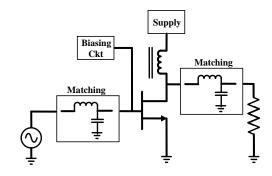
Low Noise Amplifier

RGLNA10

Description


The **RGLNA10** is 7.0-26.0 GHz; Low Noise Distributed Amplifiers using GaAs pHEMT Technology. The self-biased amplifier provides 19 dB of gain and 14 dBm of output power at P1 dB gain compression while requiring only 86 mA from a single 3.0 V supply.

Gain flatness is excellent from 7.0-26.0 GHz for RADAR and test equipment applications.

Applications

- Satellite Communication.
- RADAR Applications.
- EW and ECM

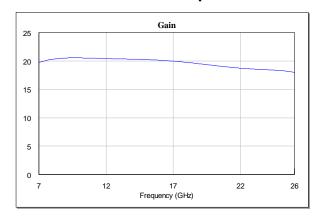
Functional Diagram

Key Features

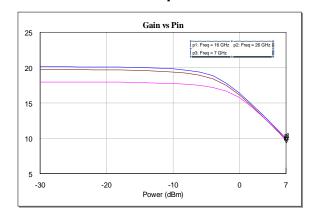
- Ultra Broadband Amplifier
- Low Cost
- High Performance
- 2 dB Gain Flatness over the band.

Electrical Specification

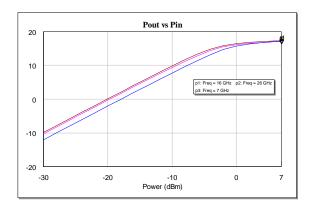
Conditions: $Vcc = 3 V \& T_A=25 °C$

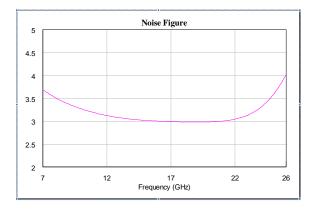

Parameter	Minimum	Typical	Maximum	Minimum	Typical	Maximum	Units
Frequency Range	7		16	16		26	GHz
Gain	19.7		20	20		18	dB
Gain Flatness		0.3			2		dB
Noise Figure	3.7		3	3		4	dB
Input Return Loss		12			13		dB
Output Return Loss		13			13		dB
Power Output (P1 dB)	13.5		14	14		14	dBm
OIP3	23.5		24	24		24	dBm
Supply Current		86			86		mA
DC Voltage		3			3		V

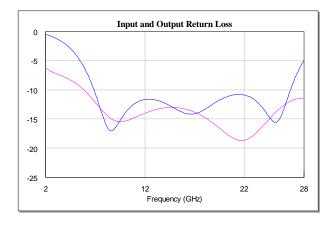
Low Noise Amplifier


RGLNA10

Simulated results


Gain Vs Freq


Gain Vs Input Power


Pout Vs Pin

Noise Figure Vs Freq

Input /Output Return Loss Vs Freq

