

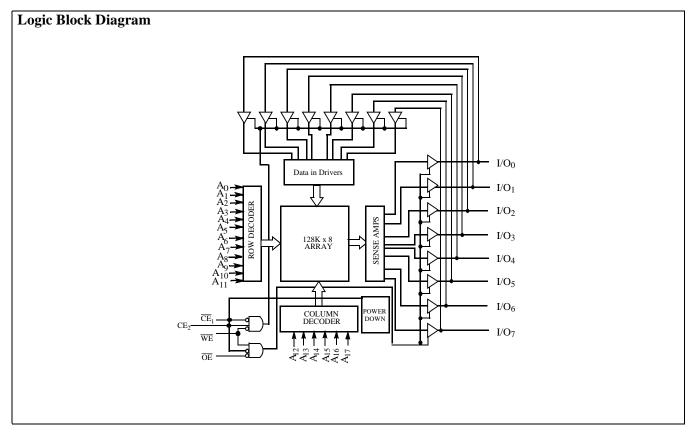
256K x 8 Static RAM

Features

- High Speed
 - —70ns availability
- · Voltage range
 - -- 2.7V-3.6V
- · Ultra low active power
 - Typical active current: 1 mA @ f = 1MHz
 - Typical active current: 7 mA @ f = f_{max} (70ns speed)
- · Low standby power
- Easy memory expansion with \overline{CE}_1 , \overline{CE}_2 , and \overline{OE} features
- · Automatic power-down when deselected
- CMOS for optimum speed/power

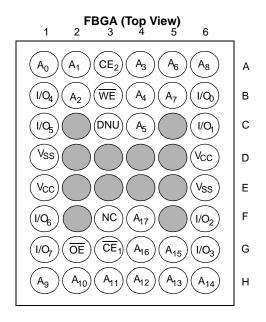
Functional Description

The WCMA2008U1X is a high-performance CMOS static RAM organized as 256K words by 8 bits. This device features advanced circuit design to provide ultra-low active current. This is device is ideal for portable applications. The device also has an automatic power-down feature that significantly reduc-


es power consumption by 80% when addresses are not toggling. The device can be put into standby mode reducing power consumption by more than 99% when deselected ($\overline{\text{CE}}_1$ HIGH or $\overline{\text{CE}}_2$ LOW).

<u>Writing</u> to the device is <u>accomplished</u> by taking Chip Enable (\overline{CE}_1) and Write Enable (\overline{WE}) inputs LOW and Chip Enable 2 (\overline{CE}_2) HIGH. Data on the eight I/O pins (I/O_0) through I/O_7) is then written into the location specified on the address pins (A_0) through A_{17} .

Reading from the device is accomplished by taking Chip Enable (CE_1) and Output Enable (OE) LOW while forcing Write Enable (WE) and Chip Enable 2 (CE_2) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.


The eight input/output pins (I/O $_0$ through I/O $_7$) are placed in a high-impedance state when the device is deselected ($\overline{\text{CE}}_1$ HIGH or CE_2 LOW), the outputs are disabled ($\overline{\text{OE}}$ HIGH), or during a write operation ($\overline{\text{CE}}_1$ LOW and CE_2 HIGH and $\overline{\text{WE}}$ LOW).

The WCMA2008U1X is available in a 36-ball FBGA package.

Pin Configurations

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied......55°C to +125°C Supply Voltage to Ground Potential..... -0.5V to +4.6V

DC Voltage Applied to Outputs in High Z State ^[1]	0.5V to Voc + 0.5V
DC Input Voltage ^[1]	
Output Current into Outputs (LOW)	
Static Discharge Voltage(per MIL-STD-883, Method 3015)	
, ,	> 200 m /
Latch-Up Current	>200 IIIA

Operating Range

Product	Range	Ambient Temperature	V _{cc}
WCMA2008U1X	Industrial	–40°C to +85°C	2.7V to 3.6V

Product Portfolio

						Powe	er Dissipat	tion (Indu	strial)		
V _{CC} Range		Speed	Operating, I _{CC}								
Froduct				$f = 1 \text{ MHz}$ $f = f_{\text{max}}$ Si		f = 1 MHz		f = 1 MHz f = f _{max}		Standby (I _{SB2})	
	Min.	Typ. ^[2]	Max.		Typ. ^[2]	Max.	Typ . ^[2]	Max.	Typ. ^[2]	Max.	
WCMA2008U1X	2.7V	3.0V	3.6V	70 ns	1 mA	2 mA	7 mA	15 mA	1 μΑ	30 μΑ	

Notes:

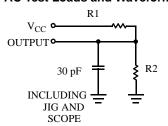
- V_{IL(min.)} = -2.0V for pulse durations less than 20 ns.
 Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ.)}, T_A = 25°C.

