

# Radiometrix





Tel: +44 (0) 20 8909 9595, Fax: +44 (0) 20 8909 2233

PRELIMINARY DATA SHEET



USX2

# **NBFM Multi-channel UHF Transceiver**

USX2 is small multi-channel half duplex UHF transceiver available for operation on 315MHz, 433MHz and 458MHz bands with the user programmable RF power output of up to 100mW.

USX2 offers up to 128 frequency channels in 25kHz channel spacing. USX2 also features dual VCO which allows transmitter section to be operated on one frequency while receiver on another.



Figure 1: USX2-433-5

#### **Features**

- Conforms to ETSI EN 300 220-3 and EN 301 489-3
- High performance double superhet, 128 channel PLL synthesizer
- 100mW RF power output: adjustable via serial command
- Data rates up to 5 kbps for standard module
- Usable range over 500m
- Fully screened. Low profile
- Feature-rich interface (RSSI, analogue and digital baseband)
- Digital RSSI output
- Incorporate a 1200baud modem
- Re-programmable via RS232 interface
- Low power requirements

## **Applications**

- Handheld terminals
- Heavy vehicle/machine remote controls
- EPOS equipment, barcode scanners
- Data loggers
- Industrial telemetry and telecommand
- In-building environmental monitoring and control
- High-end security and fire alarms
- Vehicle data up/download

## **Technical Summary**

- Operating frequency: 315MHz (USA), 433MHz (European) and 458MHz (UK) bands
- 128 channels controlled via RS232 interface
- 16 channels selected by parallel interface
- Transmit power: 100mW (+20dBm) nominal. Adjustable 0.1 100mW
- Supply range: 3.6 15V
- Current consumption: 100mA (at 100mW output) transmit, 25mA receive
- Data bit rate: 5kbps max. (standard module)
- Receiver sensitivity: -118dBm (for 12 dB SINAD)
- Size: 50 x 30 x 12mm

