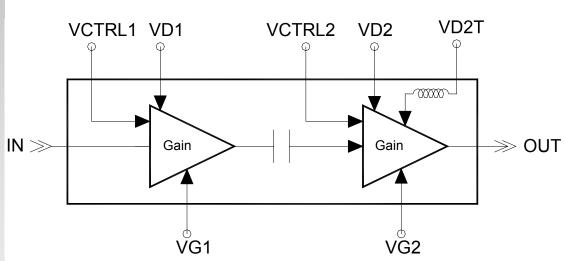


### 30 kHz to 18 GHz High-Gain Power Amplifier

### **Description**

The iT2025J is a RoHS-6-compliant packaged broadband GaAs MMIC traveling wave amplifier designed for medium output power applications where low-frequency extension capabilities are also required. The iT2025J provides saturated output power greater than 25 dBm up to 8 GHz, greater than 23 dBm up to 16 GHz, and greater than 20 dBm at 18 GHz. Average gain is greater than 25 dB. DC power consumption as low as 2.4 W. Input/output ports are DC coupled.

### **Features**


- Frequency range: 2 GHz 18 GHz with low-frequency extension capability down to 30 KHz
- > >25 dBm nominal Psat (30 kHz 8 GHz)
- > >20 dBm nominal Psat (30 kHz 18 GHz)
- >25 dB nominal gain up to 18 GHz
- > 2.4 W DC power consumption
- Nominal DC bias conditions: 8 V at 300 mA
- > Full chip passivation for high reliability
- ➤ RoHS-6-compliant small-form-factor (0.450 x 0.350 x 0.078 in.) SMD package



### **Device Diagram**

Both gain stages and their respective RF and DC connections are shown at right. The internal coupling capacitor value between the cascaded gain stages is 0.1 µF.

VD1 and VD2 are applied to the gain stages through on-chip resistors.



### Recommended bias conditions:

VD1 = 8 V, VG1 = -0.8 V to - 0.9 V, VCTRL1 = 0 V, ID1 = 80 mA VD2T = 8 V, VG2 = -0.5 V to -0.7 V, VCTRL2 = +3.5 V, ID2T = 220 mA





## 30 kHz to 18 GHz High-Gain Power Amplifier

### Absolute Maximum Ratings

#### Notes:

- 1. Combinations of drain voltage, drain current, and output power shall not exceed P<sub>D</sub> at package base temperature of 85° C.
- 2. Set VG1 and VG2 such that drain currents are below maximum limits.
- 3. See "Thermal Characteristics".

| Parameter                      | Symbol                                               | Min                                           | Max                                 | Units | Notes |
|--------------------------------|------------------------------------------------------|-----------------------------------------------|-------------------------------------|-------|-------|
| Drain voltage                  | $V_{D1}, V_{D2,}, V_{D2T}$                           |                                               | 10.0                                | V     | 1     |
| Gate voltage                   | $V_{G1}, V_{G2}$                                     | -2.5                                          |                                     | V     | 1     |
| Control voltage                | V <sub>CTRL1</sub><br>V <sub>CTRL2</sub>             | V <sub>D1</sub> - 8V<br>V <sub>D2T</sub> - 8V | V <sub>D1</sub><br>V <sub>D2T</sub> | V     | 1     |
| Drain current                  | I <sub>D1,</sub> I <sub>D2</sub><br>I <sub>D2T</sub> |                                               | 150<br>300                          | mA    | 1,2   |
| Input power                    | P <sub>IN</sub>                                      |                                               | 5                                   | dBm   |       |
| Power dissipation              | $P_{\scriptscriptstyle D}$                           |                                               | 4                                   | W     | 1     |
| Junction operating temperature | TJ                                                   |                                               | 150                                 | °C    | 3     |
| Mounting temperature           | T <sub>M</sub>                                       |                                               | 230                                 | °C    |       |
| Storage temperature            | T <sub>STO</sub>                                     | -65                                           | 150                                 | °C    |       |
| Storage relative humidity      | RH <sub>STO</sub>                                    | 5                                             | 95                                  | %     |       |

# **Electrical** Characteristics

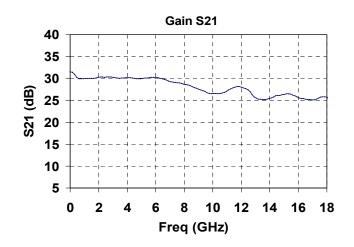
(at 25 °C) in 50-ohm system.

