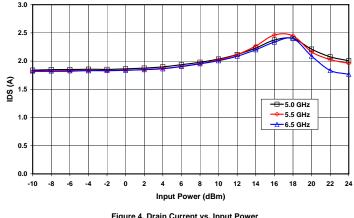
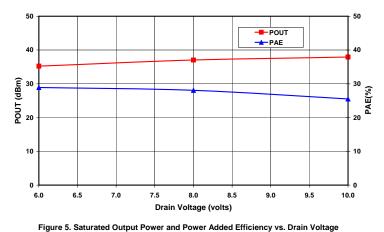



Figure 4. Drain Current vs. Input Power at $V_{DD} = 8V$

at f_o = 6 GHz

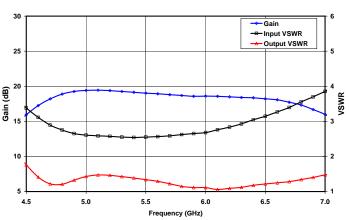


Figure 6. Small Signal Gain and VSWR vs. Frequency at VDD = 8V.

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

MAAPGM0060-DIE 903186 — Preliminary Information

Mechanical Information

Chip Size: 4.170 x 4.170 x 0.075 mm (163 x 163 x 3 mils)

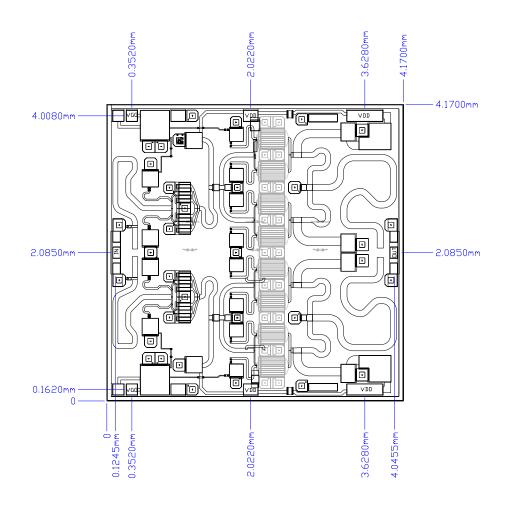


Figure 7. Die Layout

Bond Pad Dimensions

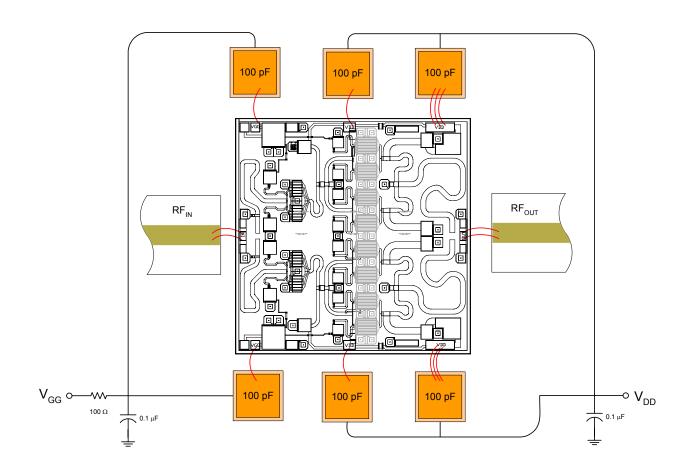
Pad	Size (μm)	Size (mils)
RF In and Out	100 x 150	4 x 6
DC Drain Supply Voltage VDD	200 x 150	8 x 6
DC Gate Supply Voltage VGG	150 x 150	6 x 6

⁴

information.

[•] North America Tel: 800.366.2266 / Fax: 978.366.2266

[•] **Europe** Tel: 44.1908.574.200 / Fax: 44.1908.574.300


Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

MAAPGM0060-DIE 903186 — Preliminary Information

Assembly and Bonding Diagram

Figure 8. Recommended bonding diagram for pedestal mount. Support circuitry typical of MMIC characterization.

Assembly Instructions:

Die attach: Use AuSn (80/20) 1 mil. preform solder. Limit time @ 300 °C to less than 5 minutes.

Wirebonding: Bond @ 160 °C using standard ball or thermal compression wedge bond techniques. For DC pad connections, use either ball or wedge bonds. For best RF performance, use wedge bonds of shortest length, although ball bonds are also acceptable.

Biasing Note: Must apply negative bias to V_{GG} before applying positive bias to V_{DD} to prevent damage to amplifier.

[•] Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298