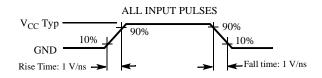
Electrical Characteristics Over the Operating Range

				WC	MA2008U1	X-70	
Param- eter	Description	Test Co	nditions	Min.	Typ. ^[2]	Max.	Unit
V _{OH}	Output HIGH Voltage	$I_{OH} = -1.0 \text{ mA}$	V _{CC} = 2.7V	2.4			V
V _{OL}	Output LOW Voltage	I _{OL} = 2.1 mA	V _{CC} = 2.7V			0.4	V
V _{IH}	Input HIGH Voltage			2.2		V _{CC} + 0.5V	V
V _{IL}	Input LOW Voltage			-0.5		0.8	V
I _{IX}	Input Leakage Current	$GND \le V_1 \le V_{CC}$		-1		+1	μΑ
I _{OZ}	Output Leakage Current	$GND \le V_O \le V_{CC}$	GND \leq V _O \leq V _{CC} , Output Disabled			+1	μΑ
I _{CC}	V _{CC} Operating Supply	$f = f_{MAX} = 1/t_{RC}$	$V_{CC} = 3.6V$		7	15	mA
	Current	f = 1 MHz	I _{OUT} = 0 mA CMOS Levels		1	2	
I _{SB1}	Automatic CE Power-Down Current— TTL Inputs	$\begin{aligned} &\text{Max. V}_{\text{CC}}, \overline{\text{CE}}_{1} {\geq} \text{V}_{\text{IH}}, \text{CE}_{2} {<} \text{V}_{\text{IH}} \\ &\text{V}_{\text{IN}} {\geq} \text{V}_{\text{IH}} \text{ or} \\ &\text{V}_{\text{IN}} {\leq} \text{V}_{\text{IL}}, \text{f} = \text{f}_{\text{MAX}} \end{aligned}$				100	μА
I _{SB2}	Automatic CE Power-Down Current— CMOS Inputs	$\begin{aligned} &\text{Max. V}_{\text{CC}}, \overline{\text{CE}}_{1} \!\!\geq \text{V}_{\text{CC}} - 0.3\text{V}, \\ &\text{CE}_{2} < 0.3\text{V} \\ &\text{V}_{\text{IN}} \!\geq \text{V}_{\text{CC}} - 0.3\text{V or V}_{\text{IN}} \!\leq 0.3\text{V, f} = 0 \end{aligned}$			1	15	

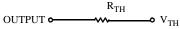
Capacitance^[3]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25$ °C, $f = 1$ MHz, $V_{CC} = Vcc_{(typ)}$	6	pF
C _{OUT}	Output Capacitance		8	pF


Thermal Resistance

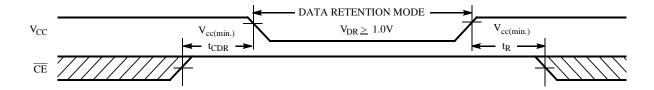

Description	Test Conditions	Symbol	BGA	Unit
Thermal Resistance ^[3] (Junction to Ambient)	Still Air, soldered on a 4.25 x 1.125 inch, 4-layer printed circuit board	$\Theta_{ m JA}$	55	°C/W
Thermal Resistance ^[3] (Junction to Case)		$\Theta_{ m JC}$	16	°C/W

Note:
3. Tested initially and after any design or process changes that may affect these parameters.



AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT



Parameters	3.3V	Unit
R1	1105	Ohms
R2	1550	Ohms
R _{TH}	645	Ohms
V _{TH}	1.75	Volts

Data Retention Characteristics (Over the Operating Range)

Parameter	Description	Conditions	Min.	Typ. ^[2]	Max.	Unit
V _{DR}	V _{CC} for Data Retention		1.0		3.6	V
I _{CCDR}	Data Retention Current	$V_{CC} = 1.0V, \overline{CE}_1 \ge V_{CC} - 0.3V, CE_2 < 0.3V V_{IN} \ge V_{CC} - 0.3V \text{ or } V_{IN} \le 0.3V$		0.1	5	μΑ
t _{CDR} ^[3]	Chip Deselect to Data Retention Time		0			ns
t _R ^[4]	Operation Recovery Time		100			ns

