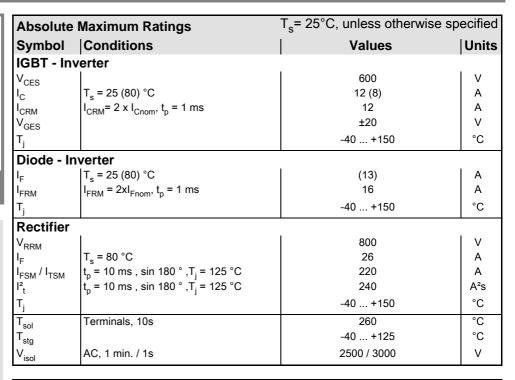


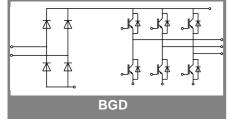
SEMITOP® 2

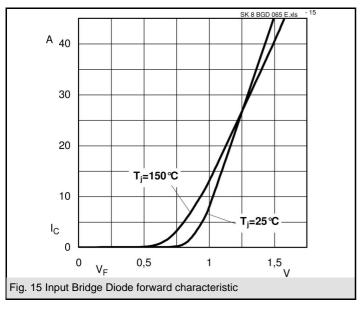
1-phase bridge rectifier+3-phase bridge inverter

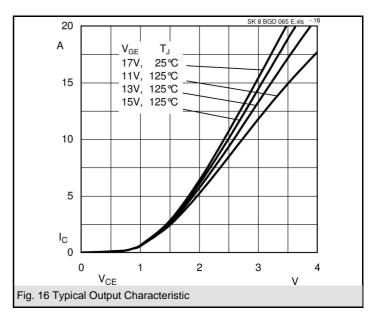
SK 8 BGD 065 E

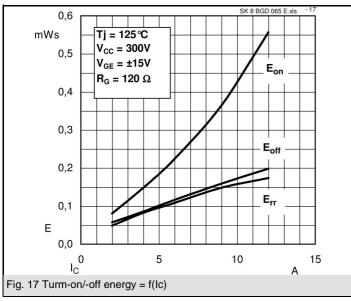

Preliminary Data

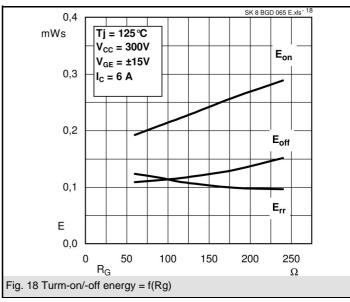
Features

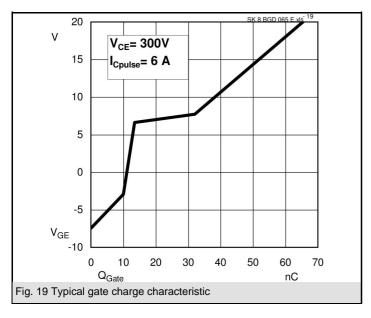

- Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded alumium oxide ceramic (DCB)
- N-channel homogeneous silicon structure (NPT-Non punch-through IGBT)
- · High short circuit capability
- Low tail current with low temperature dependance

