

C670 A689 695 A1618 Revised April 1987

SOLID STATE COMPUTING MODULES

FEATURES:

- No calibration, adjustments or warmup.
- Ultra reliable:
- Infinite resolution.
- Factory repairable, hermetically sealed for total protection.
- Designed for P.C. board mounting.
- All models are short circuit proof.
- Meets MIL-STD-202D. Methods 101C, 105B, 106C, 107C, 202D, 204D and 205D.

Coordinate rotation, polar to rectangular or rectangular to polar conversion, sine-cosine generation and similar trigonometric computing functions that in the past were implemented with mechanical resolver servo-systems, can now be performed with our small, highly reliable, solid state modules.

LINEAR DC TO SINE-COSINE, MODEL C670

Converts a D.C. voltage, representing an angle, into two output voltages that are proportional to the sine and cosine of the desired angle.

Input: -10VDC to +10VDC (See Input Variations)

Input Z: 95K minimum.

Output:

Two D.C. voltages: one proportional to K sine θ , the other to K cosine θ . K is 10 volts $\pm 1\%$ over specified operating temperature range.

Output Impedance: 1 Ω maximum.

*Accuracy:

, 1000.00, 1	Code "C"	Code "M"
at 25°C	0° to +70°C	-55°C to +85°C
±10'	±30 ′	±1.2°

*Angular accuracy is determined by ratio of sine out cosine out

Input Variations:

On special order, the input angle may be offset from 0° to 360°; the scale factor (volts per degree) may be changed from 0.5 volt/180° to 100 volts/180°: the angular limits of rotation may be as low as a 90° span, and the output may be reversed. **Dynamic Response:** For a 180° step input, 5 ms maximum for output to reach rated accuracy.

Load Resistance: 2000 ohms minimum for rated accuracy.

Output Drive Capability: 5 mA for rated accuracy. Output is

short circuit proof.

Output Ripple: 10 mv RMS max.

DC Power Requirements: ± 15VDC ±3% at 40 mA maximum + 5VDC ±3% at 30 mA maximum

Operating Temperature: Model C: 0°C to +70°C Model M: -55°C to +85°C

TVIOLET IVI. -55 C to

Storage Temperature: -65°C to +125°C.

Weight: Approx. 10 oz.

Potting: For high shock or vibration applications, units should

be potted. Add "P" after part number.

Part Number Designation:

COORDINATE ROTATOR MODEL A689

Accepts rectangular inputs (X and Y) and rotates these coordinates through an angle that is proportional to a linear DC input.

Input:

Rectangular Input θ :

X = R Cosine θ , (-10 to +10VDC). Ξ Y = R Sine θ , (-10 to +10VDC).

R may vary from ±20 mV to ±10 volts.

Angular Input β : +10 to -10VDC Representing angles from 0 to 360°.

Input Z: 100K minimum.

Output: R Sine $(\theta + \beta)$ R Cosine $(\theta + \beta)$

*Accuracy:

at 25°C	Code "C" 0° to +70°C	Code ''M'' -55°C to +85°C	
±10'	±30 ′	±1.2°	

*Angular accuracy is determined by ratio of sine out cosine out

Dynamic Response: For a 180° step input, 5 ms maximum

Output Impedence: 1 Ω maximum

Load Resistance: 2000 ohms minimum for rated accuracy.

Load Resistance: 2000 ohms minimum for rated accuracy.

Output Drive Capability: 5 mA for rated accuracy. Output is

short circuit proof.

Output Ripple: 10 mV RMS maximum

DC Power Requirements: ± 15VDC ±3% at 75 mA maximum + 5VDC ±3% at 50 mA maximum

Operating Temperature: Model C: 0°C to +70°C Model M: -55°C to +85°C

Storage Temperature: -65°C to +125°C.

Weight: Approx. 10 oz.

Potting: For high shock or vibration applications, units should

be potted. Add "P" after part number.

Part Number Designation:

RECTANGULAR TO POLAR, MODEL 695

coordinates (R, θ) into polar coordinates (R, θ)

Input: X = R Cosine θ Y = R Sine θ

R may vary from 20mV to 10 V DC

Input Z: 100 K Ω minimum

Output:

a) R = √(X² + Y²). Varies from +50 mV minimum to +10 V DC maximum, (200:1 minimum Dynamic Range)

b) $\theta = \tan^{\frac{1}{2}} \frac{Y}{X}$ Varies from -10V DC to +10V DC representing 0 - 360°.

