Description

Transcend miniSD Card is non-volatile, which means no external power is required to retain the information stored on it. Besides, it is also a solid-state device that without moving parts to skip or break down. Transcend miniSD Card can offer an incredible combination of fast data transfer, great flexibility, excellent security and incredibly small size.

Front

Back

Features

- ROHS compliant product
- Operating Voltage: $2.7 \sim 3.6 \mathrm{~V}$
- Operating Temperature: $-25 \sim 85^{\circ} \mathrm{C}$
- Insertion/removal durability: 10,000 cycles
- Fully compatible with SD card spec. v1.1
- Comply with SD Association File System Specification
- Forward compatibility to MultiMediaCard Version 2.11
- Supports Copy Protection for Recorded Media(CPRM) for music and other commercial media
- Form Factor: $21.5 \mathrm{~mm} \times 20 \mathrm{~mm} \times 1.4 \mathrm{~mm}$

Pin Definition

Pin No.	Name	Type	Description
1	CD/DAT3	I/O/PP ${ }^{3}$	Card Detect/Data Line [Bit3]
2	CMD	PP	Command/Response
3	$\mathrm{~V}_{\mathrm{SS} 1}$	S	Supply voltage ground
4	$\mathrm{~V}_{\mathrm{DD}}$	S	Supply voltage
5	CLK	I	Clock
6	$\mathrm{~V}_{\text {SS2 }}$	S	Supply voltage ground
7	DAT0	I/O/PP	Data Line [Bit0]
8	$\mathrm{DAT1}$	I/O/PP	Data Line [Bit1]
9	DAT2	I/O/PP	Data Line [Bit2]
10	NC^{4}	I/O/PP	For Future Use
11	NC^{4}	I/O/PP	For Future Use

Architecture

Bus Operating Conditions

- General

Parameter	Symbol	Min.	Max.	Unit	Remark
Peak voltage on all lines		-0.3	VDD +0.3	V	
All Inputs					
Input Leakage Current		-10	10	$\mu \mathrm{~A}$	
All Outputs					
Output Leakage Current		-10	10	$\mu \mathrm{~A}$	

- Power Supply Voltage

Parameter	Symbol	Min.	Max.	Unit	Remark
Supply voltage	V_{DD}	2.0	3.6	V	CMD0, 15,55,ACMD41 commands
Supply voltage specified in OCR register					Except CMD0, 15,55, ACMD41 commands
Supply voltage differentials $\left(\mathrm{V}_{\mathrm{SS} 1}, \mathrm{~V}_{\mathrm{SS} 2}\right)$		-0.3	0.3	V	
Power up time			250	ms	From 0v to V_{DD} Min.

Note. The current consumption of any card during the power-up procedure must not exceed 10 mA .

- Bus Signal Line Load

The total capacitance C_{L} the CLK line of the SD Memory Card bus is the sum of the bus master capacitance C $_{\text {Host }}$, the bus capacitance $\mathrm{C}_{\text {BUS }}$ itself and the capacitance $\mathrm{C}_{\text {CARD }}$ of each card connected to this line:

$\mathrm{C}_{\mathrm{L}}=\mathrm{C}_{\text {Host }}+\mathrm{C}_{\text {bus }}+\mathrm{N}^{*} \mathrm{C}_{\text {Card }}$

Where N is the number of connected cards. Requiring the sum of the host and bus capacitances not to exceed 30 pF for up to 10 cards, and 40 pF for up to 30 cards, the following values must not be exceeded:

Parameter	Symbol	Min.	Max.	Unit	Remark
Bus signal line capacitance	C_{L}		100	pF	$\mathrm{f}_{\mathrm{PP}} \leq 20 \mathrm{MHz}, 7$ cards
Single card capacitance	$\mathrm{C}_{\text {CARD }}$		10	pF	
Maximum signal line inductance			16	nH	$\mathrm{f}_{\mathrm{PP}} \leq 20 \mathrm{MHz}$
Pull-up resistance inside card (pin1)	$\mathrm{R}_{\mathrm{DAT3}}$	10	90	$\mathrm{~K} \Omega$	May be used for card detection

Note that the total capacitance of CMD and DAT lines will be consist of $\mathrm{C}_{\text {HOSt }}, \mathrm{C}_{\text {BUs }}$ and one $\mathrm{C}_{\text {CARD }}$ only since they are connected separately to the SD Memory Card host.

Parameter	Symbol	Min.	Max.	Unit	Remark
Pull-up resistance	$\mathrm{R}_{\mathrm{CMD}}, \mathrm{R}_{\mathrm{DAT}}$	10	100	$\mathrm{~K} \Omega$	To prevent bus floating
Bus signal line capacitance	C_{L}		250	pF	$\mathrm{f}_{\mathrm{PP}} \leq 5 \mathrm{MHz}, 21$ cards

TS128M~2GSDM

- Bus Signal Levels

As the bus can be supplied with a variable supply voltage, all signal levels are related to the supply voltage.

