

M62384FP

8-Bit, 4-Channel, 3 to 5 V D-A Converter (Buffered)

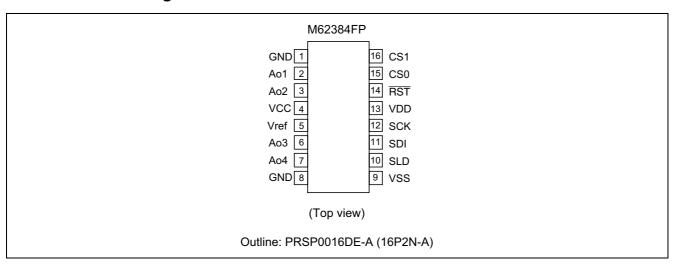
REJ03F0077-0200 Rev.2.00 Mar 25, 2008

Description

The M62384 is a CMOS-structure semiconductor integrated circuit incorporating four 8-bit D-A converter channels with output buffer op-amps.

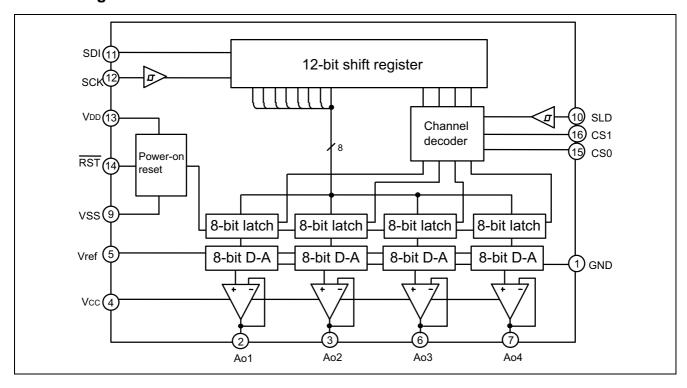
Serial data transfer type input can easily be used through a combination of three lines: DI, CLK, and LD. Outputs incorporate buffer op-amps that have a drive capacity of 1 mA or above for both sink and source, and can operate over the entire voltage range from almost ground to VCC (0 to 5 V), making peripheral elements unnecessary and enabling configuration of a system with few component parts.

Support of power supply voltages of 3 V to 5 V enables the M62384 to be used in a wide range of applications.


Features

- 12-bit serial data input (3-line type: SDI, SCK, SLD)
- Serial data transfer clock frequency: 10 MHz (max.)
- Output buffer op-amps
 - Operable over entire voltage range from almost ground to VCC
- Power-on reset and external reset functions
- Chip select function
 - Up to 4 chips connectable on the same bus
- Supported power supply voltage: 3 V to 5 V (2.7 V to 5.5 V)

Application


Signal gain setting and automatic adjustment in CTV and display monitors, conversion from digital data to analog data in consumer and industrial products

Pin Connection Diagram

This product is currently under development, and specifications and other details may be modified at a future date.

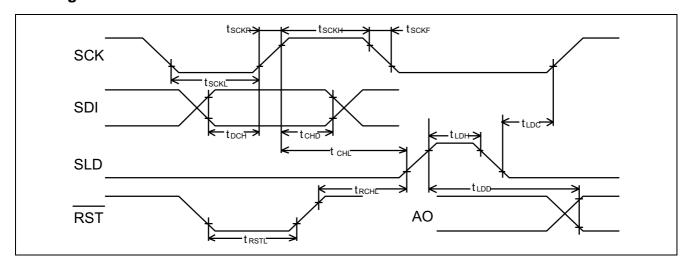
Block Diagram

Pin Functions

Pin No.	Symbol	Function
1, 8	GND	Analog GND: analog circuit GND
		(D-A converter lower reference voltage)
2	Ao1	D-A converter output pins (ch1 to ch4): full-swing buffer output
3	Ao2	Output voltage: Ao (00)h = 0V, Ao (FF)h = $255/256 \times VREF$
6	Ao3	
7	Ao4	
4	Vcc	Analog power supply (3 V to 5 V)
		Must rise simultaneously with VDD or after VDD rise.
5	Vref	D-A converter upper reference voltage input pin
9	Vss	Digital GND
10	SLD	Serial load signal input pin (Schmitt trigger input: with input hysteresis)
		When SLD is high, data is loaded from shift register into 8-bit latch corresponding to address.
11	SDI	Serial data input pin (TTL input in case of 5 V power supply)
		Inputs serial data with a 12-bit data length (MSB-first).
12	SCK	Serial clock signal input pin (Schmitt trigger input: with input hysteresis)
		At rising edge, data is read into shift register one bit at a time.
13	VDD	Digital power supply pin (3 V to 5 V)
		When power supply rises, D-A output is reset (0 V output: power-on reset).
14	RST	Forced reset pin (TTL input in case of 5 V power supply)
		L: D-A output (AO1 to 4) = Fixed setting of 0 V
		H: Reset release (power-on reset operation)
15	CS0	Chip select pins (TTL input in case of 5 V power supply)
16	CS1	Access possible only when chip select data (D11, D10) and pin (CS1, CS0) logic
		match.

