SKHI 23/17 (R) ... ## Medium Power Double IGBT Driver SKHI 23/17 (R) ## **Features** - SKHI 23/17 drives all SEMIKRON IGBTs with V_{CES} up to 1700 V (VCE-monitoring adjusted from factory for 1700 V-IGBT) - Double driver circuit for medium power IGBTs, also as two independent single drivers - CMOS / TTL (HCMOS) compatible input buffers - Short circuit protection by V_{CE} monitoring - Soft short circuit turn-off - Isolation due to transformers (no opto couplers) - Supply undervoltage monitoring (< 13 V) - Error memory / ouput signal (LOW or HIGH logic) - Driver interlock top / bottom - Internal isolated power supply ## **Typical Applications** - · High frequency SMPS - Half and Full bridges - · Three phase motor inverters - High power UPS - 1) This current value is a function of the output load condition - 2) Operating fsw = 0 Hz - 3) This value does not consider t_{on} of IGBT and t_{MIN} adjusted by R_{CE} and C_{CE}; see also fig. 14 - 4) Matched to be used with IGBTs < 100 A; for higher currents, see table 4 - 5) With R_{CE} = 36 k Ω , C_{CE} = 470 pF; see fig. 6 - 6) Factory adjusted; other values see table 3 | Absolute Maximum Ratings $T_a = 25 ^{\circ}\text{C}$, unless otherwise specified | | | | | | | |---|--|----------------------|-------|--|--|--| | Symbol | Conditions | Values | Units | | | | | V _S | Supply voltage primary | 18 | V | | | | | V _{iH} | Input signal voltage (HIGH) (for 15 V and 5 V input level) | V _S + 0,3 | V | | | | | lout _{PEAK} | Output peak current | ± 8 | Α | | | | | lout _{AV} | Output average current | ± 50 | mA | | | | | V _{CE} | Collector emitter voltage sense | 1700 | V | | | | | dv/dt | Rate of rise and fall of voltage (secondary to primary side) | 75 | kV/μs | | | | | $V_{\text{isol IO}}$ | Isolation test volt. IN-OUT (2 sec. AC) | 4000 | V | | | | | R _{Gon min} | minimal R _{Gon} | 2,7 | Ω | | | | | R _{Goff min} | minimal R _{Goff} | 2,7 | Ω | | | | | Q _{out/pulse} | charge per pulse | 4,8 | μC | | | | | T _{op} | Operating temperature | - 25 + 85 | °C | | | | | T _{stg} | Storage temperature | - 25 + 85 | °C | | | | | Characteristics T _a = 25 °C, unless otherwise specification | | | | | | |---|--|------|-------------------|------|-------| | Symbol | Conditions | min. | typ. | max. | Units | | V_S | Supply voltage primary | 14,4 | 15,0 | 15,6 | V | | Is | Supply current (max.) | | 0,321) | | Α | | I _{SO} ²⁾ | Supply current primary side (standby) | | 0,12 | | Α | | V _{iT+} | Input threshold voltage (HIGH) min. | | | | | | | 15 V input level | 12,5 | | | V | | | for 5 V input level | 2,4 | | | V | | V_{iT-} | Input threshold voltage (LOW) max. | | | | | | | for 15 V input level | | | 3,6 | V | | | for 5 V input level | | | 0,50 | V | | $V_{G(on)}$ | Turn-on output gate voltage | | + 15 | | V | | $V_{G(off)}$ | Turn-off output gate voltage | | - 8 | | V | | f | Maximum operating frequency | | see fig. 15 | | | | td(on) _{IO} | Input-output turn-on propagation time | | 1,4 | | μs | | td(off) _{IO} | Input-output turn-off propagation time | | 1,4 | | μs | | t _{d(err)} | Error input-output propagation time | | 1,0 ³⁾ | | μs | | t _{TD} | Dead time | | 10 ⁶⁾ | | μs | | V _{CEstat} | Reference voltage for V _{CE} monitoring | | $6,3^{5)}$ | | V | | R _{Gon} | Internal gate resistor for ON signal | | 22 ⁴⁾ | | Ω | | R _{Goff} | Internal gate resistor for OFF signal | | 22 ⁴⁾ | | Ω | | C_{ps} | Primary to secondary capacitance | | 12 | | pF | This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.