STOD03A

Dual DC-DC converter for powering AMOLED displays

Features

- Step-up and inverter converters
- Operating input voltage range from 2.3 V to 4.5 V
- Synchronous rectification for both DC-DC converters
- 200 mA output current
- 4.6 V fixed positive output voltages
- Programmable negative voltage by $\mathrm{S}_{\text {WIRE }}$ from -2.4 V to - 5.4 V
- Typical efficiency: 85%
- Pulse skipping mode in light load condition
- 1.5 MHz PWM mode control switching frequency
- Enable pin for shutdown mode
- Low quiescent current: < $1 \mu \mathrm{~A}$ in shutdown mode
- Soft-start with inrush current protection
- Overtemperature protection
- Temperature range: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- True shutdown mode
- Fast discharge outputs of the circuits after shutdown
- Package DFN $(3 \times 3) 12$ leads 0.6 mm height

Applications

- Active matrix AMOLED power supply
- Cellular phones
- Camcorders and digital still cameras
- Multimedia players

Description

The STOD03A is a dual DC-DC converter for AMOLED display panels. It integrates a step-up and an inverting DC-DC converter making it particularly suitable for battery operated products, in which the major concern is overall system efficiency. It works in pulse skipping mode during low load conditions and PWM-MODE at 1.5 MHz frequency for medium/high load conditions. The high frequency allows the value and size of external components to be reduced. The enable pin allows the device to be turned off, therefore reducing the current consumption to less that 1 $\mu \mathrm{A}$. The negative output voltage can be programmed by an MCU through a dedicated pin which implements single-wire protocol. Soft-start with controlled inrush current limit and thermal shutdown are integrated functions of the device.

Table 1. Device summary

Order code	Positive voltage	Negative voltage	Package	Packaging
STOD03ATPUR	4.6 V	-2.4 V to -5.4 V	DFN12L $(3 \times 3 \mathrm{~mm})$	3000 parts per reel

Contents

1 Schematic 3
2 Pin configuration 5
3 Maximum ratings 6
4 Electrical characteristics 7
5 Typical performance characteristics 10
6 Detailed description 12
6.1 S SIRE protocol 12
6.2 Negative output voltage levels 14
7 Application information 15
7.1 External passive components 15
7.1.1 Inductor selection 15
7.1.2 Input and output capacitor selection 15
7.2 Recommended PCB layout 16
8 Detailed description 17
8.1 General description 17
8.1.1 Multiple mode of operation 17
8.1.2 Enable pin 18
8.1.3 Soft-start and inrush current limiting 18
8.1.4 Undervoltage lockout 18
8.1.5 Overtemperature protection 18
8.1.6 Fast discharge 18
9 Package mechanical data 19
10 Revision history 23

1 Schematic

Figure 1. Application schematic

Table 2. Typical external components

Component	Manufacturer	Part Number	Value	Size
L_{1}	ABCO	LPF2807T-4R7M	$4.7 \mu \mathrm{H}$	$2.8 \times 2.8 \times 0.7 \mathrm{~mm}$
$\mathrm{~L}_{2}{ }^{(1)}$	ABCO	LPF3509T-4R7M	$4.7 \mu \mathrm{H}$	$3.5 \times 3.5 \times 1.0 \mathrm{~mm}$
	TDK	VLF4014AT-4R7M1R1	$4.7 \mu \mathrm{H}$	$3.7 \times 3.5 \times 1.4 \mathrm{~mm}$
$\mathrm{C}_{\text {IN }}$	Murata	GRM21BR61E475KA12	$4.7 \mu \mathrm{~F}$	0805
$\mathrm{C}_{\text {MID }}$	Murata	GRM21BR61E475KA12	$4.7 \mu \mathrm{~F}$	0805
$\mathrm{C}_{\text {O2 }}$	Murata	GRM21BR61E475KA12	$4.7 \mu \mathrm{~F}$	0805
$\mathrm{C}_{\text {REF }}$	Murata	GRM155R60J105KE19	$1 \mu \mathrm{~F}$	0402

1. From -5.0 V to $-5.4 \mathrm{~V}, 200 \mathrm{~mA}$ load can be provided with inductor saturation current as a minimum of 1 A .