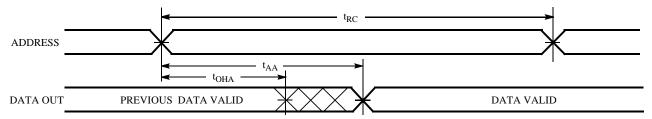
Data Retention Waveform

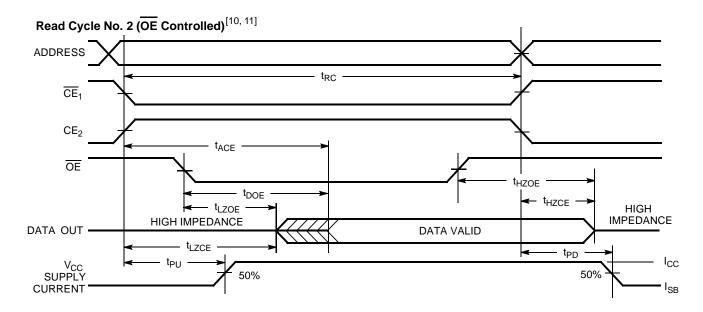
Note

4. Full Device AC operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min.)} \ge 100 \, \mu s$ or stable at $V_{CC(min.)} \ge 100 \, \mu s$.

Switching Characteristics Over the Operating Range^[5]

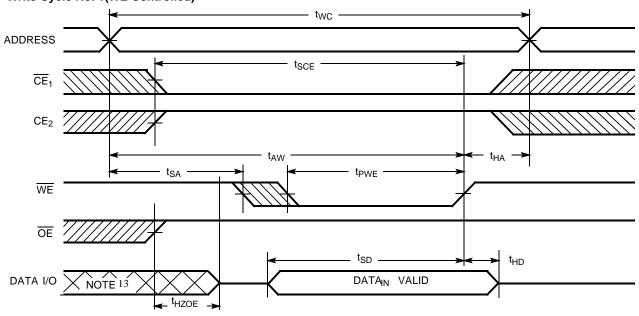
		WCMA20	08U1X-70	
Parameter	Description	Min.	Max.	Unit
READ CYCLE		•		
t _{RC}	Read Cycle Time	70		ns
t _{AA}	Address to Data Valid		70	ns
t _{OHA}	Data Hold from Address Change	10		ns
t _{ACE}	CE ₁ LOW and CE ₂ HIGH to Data Valid		70	ns
t _{DOE}	OE LOW to Data Valid		35	ns
t _{LZOE}	OE LOW to Low Z ^[6]	5		ns
t _{HZOE}	OE HIGH to High Z ^[6, 7]		25	ns
t _{LZCE}	CE ₁ LOW and CE ₂ HIGH to Low Z ^[6]	10		ns
t _{HZCE}	CE ₁ HIGH or CE ₂ LOW to High Z ^[6, 7]		25	ns
t _{PU}	CE ₁ LOW and CE ₂ HIGH to Power-Up	0		ns
$\overline{\text{CE}}_1$ HIGH or $\overline{\text{CE}}_2$ LOW to Power-Down			70	ns
WRITE CYCLE ^[8,]				
t _{WC}	Write Cycle Time	70		ns
t _{SCE}	CE ₁ LOW and CE ₂ HIGH to Write End	60		ns
t _{AW}	Address Set-Up to Write End	60		ns
t _{HA}	Address Hold from Write End	0		ns
t _{SA}	Address Set-Up to Write Start	0		ns
t _{PWE}	WE Pulse Width	50		ns
t _{SD}	Data Set-Up to Write End	30		ns
t _{HD}	Data Hold from Write End	0		ns
t _{HZWE}	WE LOW to High Z ^[6, 7]		25	ns
t _{LZWE}	WE HIGH to Low Z ^[6]	10		ns


Notes:

