
Features

- 1. Uni-directional data transmission using plastic fiber
- 2.Signal transmission speed
- :MAX. 12.5Mbps (NRZ signal)
- 3.Operating voltage :4.75 to 5.25 V
- 4.TTL and high speed C-MOS LOGIC IC compatible

Recommended drilling as viewd from the soldering face

NOTES:

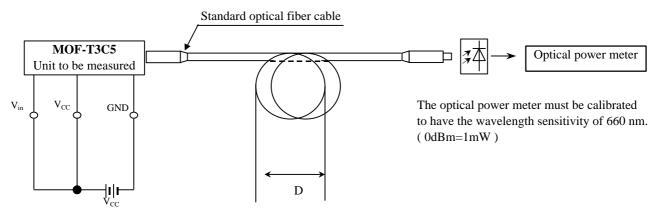
Tolerance is ±0.3mm unless otherwise noted.

Absolute N	laximum Ratings			@TA=25°C
	Parameter	Symbol	Rating	Unit
	Supply voltage	V _{cc}	-0.5 to + 7.0	V
	Input voltage	V _{in}	-0.5 to Vcc +0.5	V
	Operating temperature	T _{opr}	-20 to +70	°C
	Storage temperature	T _{stg}	-30 to +80	°C
	Soldering temperature *1	T _{sol}	260	°C

*1 For 5s (2 times or less)

REV: A2

09/04/2001


Recommended Operating Conditions

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Operating supply voltage	V _{cc}	4.75	5.0	5.25	V
Operating transfer rate	Т			12.5	Mbps

Electro-Optical Characteristics

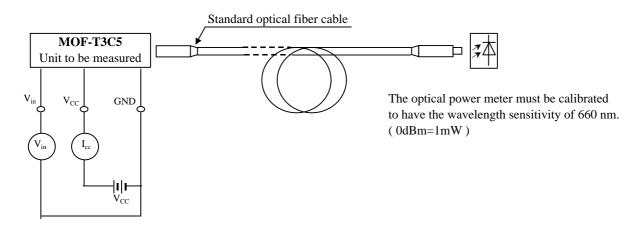
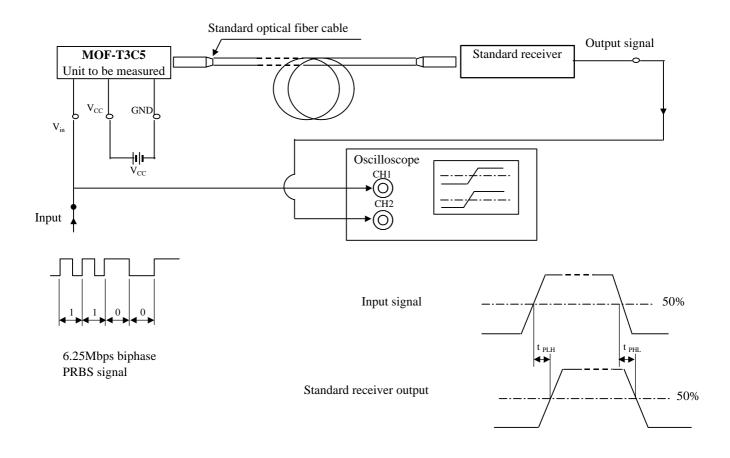

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Peak emission wavelength	λ_{p}		630	660	690	nm
Optical power output coupling with fiber	P _c	Refer to Fig. 1	-21	-18	-15	dBm
Dissipation current	I _{cc}	Refer to Fig. 2		8	13	mA
High level input voltage	V _{iH}	Refer to Fig. 2	2.1		V _{cc}	V
Low level input voltage	V _{iL}	Refer to Fig. 2			0.8	V
Low High delay time	t _{pLH}	Refer to Fig. 3			180	ns
High Low delay time	t _{pHL}	Refer to Fig. 3			180	ns
Pulse width distortion	$\Delta_{\rm tw}$	Refer to Fig. 3	-15		+15	ns

Fig. 1 Measuring Method of Optical Output Coupling with Fiber

Notes (1)Vcc=5.0V (State of operating) (2)To bundle up the standard fiber optic cable, make it into a loop with the diameter D=10cm or more.

Fig. 2 Measuring Method of Intput Voltage and Supply Current



Input conditions and judgement method

Conditions	Judgement method
V _{in} =2.1V or more	-21dBm<=Pc<=-15dBm, Icc=13mA or less
V _{in} =0.8V or less	Pc<=-36dBm, Icc=13mA or less

Note: V_{cc} =5.0V (State of operating)

Fig.3 Measuring Method of Pulse Response

Test item

Test item	Symbol	Test condition
Low High pulse delay time	t _{PLH}	Refer to the above prescriptions
High Low pulse delay time	t _{PHL}	Refer to the above prescriptions
Pulse width distortion	Δtw	$\Delta tw = t_{PHL} - t_{PLH}$

Notes (1) The waveform write time shall be 4 seconds. But do not allow the waveform to be distorted by increasing the brightness too much.

(2) Vcc=5.0 V (State of operating)

(3) The probe for the oscilloscope must be more than 1M $\,$ and less than 10pF.