

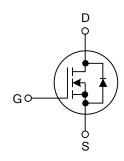
UNISONIC TECHNOLOGIES CO., LTD

8N80 Preliminary Power MOSFET

800V N-CHANNEL MOSFET

DESCRIPTION

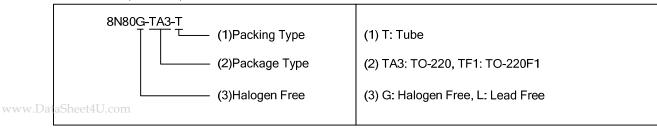
The UTC **8N80** is an N-channel mode Power FET, it uses UTC's advanced technology to provide costumers planar stripe and DMOS technology. This technology allows a minimum on-state resistance, superior switching performance. It also can withstand high energy pulse in the avalanche and commutation mode.


The UTC **8N80** is generally applied in high efficiency switch mode power supplies.

■ FEATURES

- * Typically 35 nC Low Gate Charge
- * 8A, 800V, $R_{DS(on)} = 1.55\Omega @V_{GS} = 10 V$
- * Typically 13 pF Low Crss
- * Improved dv/dt Capability
- * Fast Switching Speed
- * 100% Avalanche Tested
- * RoHS-Compliant Product

TO-220F1


■ SYMBOL

■ ORDERING INFORMATION

Ordering Number		Dookogo	Pin Assignment			Dooking	
Lead Free	Halogen Free	- Package	1	2	3	Packing	
8N80L-TA3-T	8N80G-TA3-T	TO-220	G	D	S	Tube	
8N80L-TF1-T	8N80G-TF1-T	TO-220F1	G	D	S	Tube	

Note: G: GND, D: Drain, S: Source

www.unisonic.com.tw 1 of 5
Copyright © 2010 Unisonic Technologies Co., Ltd ow-R502-471.a

■ ABSOLUTE MAXIMUM RATINGS (T_C=25°C, unless otherwise specified)

PARAMETER	SYMBOL	RATINGS	UNIT
Drain-Source Voltage	V_{DSS}	800	V
Gate-Source Voltage	V_{GSS}	±30	V
Drain Current (Continuous) (T _C =25°C)	I_D	8	Α
Drain Current (Pulsed) (Note 1)	I_{DM}	32	Α
Avalanche Current (Note 1)	I _{AR}	8	Α
Single Pulse Avalanche Energy (Note 2)	E _{AS}	850	mJ
Repetitive Avalanche Energy (Note 1)	E _{AR}	17.8	mJ
Peak Diode Recovery dv/dt (Note 3)	dv/dt	4.5	V/ns
Total Power Dissipation (T _C =25°C)	P _D	178	W
Linear Derating Factor above T _C =25°C	FD	1.43	W/°C
Junction Temperature	TJ	+150	°C
Storage Temperature	T_{STG}	-55~+150	°C

Note: 1. Repetitive Rating: Pulse width limited by maximum junction temperature

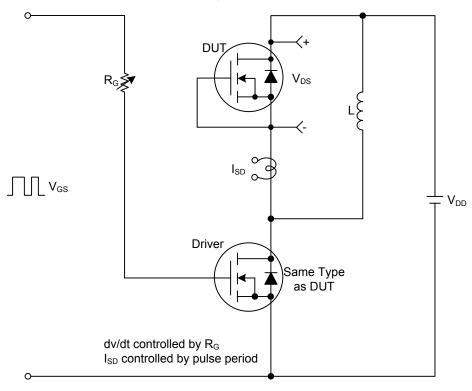
- 2. L = 25mH, I_{AS} = 8A, V_{DD} = 50V, R_G = 25 Ω , Starting T_J = 25°C
- 3. $I_{SD} \le 8A$, di/dt $\le 200A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25^{\circ}C$
- 4. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied

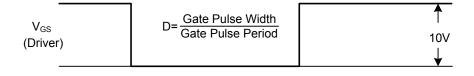
■ THERMAL DATA

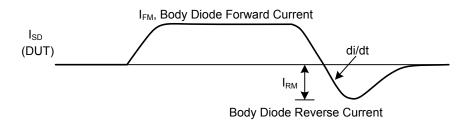
PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ_{JA}	62.5	°C/W
Junction to Case	θ_{JC}	0.7	°C/W

