

# 2 x 1 W portable/mains-fed stereo power amplifier

The KKA7053N is an integrated class-B stereo power amplifier in a 16-lead dual-in-line (DIL) plastic package. The device, consisting of two BTL amplifiers, is primarily developed for portable audio applications but may also be used in mains-fed applications.

- No external components
- No switch-ON/OFF clicks
- Good overall stability
- Low power consumption
- Short-circuit-proof

# **KKA7053N**

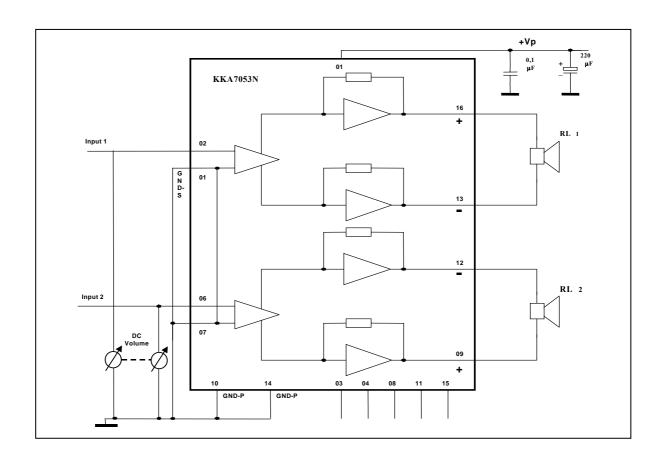


## QUICK REFERENCE DATA

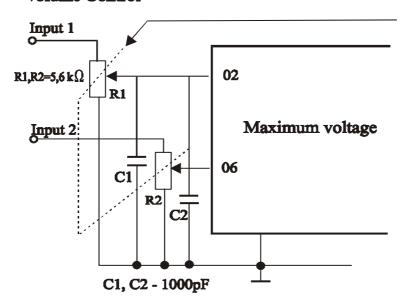
| PARAMETER                 | CONDITIONS                                                     | SYMBOL    | MIN. | MAX. | UNIT |
|---------------------------|----------------------------------------------------------------|-----------|------|------|------|
| Supply voltage range      |                                                                | $V_{P}$   | 3    | 18   | V    |
| Total quiescent current   | $R_L = \infty$                                                 | $I_{tot}$ | -    | 16   | mA   |
| Output power              | $R_L = 8 \Omega, V_P = 6 V, THD = 10\%$                        | $P_{O}$   | -    | 1    | W    |
| Internal voltage gain     | $R_L = 8 \Omega, V_P = 6 V$                                    | Gv        | 38   | 40   | dB   |
| Total harmonic distortion | $P_{O} = 0.1 \text{ W}, R_{L} = 8 \Omega, V_{P} = 6 \text{ V}$ | THD       | -    | 1.0  | %    |

#### **PINNING**

| Pin № | Symbol  | Description     | Pin № | Symbol | Description         |
|-------|---------|-----------------|-------|--------|---------------------|
| 01    | SGND1   | signal ground 1 | 09    | OUT2A  | output 2 (positive) |
| 02    | IN1     | input 1         | 10    | GND2   | power ground 2      |
| 03    | n.c.    | not connected   | 11    | n.c.   | not connected       |
| 04    | n.c.    | not connected   | 12    | OUT2B  | output 2 (negative) |
| 05    | $V_{P}$ | supply voltage  | 13    | OUT1B  | output 1 (negative) |
| 06    | IN2     | input 2         | 14    | GND1   | power ground 1      |
| 07    | SGND2   | signal ground 2 | 15    | n.c.   | not connected       |
| 08    | n.c.    | not connected   | 16    | OUT1A  | output 1 (positive) |


#### Note

The information contained within the parentheses refer to the polarity of the loudspeaker terminal to which the output must be connected.


### **FUNCTIONAL DESCRIPTION**

The KKA7053N is a stereo output amplifier, with an internal gain of 39 dB, which is primarily for use in portable audio applications but may also be used in mains-fed applications. The current trends in portable audio application design is to reduce the number of batteries which results in a reduction of output power when using conventional output stages. The KKA7053N overcomes this problem by using the Bridge-Tied-Load (BTL) principle and is capable of delivering 1.2 W into an 8  $\Omega$  load (V P = 6 V). The load can be short-circuited under all input conditions.





