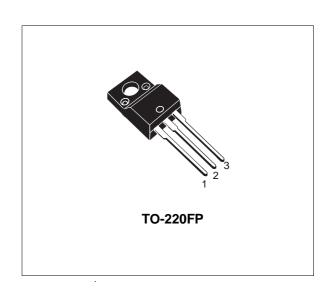
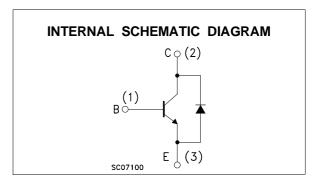


BUL903EDFP

HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR

- INTEGRATED ANTISATURATION AND PROTECTION NETWORK
- INTEGRATED ANTIPARALLEL COLLECTOR EMITTER DIODE
- HIGH VOLTAGE CAPABILITY
- LOW SPREAD OF DYNAMIC PARAMETERS
- MINIMUM LOT-TO-LOT SPREAD FOR RELIABLE OPERATION
- VERY HIGH SWITCHING SPEED
- ARCING TEST SELF PROTECTED
- FULLY INSULATED PACKAGE (U.L. COMPLIANT) FOR EASY MOUNTING




 FOUR LAMP ELECTRONIC BALLAST FOR 120 V MAINS IN PUSH-PULL CONFIGURATION

The BUL903EDFP is manufactured using high voltage Multi Epitaxial Planar technology for high switching speeds and high voltage capability.

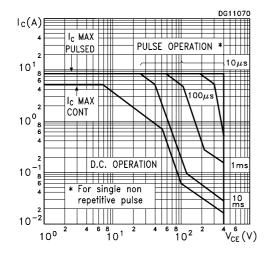
The device has been designed to operate without baker clamp and transil protection. This enables saving from 2 up to 10 components in the application.

ABSOLUTE MAXIMUM RATINGS

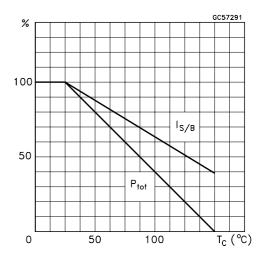
Symbol	Parameter	Value	Unit	
V _{CES}	Collector-Emitter Voltage (V _{BE} = 0)	900	V	
V_{CEO}	Collector-Emitter Voltage (I _B = 0) 400		V	
V_{EBO}	Emitter-Base Voltage (I _C = 0) 7		V	
Ic	Collector Current	5	A	
I _{CM}	Collector Peak Current (t _p <5 ms)	8	A	
lΒ	Base Current	2	A	
I_{BM}	Base Peak Current (t _p <5 ms)	4	Α	
P _{tot}	Total Dissipation at Tc = 25 °C	35	W	
V _{isol}	V _{isol} Insulation Withstand Voltage (RMS) from All Three Leads to Exernal Heatsink		V	
T _{stg}	Storage Temperature	-65 to 150	°C	
Tj	Max. Operating Junction Temperature	150	°C	

September 2003 1/7

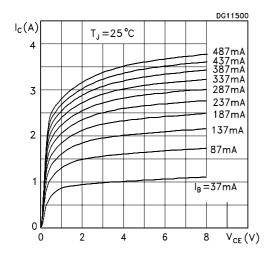
THERMAL DATA

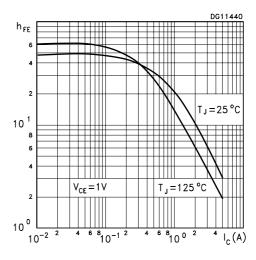

R _{thj-case}	Thermal Resistance Junction-Case	Max	3.57	°C/W
$R_{thj-amb}$	Thermal Resistance Junction-Ambient	Max	62.5	°C/W

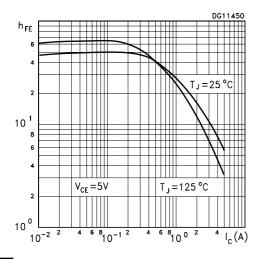
ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)

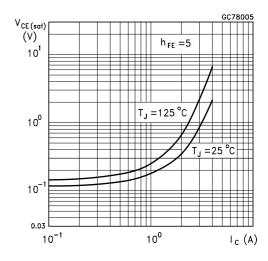

Symbol	Parameter	Test	Test Conditions Min. T		Тур.	Max.	Unit
I _{CES}	Collector Cut-off Current (V _{BE} = 0)	V _{CE} = 900 V				100	μΑ
I _{EBO}	Emitter Cut-off Current (I _C = 0)	V _{EB} = 7 V				100	μΑ
V _{(BR)CES}	Collector-Emitter Breakdown Voltage (V _{BE} = 0)	I _C = 100 μA		900			V
V _{CEO(sus)*}	Collector-Emitter Sustaining Voltage (I _B = 0)	I _C = 10 mA	L = 25 mH	400			V
V _{CE(sat)} *	Collector-Emitter Saturation Voltage	I _C = 0.5 A I _C = 1 A I _C = 2 A	$I_B = 50 \text{ mA}$ $I_B = 0.15 \text{ A}$ $I_B = 0.4 \text{ A}$			0.5 1 1.5	V V V
V _{BE(sat)} *	Base-Emitter Saturation Voltage	$I_{C} = 0.5 A$ $I_{C} = 1 A$ $I_{C} = 2 A$	$I_B = 50 \text{ mA}$ $I_B = 0.15 \text{ A}$ $I_B = 0.4 \text{ A}$			1 1.1 1.2	< < <
h _{FE} *	DC Current Gain	-	V _{CE} = 5 V V _{CE} = 5 V V _{CE} = 5 V V _{CE} = 5 V	20 40 28 8		70 60 16	
t _d t _r t _s	RESISTIVE LOAD Delay Time Rise Time Storage Time Fall Time	$V_{CC} = 125 \text{ V}$ $I_{B1} = 50 \text{ mA}$ $t_p = 300 \mu\text{s}$ (see figure 1)	$I_C = 0.7 \text{ A}$ $I_{B2} = 0.4 \text{ A}$			0.2 1 0.8 0.25	μs μs μs μs
Ear	Repetitive Avalanche Energy	$V_{CC} = 50V$ $V_{BE} = -5 V$ (see figure 2)	C = 1.8 nF L = 2 mH	6			mJ
V _F	Parallel Diode Forward Voltage	I _F = 2 A				1.2	V