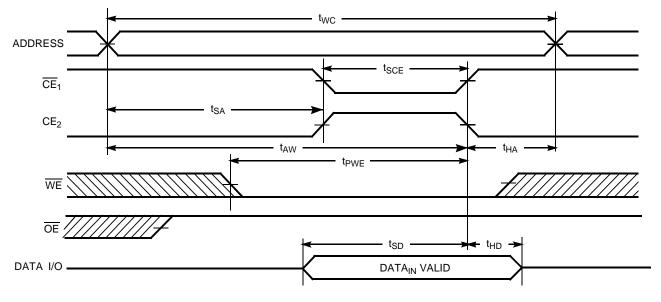

<sup>Test conditions assume signal transition time of 5 ns or less, timing reference levels of V_{CC(typ.)}/2, input pulse levels of 0 to V_{CC(typ.)}, and output loading of the specified I_{OL}/I_{OH} and 30 pF load capacitance.
At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE}, tall t_{HZWE} is less than t_{LZWE} for any given device.
t_{HZOE}, t_{HZCE}, and t_{HZWE} transitions are measured when the outputs enter a high impedance state.
The internal write time of the memory is defined by the overlap of WE, CE₁ = V_{IL}, and CE₂ = V_{IH}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input set-up and hold timing should be referenced to the edge of the signal that terminates the write.</sup>

Switching Waveforms

Read Cycle No. 1 (Address Transition Controlled) $^{[9,\,10]}$



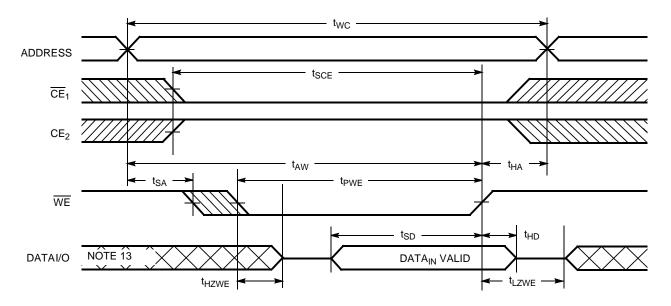
- Device is continuously selected. OE, CE₁ = V_{IL}, CE₂ = V_{IH}.
 WE is HIGH for read cycle.
 Address valid prior to or coincident with CE transition LOW.



Switching Waveforms (continued)

Write Cycle No. 1(WE Controlled) [8, 12, 14]

Write Cycle No. 2($\overline{\text{CE}}_1$ or CE_2 Controlled) [8, 12, 14]


Notes:

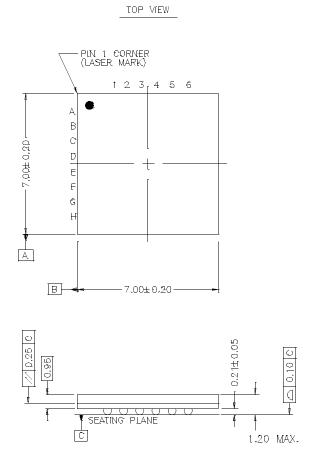
- Data I/O is high impedance if OE = V_{IH}.
 During this period, the I/Os are in output state and input signals should not be applied.
 If CE₁ goes HIGH or CE₂ goes LOW simultaneously with WE HIGH, the output remains in a high-impedance state.

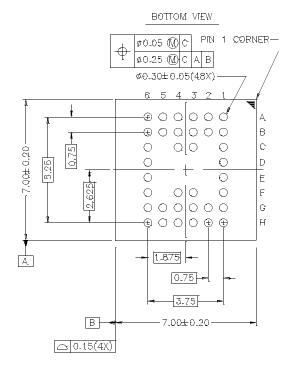
Switching Waveforms (continued)

Write Cycle No. 3 (WE Controlled, OE LOW) [14]

Truth Table

CE ₁	CE ₂	WE	OE	Inputs/Outputs	Mode	Power
Н	Х	Х	Х	High Z	Deselect/Power-Down	Standby (I _{SB})
Х	L	Х	Х	High Z	Deselect/Power-Down	Standby (I _{SB})
L	Н	Н	L	Data Out	Read	Active (I _{CC})
L	Н	L	Х	Data In	Write	Active (I _{CC})
L	Н	Н	Н	High Z	Output Disabled	Active (I _{CC})




Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
70	WCMA2008U1X-FF70	FA36A	36-ball Fine Pitch BGA	Industrial

Package Diagrams

36-ball (7.0 mm x 7.0 mm x 1.2 mm) Fine Pitch BGA, FA36A

Document Title: WCMA2008U1X, 256K x 8 Static RAM								
REV.	Spec #	ECN#	Issue Date Orig. of Change Description of Change					
**	38-14021	115240	3/18/2002	MGN	New Data Sheet			