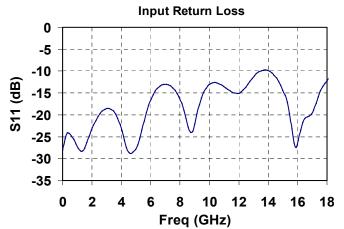
| Symbol | Parameters/conditions                                                        | Min.     | Тур.     | Max.              | Units          |
|--------|------------------------------------------------------------------------------|----------|----------|-------------------|----------------|
| BW     | Frequency range*                                                             | 0.00003  |          | 18                | GHz            |
| S21    | Small-signal gain                                                            | 24       | 30       |                   | dB             |
| S11    | Input return loss                                                            | 10       | 12       |                   | dB             |
| S22    | Output return loss                                                           | 7        | 10       |                   | dB             |
| S12    | Isolation                                                                    | 50       |          |                   | dB             |
| Psat   | Saturated power output (3-dB gain compression) 30 Hz – 8 GHz 30 kHz – 18 GHz | 24<br>19 | 26<br>21 |                   | dBm<br>dBm     |
| P1dB   | Output power (1-dB gain<br>compression)<br>30 kHz – 8 GHz<br>30 kHz – 18 GHz | 22<br>17 | 24<br>20 |                   | dBm<br>dBm     |
| OIP3   | Output third-order intercept point                                           |          | 32       |                   | dBm            |
| NF     | Noise figure<br>500 MHz – 2 GHz<br>2 GHz – 10 GHz<br>10 GHz – 18 GHz         |          |          | 5.5<br>4.5<br>6.0 | dB<br>dB<br>dB |

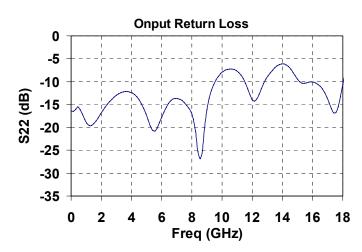


<sup>(\*)</sup> Low-frequency extension available with recommended choke network.




30 kHz to 18 GHz High-Gain Power Amplifier


### Performance Data

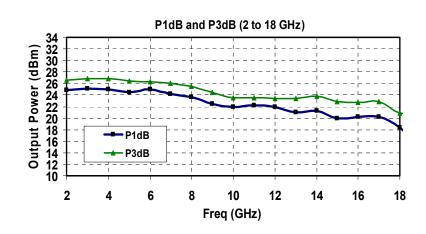

 $T = 25^{\circ} C$ 

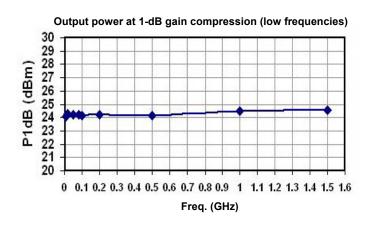
Test includes effects of evaluation board.

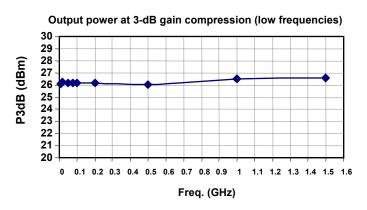
VD1 = 8 V VCTRL1 = 0 V ID1 = 80 mA VD2T = 8 V VCTRL2 = +3.5 V ID2T = 220 mA







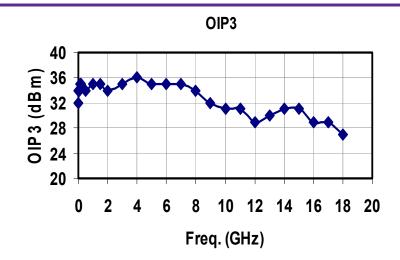




30 kHz to 18 GHz High-Gain Power Amplifier

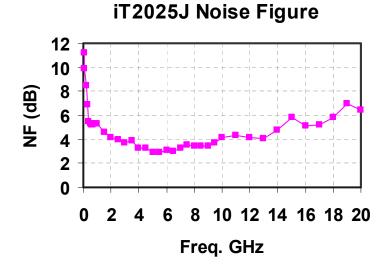
# **Output Power Performance**









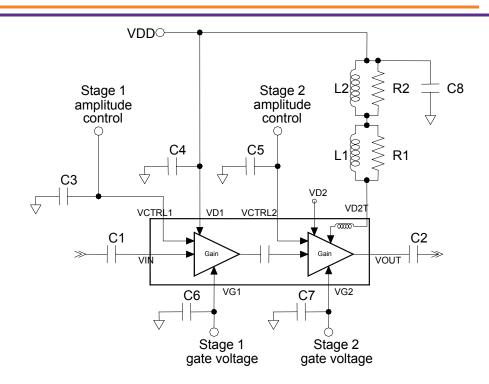




30 kHz to 18 GHz High-Gain Power Amplifier

Output Power Performance (cont.)