Absolute Maximum Ratings

(Unless specified otherwise, Ta = 25°C)


Item	Symbol	Rated Value	Unit	Conditions
Power supply voltage	VCC,VDD	-0.3 to 7.0	V	
Digital input voltage	VDIN	-0.3 to Vcc+0.3 (≤ 7.0)	V	DC voltage ("H" level)
Reference voltage input voltage	Vref	-0.3 to Vcc+0.3 (≤ 7.0)	V	
D-A output voltage	VAO	-0.3 to Vcc+0.3 (≤ 7.0)	V	
Permissible loss	Pd	300	mW	
Operating ambient temperature	Topr	-20 to +75	°C	
Storage temperature	Tstg	-40 to +125	°C	

Recommended Operating Conditions

(Unless specified otherwise, VCC = VDD = 5 V $\pm 10\%$, Vref = 2 V to VCC, VSS = GND = 0 V, fsck = 5 MHz, VDINH = VDD, VDINL = VSS, Ta = 20°C to 75°C)

Specification Values							
Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions	
Analog power supply voltage	VCC	2.7		5.5	V	VCC = VDD	
Digital power supply voltage	VDD	2.7		5.5	V	VCC = VDD	
Reference voltage	Vref	2.0		5.5	V	Vref ≤ VCC	
Serial clock frequency	fsck			10	MHz		
"H" level digital input voltage	VDINH	0.5VDD		VDD	V		
"L" level digital input voltage	VDINL	VSS		0.2VDD	V		
Clock "H" pulse width	tsckH	30			ns	$VCC = VDD \ge 2.7V$	
Clock "L" pulse width	tsckL	30			ns	$VCC = VDD \ge 2.7V$	
Clock rise time	tsckR			200	ns		
Clock fall time	tsckF			200	ns		
Data setup time	tDCH	10			ns		
Data hold time	tCHD	20			ns		
Load setup time	tCHL	40			ns		
Load hold time	tLDC	20			ns		
Load "H" pulse width	tLDH	20			ns		
Reset "L" pulse width	tRSTL	50			ns		
Load setup time after reset release	tRCHL	50			ns		

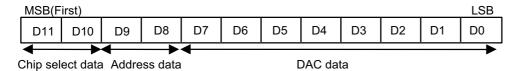
Timing Chart

Electrical Characteristics

(Unless specified otherwise, VCC = VDD = 5 V $\pm 10\%$, Vref = 2 V to VCC, VSS = GND = 0 V, fsck = 5 MHz, VDINH = VDD, VDINL = VSS, Ta = 20°C to 75°C)

(1) Digital block

Spec			


Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Digital block circuit current	IDD			1.0	mΑ	
Input leakage current	IDINLK	-1.0	0	1.0	μΑ	VDIN = VSS to VDD
Input threshold voltage	VDINT	0.2VDD		0.5VDD	V	
Input hysteresis voltage	ΔVDINT		100		mV	