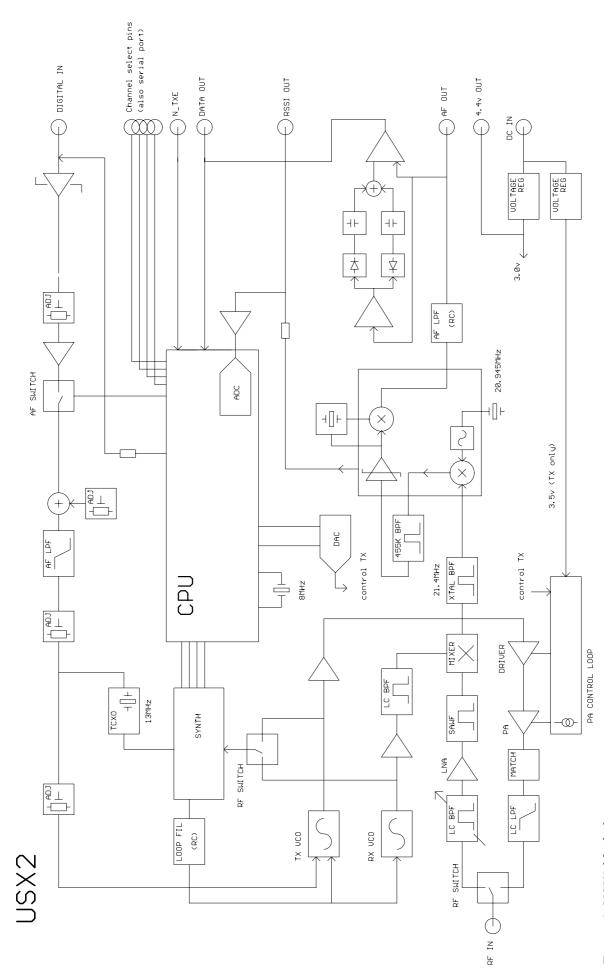



Figure 2: USX2 block diagram

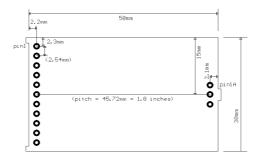



Figure 3: Provisional USX2 footprint

#### Pin Description

| Pins | Normal mode |                                                    | Serial mode      | Modem<br>mode |
|------|-------------|----------------------------------------------------|------------------|---------------|
| 1A   | RF Gnd      | RF ground                                          |                  |               |
| 2A   | RF in/out   | To the antenna                                     |                  |               |
| 3A   | RF Gnd      | RF ground                                          |                  |               |
| 1    | TXD         | DC coupled input for TTL/ CMOS logic               |                  | NC            |
| 2    | TXE         | Transmit enable.                                   |                  | NC            |
|      |             | Low = RX mode. High = TX. ( $10k\Omega$ pull down) |                  |               |
| 3    | GND         | (0V)                                               |                  |               |
| 4    | Vcc         | DC supply input (3.6 –15V)                         |                  |               |
| 5    | P3          | Parallel channel select MSB                        | Serial read back | BUSY          |
| 6    | P2          | Parallel channel select                            | TBA              | MOD TXD       |
| 7    | P1          | P1 - Parallel channel select                       | TBA              | MOD RXD       |
| 8    | P0          | P0 - Parallel channel select LSB                   | PGM in           | PGM in        |
| 9    | RSSI        | DC level between 0.5V and 2.5V. 60dB dynamic       |                  |               |
|      |             | range                                              |                  |               |
| 10   | RXD         | Open collector output of data slicer               |                  | NC            |
| 11   | AF out      | 500mV p-p audio. DC coupled, approx 0.8V bias      |                  | NC            |

## **NOTES:**

- 1. No inversion occurs between TXD and RXD. However AF out is inverted relative to TXD.
- 2. Parallel channel selects (P0-P3) and  $\overline{TXE}$  are active LOW and have  $47k\Omega$  internal pullups to 3V
- 3. Open collector output RXD has a 47  $k\Omega\,$  pullup to 3V.
- 4. The software incorporates a 1200 baud modem, compatible with that implemented in other Radiometrix narrowband units ( i1200 tones and format ). Modem operation is selected by serial command.
- 5. Main serial port (P0, P3) operates at 9600 baud. (Command set is not the same as TR2M, SMX families). The unit is capable of operating in 'basic' parallel channel select only mode, or in serial controlled 'expanded' mode
- 6. Transmit power can be set by serial command
- 7. RSSI can be read back as a digital value. (on P3)
- 8. If analogue transmit modulation is needed, then connect a series  $1\mu F$  cap +  $500k\Omega$  trimmer (a multiturn is advised) in the TXD circuit. Adjust trimmer for 90% of peak deviation (+/- 2.7KHz) at mean input level.

# USX2 serial interface details (version 4): PRELIMINARY

The USX2 user interface is accessed through the four parallel pins (P0/serial through P3). It has four operating modes:

- 1. **Parallel**. Frequency of operation is selected as one of 16 (chans 0-15), by means of a 4 bit inverted value applied to P0-P3. The P0 pin will also respond to a LOCKSERIALMODE datastream (inverted rs232, 9600 baud), which will cause the radio to enter **serial** mode. In parallel mode, the IDENT command string is still decoded, but the unit remains in parallel mode.
- 2. **Serial**. Frequency of operation, radio set up, power output and various other parameters are controlled by command strings sent to P0. Pin P3 functions as a 'readback' port while P1,2 are not used in this mode.

In this mode, decimal values are used (to simplify direct manual programming via a terminal)

#### Commands include:

```
empty command buffer
? or /
                      read back buffer contents
                      delete last character
<base>
                      process buffer
<cr>
PARALLEL
                      return to the basic, parallel mode (and turn modem off)
DUMP
                      read back contents of eeprom (output on P3)
MODEM
                      activate 1200 baud modem
                                                           #
                      de-activate 1200 baud modem
NOMODEM
                                                           #
DEFCH ccc
                      set default channel
                                            (non-volatile)
                                                           #
                      set default tx power
                                            (non-voltatile)
DEFPOW pp
CHAN
         CCC
                      jump to channel
                                            (volatile)
POWER pp
                      select tx power
                                            (volatile)
                      single read of RSSI
RSSI
                                            (output on P3)
SHORT
                      enter short command mode
                                                           #
```