# **Volume Control**



- 1. This capacitor can be omitted if the 220  $\mu$ F electrolytic capacitor is connected close to pin 01.
- 2.  $R_L = 8 \Omega$
- 3. Resistors R1, R2 = 5,6 k $\Omega$  connected to the inputs 02, 06 should be dual.

Fig.1 Block diagram, test and application circuit diagram

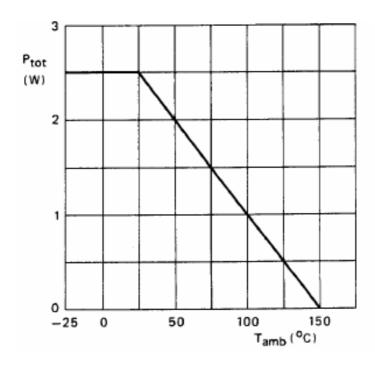


## **RATINGS**

Limiting values in accordance with the Absolute Maximum System

| PARAMETER                          | CONDITIONS | SYMBOL    | MIN.  | MAX. | UNIT |
|------------------------------------|------------|-----------|-------|------|------|
| Supply voltage                     |            | $V_P$     | ı     | 18   | V    |
| Non-repetitive peak output current |            | $I_{OSM}$ | -     | 1.5  | A    |
| Total power dissipation            |            | $P_{tot}$ | see F | ig.2 |      |
| Crystal temperature                |            | Тс        | -     | ÷150 | °C   |
| Storage temperature range          |            | Tstg      | -60   | +150 | °C   |

## THERMAL RESISTANCE


From junction to ambient  $R_{th j-a}$  60 K/W

## **Power dissipation**

Assuming:  $V_P = 6 \text{ V}$  and  $R_L = 8 \Omega$ :

The maximum sinewave dissipation is 1.8 W, therefore  $T_{amb(max.)} = 150$  - (60 x 1.8) = 42°C.

Fig.2 Power derating curve





#### **CHARACTERISTICS**

 $V_P = 6 \text{ V}$ ;  $R_L = 8 \text{ W}$ ; Tamb = 25°C; unless otherwise specified; measured from test circuit, Fig.2.

| PARAMETER                       | CONDITIONS                  | SYMBOL               | MIN.       | MAX.      | UNIT |
|---------------------------------|-----------------------------|----------------------|------------|-----------|------|
| Supply voltage range            |                             | $V_P$                | 3          | 18        | V    |
| Total quiescent current         | $R_L = \infty$ ; note 1     | I <sub>tot</sub>     | -          | 16        | mA   |
| Input bias current              |                             | I <sub>bias</sub>    | -          | 300       | nA   |
| Supply voltage ripple rejection | note 2                      | SVRR                 | 40         | -         | dB   |
| Input impedance                 |                             | $Z_{I}$              | 100 (type) |           | kΩ   |
| DC output offset voltage        | note 3                      | $\Delta V_{13-16}$   | -          | 100       | mV   |
|                                 |                             | $\Delta V_{12-9}$    | -          | 100       | mV   |
| Noise output voltage            | note 4                      | V <sub>no(rms)</sub> | -          | 300       | μV   |
| (RMS value)                     | note 5                      | V <sub>no(rms)</sub> | 60         | (type)    | μV   |
| Output power                    | THD = 10%                   | PO                   | -          | 0.8       | W    |
| Total harmonic distortion       | $P_{\rm O} = 0.1 \; { m W}$ | THD                  | -          | 1.0       | %    |
| Internal voltage gain           |                             | $G_{V}$              | 38         | 40        | dB   |
| Channel balance                 |                             | $\Delta G_{ m V}$    | -          | 1         | dB   |
| Channel separation              | note 3                      | α                    | 40         | -         | dB   |
| Frequency response              | $R_L = 8 \Omega, V_P = 6 V$ | f                    | 0.2 to     | 20 (type) | kHz  |

#### Notes to the characteristics

- 1. With a practical load the total quiescent current depends on the offset voltage.
- 2. Ripple rejection measured at the output with  $R_S$  = 0  $\Omega$  and f = 100 Hz to 10 kHz. The ripple voltage (200 mV) is applied to the positive supply rail.
- 3.  $R_S = 5 k\Omega$ .
- 4. The noise output voltage (RMS value) is measured with  $R_S = 5 \text{ k}\Omega$ , unweighted and a bandwidth of 60 Hz to 15 kHz.
- 5. The noise output voltage (RMS value) is measured with  $R_S$  = 0  $\Omega$  and f = 500 kHz with 5 kHz bandwidth. If  $R_L$  = 8  $\Omega$  and  $L_L$  = 200 mH the noise output current is only 100 nA.