Cross Over Point is Non-ambiguous

Accuracy: ±15 minutes at R = 10 V DC at 25°C

Accuracy varies inversely with R. Typical values are 25

minutes at R = 1 V DC and 3° at R = 0.050 V DC

Stability: $\theta \pm .015^{\circ}/^{\circ}C$ at R = 10VDC R 10 $\pm .01\%$ FS/ $^{\circ}C$

Dynamic Response:

For a 180° step input, 2 ms maximum for output to reach rated accuracy.

Load Resistance: 3000 ohms minimum for rated accuracy.

Capacity Loading: 100 pF maximum

Output Drive Capability: 5 mA for rated accuracy. Output is

short circuit proof.

Output Ripple: 10 mV rms maximum excluding switching

transients

DC Power Requirements: ±15 V DC ±3% at 75 mA maximum

Operating Temperature: Model C: 0°C to +70°C

Model M: -55°C to +85°C

Storage Temperature: -65°C to +125°C.

Weight: Approx. 11 oz.

Potting: For high shock or vibration applications, units should

be potted. Add "P" after part number.

Part Number Designation:

695**

Add "P" if potting required
Operating Temp. (C or M)

POLAR TO RECTANGULAR, MODEL A1618

Converts polar coordinates (R, θ) into rectangular (X, Y)

Input:

R: ±20mV to ±10VDC

9 -10VDC to +10VDC representing 0-360°

Input Z: 100K minimum

_utput:

X = R Cosine θ (-10 to +10VDC) Y = R Sine θ (-10 to +10VDC) Accuracy:

!	· I	Code C	Code M
	At 25°C	0° to +70°C	-55°C to +85°C
$\overline{\theta} =$	±10′	±30′	+1.2°

 $\theta = \tan^{-1} \text{ Y/X. } \theta \text{ varies inversely with R. Typical values are 10 minutes at R = to 10VDC, 30 minutes at R = 1VDC and 3° at R = 0.05VDC.$

Dynamic Response: For a 180° step input, 5 ms maximum for output to reach rated accuracy.

Output Z: 1Ω maximum

Load Resistance: 2000 ohms minimum for rated accuracy.

Output Drive Capability: 5 mA for rated accuracy. Output is

short circuit proof.

Output Ripple: 10 mV RMS maximum

DC Power Requirements: ±15VDC ±3% at 75 mA maximum

+ 5VDC ±3% at 50 mA maximum

Operating Temperature: Model C: 0°C to +70°C

Model M: -55°C to +85°C

Storage Temperature: -65°C to +125°C.

Weight: Approx. 10 oz.

Potting: For high shock or vibration applications units should

be potted. Add "P" after part number.

Part Number Designation:

A1618**

Add "P" if potting required —Operating Temp. (C or M)

All dimensions in inches

PIN CONNECTIONS

	C670	A689	695	A1618
1	+15VDC	+15VDC	Common	+15VDC
2	Common	Common	R Sin θ input	Common
3	NC	R Cos θ Input	NC .	R Input
4	$\cos \theta$ Out	R Cos $(\theta + \beta)$ Out	R Cos θ Input	R Cos θ
5	*+5VDC	*+5VDC	R Out	*+5VDC
6	-15VDC	~ 15VDC	+15 V DC	-15VDC
7	heta Input	β Input	NC	heta Input
8	NC	R Sin θ Input	NC	NC
9	*See note	*See note	NC	*See note
10	Sine θ Out	R Sin $(\theta + \beta)$ Out	θ Out.	R Sin <i>θ</i>
11	+15VDC	+15VDC	-15 V DC	+15VDC
12	Common	Common	Common	Common

^{*}If external +5VDC is not available for pin 5, connect pin 9 to 11 to generate +5VDC internally.

TRANS/MAGNETICS, INC.

210 ADAMS BOULEVARD, FARMINGDALE, NEW YORK 11735 U.S.A. PHONE NO: 516 293-3100 TWX510-224-6420