(The following commands are used to set up the radio operating characteristics, and should be viewed with

caution. Especially the CALPOWER command, which initiates a multiple write operation to the power calibration table )

| NDIV nnnnn<br>RDIV rrrrr                                                           | force N divider value (volatile) force R divider value (volatile)                                                                                                   |  |  |  |
|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| RLOAD rrrrr<br>OFFSET 00000<br>LOAD aa nnnnn<br>START nnnnn<br>STEP i<br>LIMIT ccc | Set R divider value # Set RX offset # Set N values for first 16 channels # Set N value for ch 16 # Set increment for table # Set highest permitted channel number # |  |  |  |
| SETPOW eee<br>CALPOWER (etc)                                                       | Set maximum power output (100mW) (see factory procedures for more details)                                                                                          |  |  |  |
| TEST                                                                               | Generate a 250Hz test modulation (only fuctions in TX mode, cancelled by sending a <cr> byte)</cr>                                                                  |  |  |  |
| IDENT                                                                              | Readback a single byte, depending on current mode: Parallel: Serial Short 1                                                                                         |  |  |  |

(Channels 0-15 are individually programmed by the **LOAD** operation. Channels 16-127 are a consecutive table, using the **START** value as a start point (=channel 16) and increasing the N value by **STEP** with each increase in channel number)

M

Modem

```
ccc = a channel number from 00 to 127
```

aa = a two digit channel number from 00 to 15
 nnnnn = synthesizer N register value, (up to 65535)
 rrrrr = synthesizer R register value, (up to 16383)

pp = power setting value (0 - 30)
 i = table step (increments of N) (0-7)
 ooooo = receive mode frequency offset

**eee** = power calibration figure

N = channel frequency / (13MHz / R)

```
13MHz/R = 25KHz, so R = 520 (usually)
```

receive offset = 21.4MHz / (13MHz / R), so = 856 (usually)

A pause of at least 50mS must be allowed after operations which result in eeprom programming operations (all except NDIV, RDIV, GOTO, PSET and RSSI). This allows the programming cycle to complete.

Instructions marked ' # ' output a three byte ' OK<cr> ' sequence after sucessfully completing their eeprom programming cycles

When first powered up, the unit will operate on channel and output level specified by the last CHAN and POWER instructions, irrespective of previous NDIV, RDIV, CHAN or PSET operations)

3. Short. A limited range of radio functions are controlled by sending a single byte to PO

| 0 - 127   | select channel          |                    | (volatile)                   |         |
|-----------|-------------------------|--------------------|------------------------------|---------|
| 128 - 159 | select power            | ( = byte -128)     | (volatile)                   |         |
| 200       | single read of RSSI     | (output on P3)     | ,                            |         |
| 201       | single byte read, as fo | or IDENT comman    | d                            |         |
|           |                         |                    |                              |         |
| 222       | reception of 16 consec  | cutive 222 bytes r | eturns radio to <b>seria</b> | I mode. |

This mode of operation is intended to provide a simple, fast, serial command mode.

4. **Modem.** Commands are interpreted as in SERIAL mode (and 'short' mode may be selected.) In this mode the unit operates as a simple 1200 baud packet modem, with TXD (in) on P2 and RXD (out) on P1.

The N\_TXE pin does not control tx switching in this mode, but rather the presence of valid data in the tx buffer initiates a transmit burst. No handshaking is provided, and the unit has a sufficient over-link data rate to transparently 'stream' continuous data. Error correction, re-transmission of corrupt packets and addressing are not provided.

This mode is compatible with other Radiometrix 'i 1200' mode equipment, including the narrow band eval kit.

## Notes:

Unlike in the RLC and TLC units, the LOCKSERIALMODE (and FAST) commands are non-volatile. Once a serial mode is selected, the unit will power up in this mode until a PARALLEL command is received.

The command interpreter IS case sensitive. Use upper case.

Spaces are optional (they are not decoded), provided the command line does not exceed 16 characters.

When manually programming this unit we recommend setting your terminal to local echo. The 'backspace' key functions normally.

All serial communications use 9600baud 'inverted RS232' 8 bit data, no parity, 1 start bit, 1 or 2 stop bits

A simple 'driver' program will be made available to simplify programming of these units, if desired.

