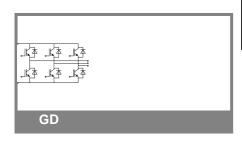


IGBT Module

SK20GD123


Preliminary Data

Features

- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N-channel homogeneous silicon structure (NPT-Non punch-through IGBT)
- High short circuit capability
- Low tail current with low temperature dependence
- UL recognized, file no. E63532

Typical Applications

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

Absolute Maximum Ratings $T_s = 25 ^{\circ}\text{C}$, unless otherwise specified						
Symbol	Conditions		Values	Units		
IGBT	•					
V_{CES}	T _j = 25 °C		1200	V		
I _C	T _j = 125 °C	T _s = 25 °C	23	Α		
		T_s = 80 °C	15	Α		
I _{CRM}	I _{CRM} = 2 x I _{Cnom}		30	Α		
$V_{\rm GES}$			± 20	V		
t _{psc}	V_{CC} = 600 V; $V_{GE} \le 20$ V; VCES < 1200 V	T _j = 125 °C	10	μs		
Inverse Diode						
I _F	T _j = 150 °C	$T_s = 25 ^{\circ}C$	24	Α		
		T _s = 80 °C	17	Α		
I _{FRM}	I _{FRM} = 2 x I _{Fnom}			Α		
I _{FSM}	t_p = 10 ms; half sine wave	T _j = 150 °C	180	Α		
Module						
$I_{t(RMS)}$				Α		
T_{vj}			-40 +150	°C		
T _{stg}			-40 +125	°C		
V _{isol}	AC, 1 min.		2500	V		

Characteristics $T_s =$		25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units
IGBT						·
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 0.6$ mA		4,5	5,5	6,5	V
I _{CES}	$V_{GE} = 0 \text{ V}, V_{CE} = V_{CES}$	T _j = 25 °C			0,1	mA
		T _j = 125 °C				mA
I _{GES}	V _{CE} = 0 V, V _{GE} = 30 V	T _j = 25 °C			480	nA
		T _j = 125 °C				nA
V _{CE0}		T _j = 25 °C		1,2		V
		T _j = 125 °C		1,2		V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		86		mΩ
		T _j = 125°C		126		mΩ
V _{CE(sat)}	I _{Cnom} = 15 A, V _{GE} = 15 V		2	2,5	3	V
		$T_j = 125^{\circ}C_{chiplev.}$		3,1	3,7	V
C _{ies}				1		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,15		nF
C _{res}				0,07		nF
Q_G	V _{GE} =0 20 V			90		nC
t _{d(on)}				35		ns
t _r	R_{Gon} = 40 Ω	V _{CC} = 600V		45		ns
E _{on}	D = 40.0	I _{Cnom} = 15A		2		mJ
$egin{aligned} t_{ ext{d(off)}} \ t_{ ext{f}} \end{aligned}$	$R_{Goff} = 40 \Omega$	T _j = 125 °C V _{GE} =±15V		250 70		ns ns
ч Е _{off}		V GE ⁻ ±15V		1,8		mJ
	LODT			1,0		
$R_{th(j-s)}$	per IGBT				1,4	K/W

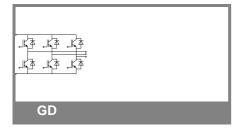
IGBT Module

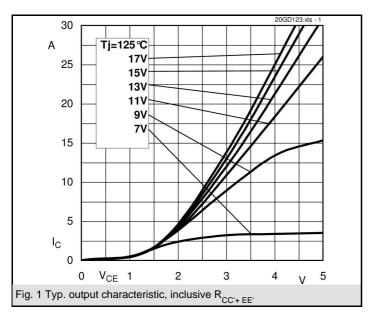
SK20GD123

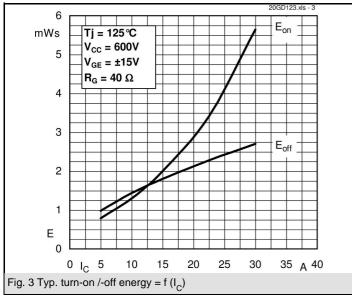
Preliminary Data

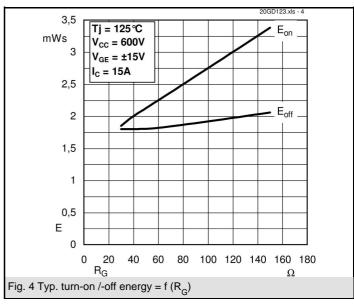
Features

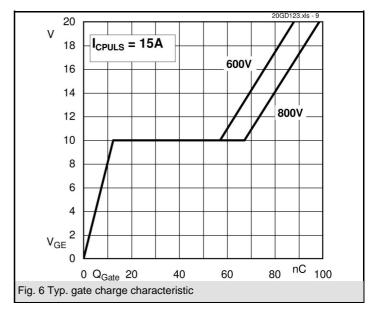
- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N-channel homogeneous silicon structure (NPT-Non punch-through IGBT)
- High short circuit capability
- Low tail current with low temperature dependence
- UL recognized, file no. E63532


Typical Applications


- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS


Characteristics								
Symbol	Conditions		min.	typ.	max.	Units		
Inverse D	Inverse Diode							
$V_F = V_{EC}$	I_{Fnom} = 15 A; V_{GE} = 0 V	$T_j = 25 ^{\circ}C_{\text{chiplev.}}$		2	2,5	V		
		$T_j = 125 ^{\circ}C_{chiplev.}$		1,8	2,3	V		
V_{F0}		T _j = 125 °C		1	1,2	V		
r _F		T _j = 125 °C		53	73	mΩ		
I _{RRM}	I _{Fnom} = 15 A	T _j = 125 °C		16		Α		
Q_{rr}	di/dt = -200 A/µs			2,7		μC		
E _{rr}	V _{CC} = 600V			0,6		mJ		
$R_{th(j-s)D}$	per diode				1,7	K/W		
M_s	to heat sink M1		2,25		2,5	Nm		
w				30		g		


This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.


This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