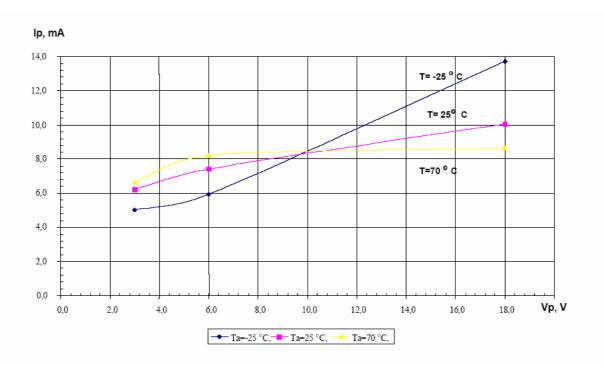



Fig.3. Output power as a function of voltage supply (V  $_P$  ); THD = 10%; f = 1 kHz; T amb = 60 °C.

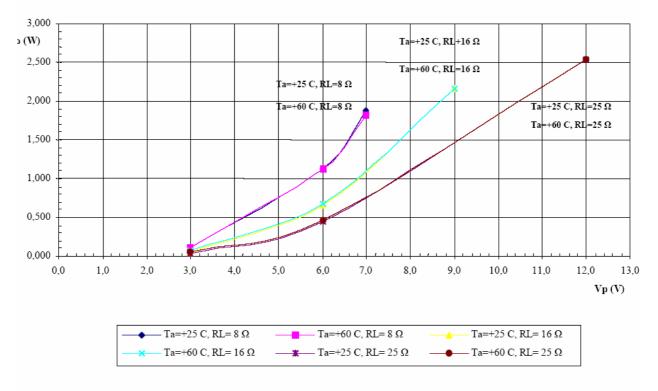



Fig.4. Output power as a function of voltage supply  $(V_P)$ ; THD = 10%; f = 1 kHz; T amb = 60 °C.



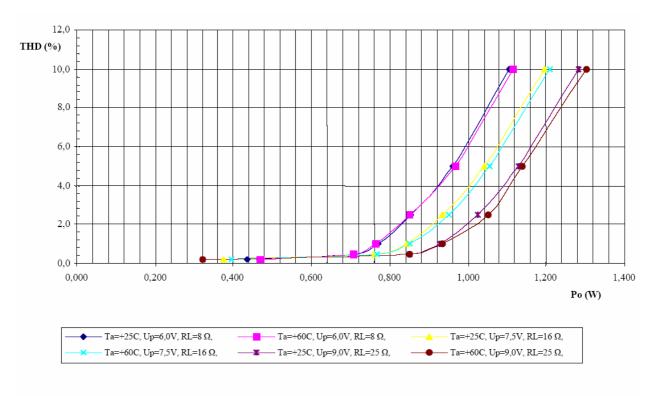
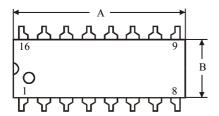
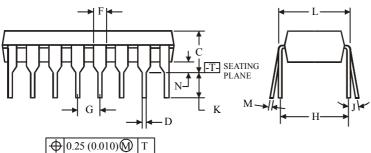





Fig.5 Total harmonic distortion as a function of output power; f = 1 kHz; T amb = 60 °C.

## N SUFFIX PLASTIC DIP (MS - 001BB)





NOTES:

Dimensions "A", "B" do not include mold flash or protrusions.
 Maximum mold flash or protrusions 0.25 mm (0.010) per side.

|        | 1             |       |  |  |
|--------|---------------|-------|--|--|
|        | Dimension, mm |       |  |  |
| Symbol | MIN           | MAX   |  |  |
| A      | 18.67         | 19.69 |  |  |
| В      | 6.1 7.11      |       |  |  |
| C      |               | 5.33  |  |  |
| D      | 0.36          | 0.56  |  |  |
| F      | 1.14          | 1.78  |  |  |
| G      | 2.54          |       |  |  |
| Н      | 7.62          |       |  |  |
| J      | 0°            | 10°   |  |  |
| K      | 2.92          | 3.81  |  |  |
| L      | 7.62          | 8.26  |  |  |
| M      | 0.2           | 0.36  |  |  |
| N      | 0.38          |       |  |  |
| •      |               |       |  |  |