### **Noise Figure**








### 30 kHz to 18 GHz High-Gain Power Amplifier

Circuit Design for low-Frequency Extension Applications to 30 kHz\*

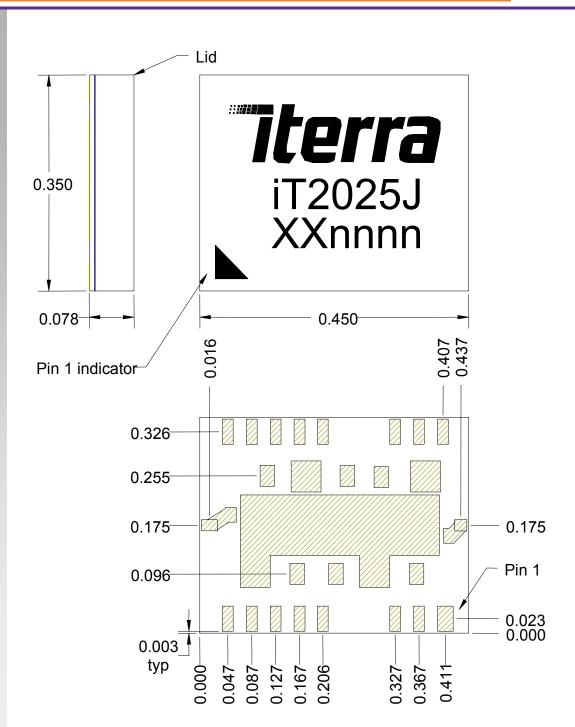


| Reference<br>Designation | Description                  | Manufacturer | Part Number   |  |
|--------------------------|------------------------------|--------------|---------------|--|
| C1, C2                   | 0.10 μF cap, 0402, X5R, 10 V | Panasonic    | ECJ-0EB1A104K |  |
| C3 – C8                  | 1.00 μF cap, 0603, X5R, 16 V | Panasonic    | ECJ-1VB1C105K |  |
| R1, R2                   | 180 ohm resistor, 0402, 5%   | Panasonic    | ERJ-2GEJ181X  |  |
| L1                       | 0.33 μH inductor             | Toko America | FSLU2520-R33K |  |
| L2                       | 100 μH inductor              | Coilcraft    | DO1608-104MLB |  |

This application circuit is used on the iT2025J evaluation board, which is available to customers who desire a convenient test platform for this product. The iT2025J design was verified with the components and configuration described above. Note that VD2 is not used in this configuration. C1 and C2 are coupling capacitors for the RF input and output. High-performance capacitors (such as those manufactured by Presidio) may be substituted. C3 to C8 are power supply decoupling capacitors. L1, L2, R1, and R2 are the required external components for the choke network that supplies the output stage bias current for applications down to 30 kHz. These components can be replaced with different values if the low-frequency cutoff is higher than 30 kHz.



(\*) For applications in which the minimum frequency is 2 GHz, L1, L2, R1, and R2 can be removed and only C8 is required.




30 kHz to 18 GHz High-Gain Power Amplifier

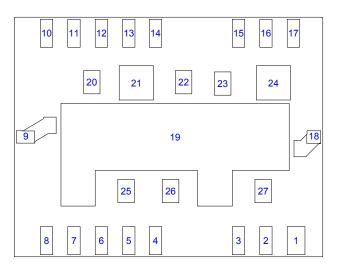
### Package Details

#### Notes:

- 1. Tolerances on package length and width are ± 0.005 in.
- 2. Tolerance on package height is ± 0.006 in.
- 3. Tolerances on all pad dimensions and features are ± 0.002 in.
- 4. Substrate material: RO4003, 0.008-in.-thick, ½ oz. copper.
- 5. Plating: 100 to 350 μin nickel, 5 to 10 μin. flash gold finish.
- Package footprint available in DXF format. Contact iTerra Communications for details.
- 7. RoHS compliant. Backward compatible with SnPb soldering.








### 30 kHz to 18 GHz High-Gain Power Amplifier

### Pad Details

#### Notes:

- 1. Pad widths and heights are in mils.
- 2. Pads 19 to 27 are ground pads. Although they are shown as independent structures, they should all be connected to one contiguous ground pad on the application board.
- 3. Package footprint available in DXF format. Contact iTerra Communications for details.



| Pad | Function         | Width | Height | Pad | Function           | Width | Height |
|-----|------------------|-------|--------|-----|--------------------|-------|--------|
| 1   | N/C              | 26    | 41     | 10  | N/C                | 18    | 41     |
| 2   | N/C              | 18    | 41     | 11  | N/C                | 18    | 41     |
| 3   | V <sub>G1</sub>  | 18    | 41     | 12  | V <sub>D2T</sub>   | 18    | 41     |
| 4   | N/C              | 18    | 41     | 13  | V <sub>D2</sub>    | 18    | 41     |
| 5   | N/C              | 18    | 41     | 14  | V <sub>CTRL2</sub> | 18    | 41     |
| 6   | $V_{G2}$         | 18    | 41     | 15  | V <sub>D1</sub>    | 18    | 41     |
| 7   | N/C              | 18    | 41     | 16  | N/C                | 18    | 41     |
| 8   | N/C              | 18    | 41     | 17  | V <sub>CTRL1</sub> | 18    | 41     |
| 9   | V <sub>OUT</sub> | 27    | 18     | 18  | V <sub>IN</sub>    | 20    | 18     |

# Thermal Characteristics

The thermal impedance between the package base (ground pad 19) and each amplifier junction (**6**JB) is approximately 25°C/W. Consider this thermal impedance as well as thermal conditions in the final application and the desired iT2025J bias settings to keep internal junction temperatures below their specified limits.

The following formulas may be used to calculate the operating junction temperatures (TJ1 and TJ2) for each of the two cascaded amplifiers in the iT2025J.



$$TJ1 = TBASE + (VD1 x ID1) x 25° C/W$$

$$TJ2 = TBASE + (VD2 \times ID2) \times 25 C/W$$