To meet the requirements of the JEDEC specification JESD8-1A, the card input and output voltages shall be within the following specified ranges for any $V_{D D}$ of the allowed voltage range:

Parameter	Symbol	Min.	Max.	Unit	Remark
Output HIGH voltage	V_{OH}	$0.75 * \mathrm{~V}_{\mathrm{DD}}$		V	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} @ \mathrm{~V}_{\mathrm{DD}} \min$
Output LOW voltage	V_{OL}		$0.125^{*} \mathrm{~V}_{\mathrm{DD}}$	V	$\mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A} @ \mathrm{~V}_{\mathrm{DD}} \mathrm{min}$
Input HIGH voltage	V_{H}	$0.625^{*} \mathrm{~V}_{\mathrm{DD}}$	$\mathrm{V}_{\mathrm{DD}}+0.3$	V	
Input LOW voltage	V_{IL}	$\mathrm{V}_{\mathrm{SS}}-0.3$	$0.25^{*} \mathrm{~V}_{\mathrm{DD}}$	V	

- Bus Timing

Parameter	Symbol	Min	Max.	Unit	Remark
Clock CLK (All values are referred to min (V_{IH}) and max (V_{IL})					
Clock frequency Data Transfer Mode	f_{PP}	0	25	MHz	$\mathrm{C}_{\mathrm{L}} \leq 100 \mathrm{pF}$, (7 cards)
Clock frequency Identification Mode (The low freq. is required for MultiMediaCard compatibility.)	f_{OD}	0	400	KHz	$\mathrm{C}_{\mathrm{L}} \leq 250 \mathrm{pF}$, (21 cards)
Clock low time	$t_{\text {WL }}$	10		ns	$\mathrm{C}_{\mathrm{L}} \leq 100 \mathrm{pF}$, (7 cards)
		50		ns	$\mathrm{C}_{\mathrm{L}} \leq 250 \mathrm{pF}$, (21 cards)
Clock high time	$t_{\text {WH }}$	10		ns	$\mathrm{C}_{\mathrm{L}} \leq 100 \mathrm{pF}$, (7 cards)
		50		ns	$\mathrm{C}_{\mathrm{L}} \leq 250 \mathrm{pF}$, (21 cards)
Clock rise time	$\mathrm{t}_{\text {TLH }}$		10	ns	$\mathrm{C}_{\mathrm{L}} \leq 100 \mathrm{pF}$, (7 cards)
			50	ns	$\mathrm{C}_{\mathrm{L}} \leq 250 \mathrm{pF}$, (21 cards)
Clock fall time	$\mathrm{t}_{\text {THL }}$		10	ns	$\mathrm{C}_{\mathrm{L}} \leq 100 \mathrm{pF}$, (7 cards)
			50	ns	$\mathrm{C}_{\mathrm{L}} \leq 250 \mathrm{pF}$, (21 cards)
Inputs CMD, DAT (referenced to CLK)					
Input set-up time	$\mathrm{t}_{\text {ISU }}$	5		ns	$\mathrm{C}_{\mathrm{L}} \leq 25 \mathrm{pF}$, (1 cards)
Input hold time	t_{H}	5		ns	$\mathrm{C}_{\mathrm{L}} \leq 25 \mathrm{pF}$, (1 cards)
Outputs CMD, DAT (referenced to CLK)					
Output Delay time	$\mathrm{t}_{\text {ODLY }}$	0	14	ns	$\mathrm{C}_{\mathrm{L}} \leq 25 \mathrm{pF},(1$ cards $)$

Reliability and Durability

Temperature	Operation: $-25^{\circ} \mathrm{C} / 85^{\circ} \mathrm{C}$ (Target spec)
Moisture and corrosion	Operation: $25^{\circ} \mathrm{C} / 95 \%$ rel. humidity Storage: $40^{\circ} \mathrm{C} / 93 \%$ rel. hum./500h Salt Water Spray: 3\% NaCI/35C; 24h acc. MIL STD Method 1009
Durability	10.000 mating cycles; test procedure: tbd.
Bending	10N
Torque	0.15N.m or $+/-2.5 \mathrm{deg}$
Drop test	1.5 m free fall
UV light exposure	UV: $254 \mathrm{~nm}, 15 \mathrm{Ws} / \mathrm{cm}^{2}$ according to ISO 7816-1
Visual inspection Shape and form	No warppage; no mold skin; complete form; no cavities surface smoothness <=-0.1 $\mathrm{mm} / \mathrm{cm}^{2}$ within contour; no cracks; no pollution (fat, oil dust, etc.)
Minimum moving force of WP witch	40gf (Ensures that the WP switch will not slide while it is inserted to the connector.)
WP Switch cycles	Minimum 1000 Cycles (Slide force 0.4 N to 5N)

Above technical information is based on industry standard data and tested to be reliable. However, Transcend makes no warranty, either expressed or implied, as to its accuracy and assumes no liability in connection with the use of this product. Transcend reserves the right to make changes in specifications at any time without prior notice.