RSSI read operations only function correctly if the unit is in RX mode (n\_TXE pin is high or floating)

# **Condensed specifications** (All details are provisional)

| Frequency                 | 315 - 315.375MHz (US band)                                |
|---------------------------|-----------------------------------------------------------|
|                           | 433.875 - 434.650MHz (433 MHz EU band)                    |
|                           | 458.525 - 459.1MHz (458MHz UK band)                       |
| Frequency stability       | ±1.5kHz                                                   |
| Channel spacing           | 25kHz                                                     |
| Number of channels        | 128 channels selected via serial RS232 interface          |
|                           | First 16 are individually programmable                    |
|                           | Next 112 are a sequential table                           |
|                           | 16 channels selected via parallel interface               |
|                           |                                                           |
| Supply voltage            | 3.6 -15V                                                  |
| Current                   | 45mA transmit (at 10mW output)                            |
|                           | 100mA transmit (at 100mW output)                          |
|                           | 25mA receive (or modem 'idle')                            |
|                           |                                                           |
| Operating temperature     | -20 to +70 C (Storage -30 to +70 C)                       |
| Size                      | 50x 30 x 12 mm                                            |
| Spurious radiations       | Compliant with ETSI EN 300 220-3 and EN 301 489-3         |
| Interface                 |                                                           |
| User                      | 11 pin 0.1" pitch molex                                   |
| RF                        | 3 pin 0.1" pitch molex                                    |
| Reprogram                 | 5 pin 0.1" pitch socket in top of case                    |
| Recommended PCB hole size | 1.2mm (min.)                                              |
|                           |                                                           |
| Transmitter               |                                                           |
| Output power              | 100mW (+20dBm); Adjustable via serial command 0.1 - 100mW |
| TX on switching time      | <50 ms                                                    |
| Modulation type           | FM, FSK (F1D, F3D)                                        |
| TX modulation bandwidth   | DC – 3kHz                                                 |
| Deviation                 | ±3kHz                                                     |
| Adjacent channel TX power | -37dBm                                                    |
| TX spurii                 | <-40dBm                                                   |
| Inputs                    | Data (CMOS/TTL compatible)                                |
|                           | •                                                         |
| Receiver                  |                                                           |
| Sensitivity               | -118dBm for 12dB SINAD                                    |
| image / spurious          | -60dB                                                     |
| blocking                  | -84dB                                                     |
| adjacent channel          | -60dB                                                     |
| Outputs                   | RSSI, Audio, Data                                         |
| •                         | ·                                                         |

*Notes*: 1. The data slicer cannot be depended upon for data waveform frequencies below 250Hz

2. When RX is on and a transmitter keys up, again a 50 ms period is required to stabilise data output mark/space. i.e. allow at least 50 ms of preamble

## **Radiometrix Ltd**

Hartcran House 231 Kenton Lane Harrow, Middlesex HA3 8RP ENGLAND

Tel: +44 (0) 20 8909 9595 Fax: +44 (0) 20 8909 2233 sales@radiometrix.com www.radiometrix.com

# Copyright notice

This product data sheet is the original work and copyrighted property of Radiometrix Ltd. Reproduction in wholeor in part must give clear acknowledgement to the copyright owner.

## Limitation of liability

The information furnished by Radiometrix Ltd is believed to be accurate and reliable. Radiometrix Ltd reserves the right to make changes or improvements in the design, specification or manufacture of its subassembly products without notice. Radiometrix Ltd does not assume any liability arising from the application or use of any product or circuit described herein, nor for any infringements of patents or other rights of third parties which may result from the use of its products. This data sheet neither states nor implies warranty of any kind, including fitness for any particular application. These radio devices may be subject to radio interference and may not function as intended if interference is present. We do NOT recommend their use for life critical applications.

The Intrastat commodity code for all our modules is: 8542 6000.

## **R&TTE Directive**

After 7 April 2001 the manufacturer can only place finished product on the market under the provisions of the R&TTE Directive. Equipment within the scope of the R&TTE Directive may demonstrate compliance to the essential requirements specified in Article 3 of the Directive, as appropriate to the particular equipment. Further details are available on The Office of Communications (Ofcom) web site:

http://www.ofcom.org.uk/radiocomms/ifi/

Information Requests
Ofcom
Riverside House
2a Southwark Bridge Road
London SE1 9HA

Tel: +44 (0)845 456 3000 or 020 7981 3040 Fax: +44 (0)20 7783 4033

information.requests@ofcom.org.uk

European Radiocommunications Office (ERO) Peblingehus

Nansensgade 19 DK 1366 Copenhagen Tel. +45 33896300 Fax +45 33896330 ero@ero.dk

www.ero.dk