(2) Analog block

Speci	fica	tion \	'a	lues
-------	------	--------	----	------

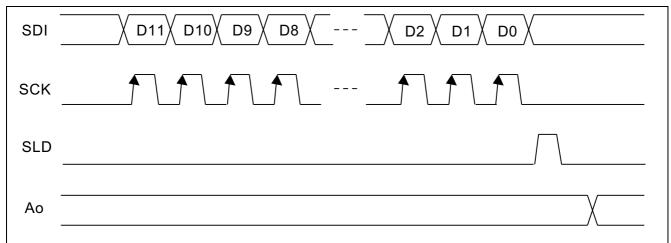
Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Analog block circuit current	ICC		8.0	2.0	mA	No load
Reference voltage input current	Iref		0.5	1.0	mA	All channels: Maximum current conditions
Differential nonlinearity error	SDL	-1.0		1.0	LSB	VCC = VDD = 2.7V to 5.5V
Nonlinearity error	SNL	-1.5		1.5	LSB	IA0: With no load
Zero scale error	SZERO	-2.0		2.0	LSB	-
Full-scale error	SFULL	-2.0		2.0	LSB	-
Output current	IAO	±0.5			mA	VOA = 0.1V to VCC - 0.1V
Settling time	tLDD		5	10	μS	VOA = 0.5↔4.5V, IOA = 0.1mA, Co = 50pF output absorbed within ±0.5 LSB
Power-on reset voltage	VPR	0.8	1.5	2.5	V	VCC = 0 V → 5 V, V0A = 0 V setting voltage (reference values)

Digital Data Format

(1) Chip select data

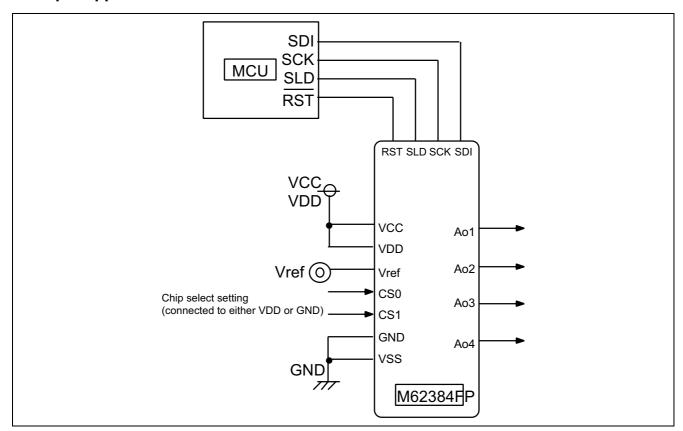
D11	D10	CS1	CS0
0	0	L	L
0	1	L	Н
1	0	Н	L
1	1	Н	Н

Data is transferred only when logic of D11 and D10 matches CS pin setting (CS1, CS0).

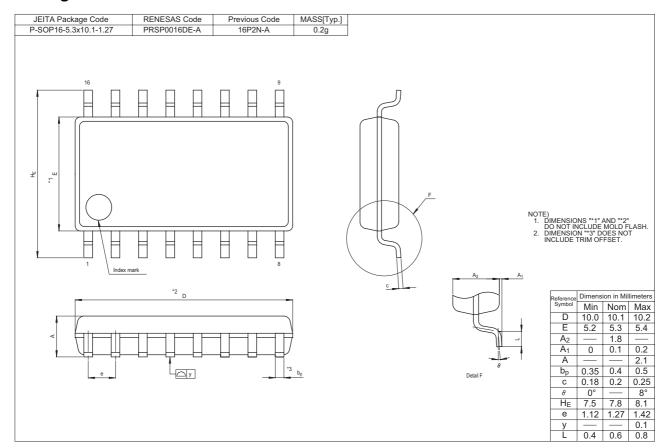

(2) Address data

D8	D9	Channel Selection
0	0	AO1 selected
0	1	AO2 selected
1	0	AO3 selected
1	1	AO4 selected

DAC Data


D7	D6	D5	D4	D3	D2	D1	D0	D-A output
0	0	0	0	0	0	0	0	(0/256)×Vref
0	0	0	0	0	0	0	1	(1/256)×Vref
0	0	0	0	0	0	1	0	(2/256)×Vref
0	0	0	0	0	0	1	1	(3/256)×Vref
•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•
1	1	1	1	1	1	1	0	(254/256)×Vref
1	1	1	1	1	1	1	1	(255/256)×Vref

Data Timing Chart



When SLD is high, data captured in the shift register is loaded into the 8-bit latch corresponding to the address. Therefore, SCK should be held high or low when SLD is high.

Sample Application Circuit

Package Dimensions

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Notes:

 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warrantes or representations with respect to the accuracy or completeness of the information in this document nor grants any license to any intellectual property girbs to any other rights of representations with respect to the information in this document in this document of the purpose of the respect of the information in this document in the product data, diagrams, charts, programs, algorithms, and application circuit examples.

 3. You should not use the products of the technology described in this document for the purpose of military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations, and procedures required to change without any plan protein. Before purchasing or using any Renesas products listed in this document, in the such procedure in the procedure of the development of the development of the development of the procedure of the development of the de

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510