^{*} Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %

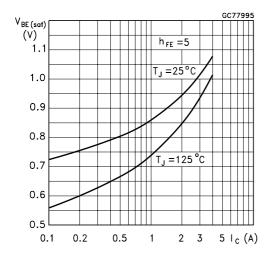

Safe Operating Area

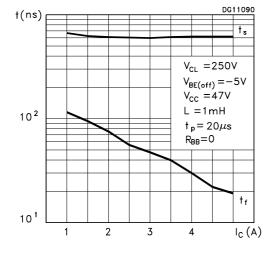

Derating Curve


Output Characteristics

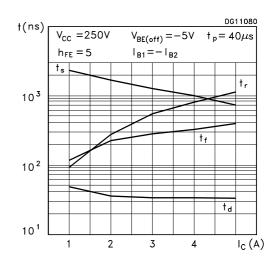

DC Current Gain

DC Current Gain


Collector Emitter Saturation Voltage


477

BUL903EDFP


Base Emitter Saturation Voltage

Switching Times Inductive Load

Switching Times Resistive Load

Reverse Biased SOA

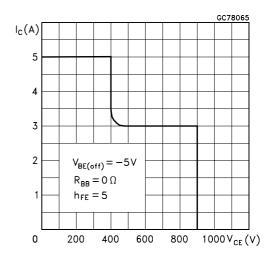


Figure 1: Resistive Load Switching Test Circuit

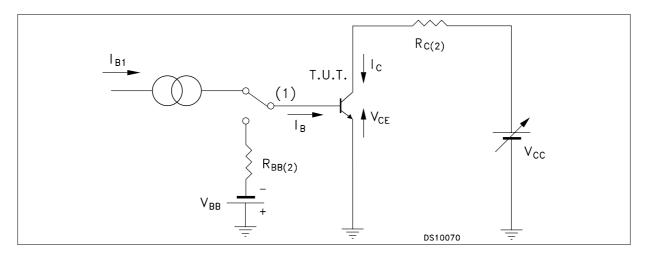


Figure 2 : Energy Rating Test Circuit

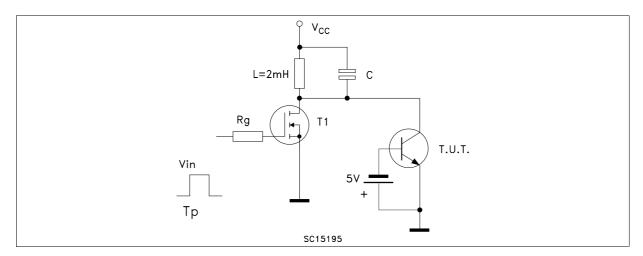
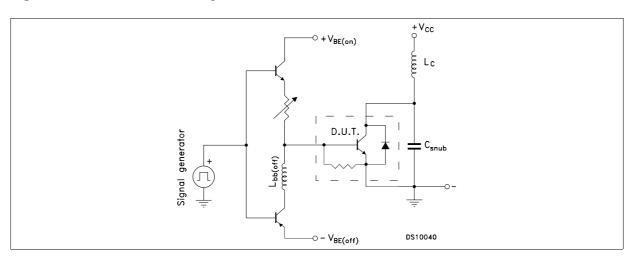
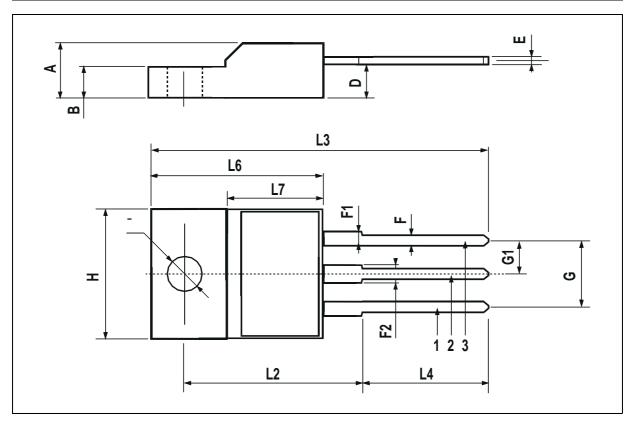




Figure 3: Inductive Load Switching Test Circuit

TO-220FP MECHANICAL DATA

DIM.		mm			inch	
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	4.4		4.6	0.173		0.181
В	2.5		2.7	0.098		0.106
D	2.5		2.75	0.098		0.108
E	0.45		0.7	0.017		0.027
F	0.75		1	0.030		0.039
F1	1.15		1.7	0.045		0.067
F2	1.15		1.7	0.045		0.067
G	4.95		5.2	0.195		0.204
G1	2.4		2.7	0.094		0.106
Н	10		10.4	0.393		0.409
L2		16			0.630	
L3	28.6		30.6	1.126		1.204
L4	9.8		10.6	0.385		0.417
L6	15.9		16.4	0.626		0.645
L7	9		9.3	0.354		0.366
Ø	3		3.2	0.118		0.126

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics.

All other names are the property of their respective owners.

© 2003 STMicroelectronics – All Rights reserved STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