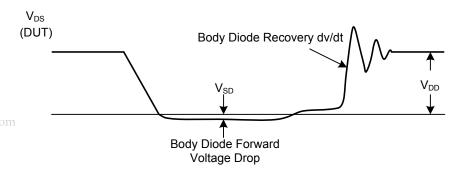
■ ELECTRICAL CHARACTERISTICS (T_C=25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS		•		•	•	•
Drain-Source Breakdown Voltage	BV _{DSS}	I _D =250μA, V _{GS} =0V	800			V
Breakdown Voltage Temperature Coefficient	$\triangle BV_{DSS}/\triangle T_{J}$	Reference to 25°C, I _D =250μA		0.5		V/°C
Drain-Source Leakage Current	I _{DSS}	V _{DS} =800V, V _{GS} =0V V _{DS} =640V, T _C =125°C			10 100	μΑ
Gate- Source Leakage Current	I _{GSS}	V _{GS} =±30V, V _{DS} =0V			±100	nA
ON CHARACTERISTICS		, ==	1	I	1	
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_D=250\mu A$	3.0		5.0	V
Static Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =4A		0.94	1.55	Ω
Forward Transconductance (Note 1)	9 FS	V _{DS} =50V, I _D =4A		5.6		S
DYNAMIC PARAMETERS						
Input Capacitance	C _{ISS}			1580	2050	pF
Output Capacitance	Coss	V _{GS} =0V, V _{DS} =25V, f=1.0MHz		135	175	pF
Reverse Transfer Capacitance	C _{RSS}	7		13	17	pF
SWITCHING PARAMETERS (Note 1, No						
Total Gate Charge	Q_G			35	45	nC
Gate to Source Charge	Q_GS	V_{GS} =10V, V_{DS} =640V, I_{D} =8A		10		nC
Gate to Drain Charge	Q_GD			14		nC
Turn-ON Delay Time	$t_{D(ON)}$			40	90	ns
Rise Time	t_R	V _{DD} =400V, I _D =8A, R _G =25Ω		110	230	ns
Turn-OFF Delay Time	$t_{D(OFF)}$	VDD-400V, ID-6A, ING-2312		65	140	ns
Fall-Time	t_{F}			70	150	ns
SOURCE- DRAIN DIODE RATINGS AND	CHARACTER	RISTICS				
Maximum Continuous Drain-Source Diode Forward Current	Is				8	Α
Maximum Pulsed Drain-Source Diode Forward Current	I _{SM}				32	Α
Drain-Source Diode Forward Voltage	V _{SD}	I _S =8A, V _{GS} =0V			1.4	V
Reverse Recovery Time (Note 1)	t _{RR}	I _S =8A, V _{GS} =0V, dI _F /dt=100A/μs		690		ns
Reverse Recovery Charge (Note 1)	Q_{RR}			8.2		μC

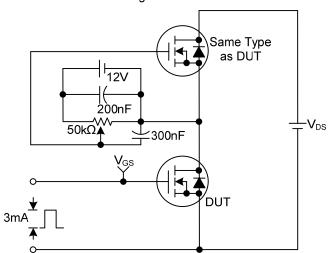

Note: 1. Pulse Test: Pulse width ≤ 300µs, Duty cycle ≤ 2%

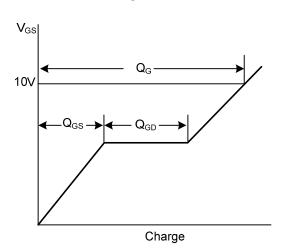

2. Essentially independent of operating temperature



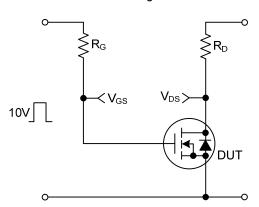

■ TEST CIRCUITS AND WAVEFORMS

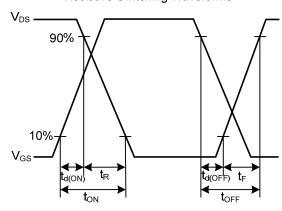
Peak Diode Recovery dv/dt Test Circuit & Waveforms

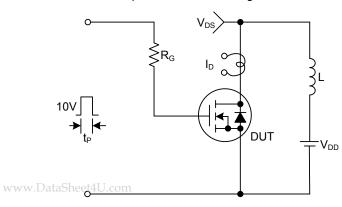


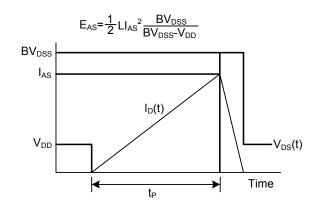


■ TEST CIRCUITS AND WAVEFORMS


Gate Charge Test Circuit


Gate Charge Waveforms


Resistive Switching Test Circuit


Resistive Switching Waveforms

Unclamped Inductive Switching Test Circuit

Unclamped Inductive Switching Waveforms

www.Dat

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