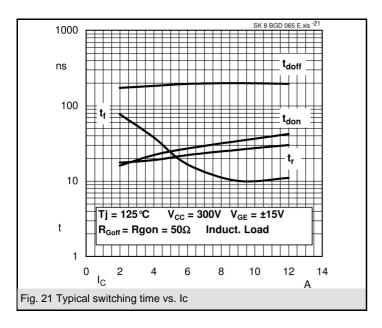

Typical Applications

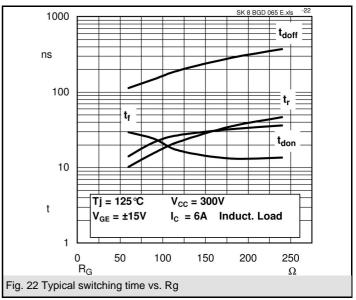

- Inverter
- · Servo drives

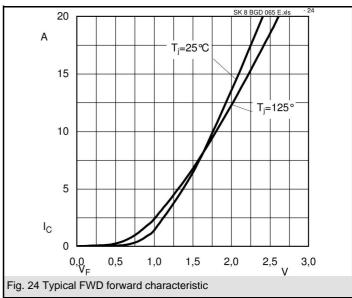


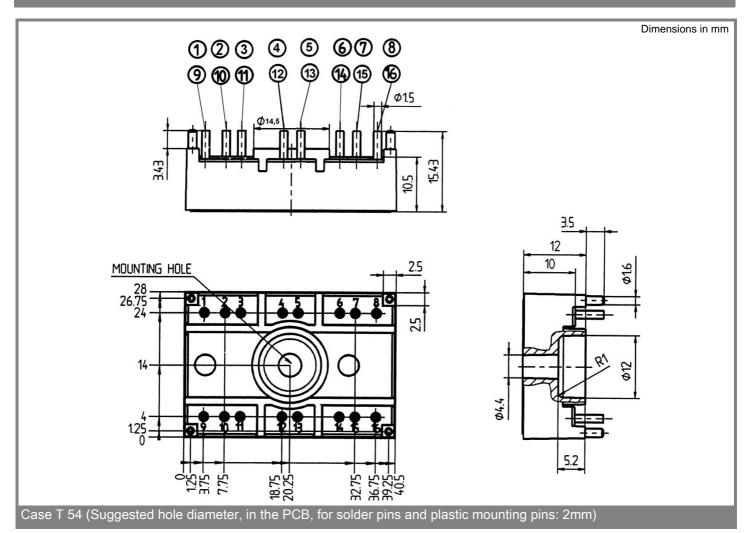

Characteristics		T _s = 25°C	T _s = 25°C, unless otherwise specified			
Symbol	Conditions	min.	typ.	max.	Units	
IGBT - Inverter						
V _{CEsat}	I _C = 6 A, T _j = 25 (125) °C		2 (2,2)		V	
V _{GE(th)}	$V_{GE} = V_{CE}$, $I_C = 0.5 \text{ mA}$	3	4	5	V	
V _{CE(TO)}	$T_j = 25 ^{\circ}\text{C} (125) ^{\circ}\text{C}$		1,2 (1,1)		V	
r _T	$T_j = 25 ^{\circ}\text{C} (125) ^{\circ}\text{C}$		133 (183)		mΩ nF	
C _{ies}	$V'_{CE} = V_{GE} = 0 \text{ V, f} = 1 \text{ MHz}$ $V_{CE} = V_{GE} = 0 \text{ V, f} = 1 \text{ MHz}$		-		nF	
C _{oes} C _{res}	$V_{CE} = V_{GE} = 0 \text{ V, } f = 1 \text{ MHz}$		0,03		nF	
	per IGBT		0,00	2,6	K/W	
R _{th(j-s)}			20	2,0	-	
t _{d(on)}	under following conditions V _{CC} = 300 V, V _{GE} = ± 15 V		20 25		ns ns	
t _r	$I_{\rm C} = 6 \text{A}, T_{\rm i} = 125 ^{\circ}\text{C}$		145		ns	
${rac{t_{ ext{d(off)}}}{t_{ ext{f}}}}$	$R_{Gon} = R_{Goff} = 120 \Omega$		25		ns	
E _{on}	inductive load		0,22		mJ	
E _{off}			0,12		mJ	
Diode - Inverter						
$V_F = V_{EC}$	I _F = 8 A, T _i = 25 (125) °C		1,35		V	
V _(TO)	$T_i = {}^{\circ}C (125) {}^{\circ}C$		(0,8)	(0,9)	V	
r _T	T _i = °C (125) °C		(44)	, , ,	mΩ	
R _{th(j-s)}	per diode			2,7	K/W	
I _{RRM}	under following conditions		4,2		Α	
Q _{rr}	I _F = 8 A, V _R = 300 V		0,65		μC	
E _{rr}	V _{GE} = 0 V, T _j = 125 °C				mJ	
	di _{F/dt} = -120 A/μs					
Diode rectifier						
V_{F}	I _F = 20 A, T _j = 25 °C		1,1		V	
$V_{(TO)}$	T _j = 150 °C		0,85		V	
r _T	T _j = 150 °C		15		mΩ	
$R_{th(j-s)}$	per diode			2,15	K/W	
Temperatur sensor						
R _{ts}	%, T _r = () °C		()		Ω	
Mechanical data						
w			19		g	
M_s	Mounting torque			2	Nm	
-		•			•	

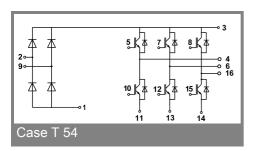












This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.