Note: \quad All the above components refer to the typical application performance characteristics. Operation of the device is not limited to the choice of these external components. Inductor values ranging from $2.2 \mu \mathrm{H}$ to $6.8 \mu \mathrm{H}$ can be used together with STODO3A. See 7.1.1 for peak inductor current calculation.

Figure 2. Block schematic

2 Pin configuration

Figure 3. Pin configuration (top view)

$L_{x 1}$			${ }^{\text {Aus507M }}$	$V_{\text {INP }}$
	--ソ		(12)	
PGND	- -	1	($\mathrm{I}_{1}-$	$V{ }_{\text {INA }}$
$V_{\text {MID }}$	-気	!	(10-1	$L_{\text {x2 }}$
NC	- 4	AGND	(-9	V_{02}
AGND	-5)	I	(8	EN
AGND				EN
$V_{\text {REF }}$	- $-\frac{1}{}$		¢ 7	$S_{\text {WIRE }}$

Table 3. Pin description

Pin name	Pin number	Description
Lx $_{1}$	1	Switching node of the step-up converter
PGND	2	Power ground pin
$\mathrm{V}_{\text {MID }}$	3	Step-up converter output voltage (4.6 V)
NC	4	Not internally connected
AGND	5	Signal ground pin. This pin must be connected to power ground pin
$\mathrm{V}_{\text {REF }}$	6	Voltage reference output. 1 μ F bypass capacitor must be connected between this pin and AGND
$\mathrm{S}_{\text {WIRE }}$	7	Negative voltage setting pin. Uses S SIRE protocol, see details in $\mathrm{S}_{\text {WIRE }}$ protocol
EN	8	Enable control pin. ON = $\mathrm{V}_{\text {INA. }}$. When pulled low it puts the device in shutdown mode
$\mathrm{V}_{\text {O2 }}$	10	Inverting converter output voltage (Default - 4.9 V).
Lx_{2}	11	Switching node of the inverting converter
$\mathrm{V}_{\text {IN A }}$	12	Analogic input supply voltage
$\mathrm{V}_{\text {iN }}$	Power input supply voltage	
	Exposed pad	Internally connected to AGND. Exposed pad must be connected to AGND and PGND in the PCB layout in order to guarantee proper operation of the device

3 Maximum ratings

Table 4. Absolute maximum ratings

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\text {INA }}, \mathrm{V}_{\text {INP }}$	DC supply voltage	-0.3 to 6	V
$\mathrm{EN}, \mathrm{S}_{\mathrm{WIRE}}$	Logic input pins	-0.3 to 6	V
$\mathrm{IL}_{\mathrm{X} 2}$	Inverting converter switching current	Internally limited	A
$\mathrm{L}_{\mathrm{X} 2}$	Inverting converter switching node voltage	-10 to $\mathrm{V}_{\text {INP }}+0.3$	V
$\mathrm{~V}_{\mathrm{O} 2}$	Inverting converter output voltage	-10 to $\mathrm{AGND}+0.3$	V
$\mathrm{~V}_{\text {MID }}$	Step-up converter and output voltage	-0.3 to 6	V
$\mathrm{~L}_{\mathrm{X} 1}$	Step-up converter switching node voltage	-0.3 to $\mathrm{V}_{\text {MID }}+0.3$	V
$\mathrm{IL}_{\mathrm{X} 1}$	Step-up converter switching current	Internally limited	A
$\mathrm{V}_{\text {REF }}$	Reference voltage	-0.3 to 3	V
P_{D}	Power dissipation	Internally limited	mW
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to 150	${ }^{\circ} \mathrm{C}$
T_{J}	Maximum junction temperature	150	${ }^{\circ} \mathrm{C}$
ESD	ESD protection HBM	2	kV

Note: \quad Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

Table 5. Thermal data

Symbol	Parameter	Value	Unit
$\mathrm{R}_{\text {thJA }}$	Thermal resistance junction-ambient referred to FR-4 PCB	49.1	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {thJC }}$	Thermal resistance junction-case	4.216	${ }^{\circ} \mathrm{C} / \mathrm{W}$

4 Electrical characteristics

$\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {INA }}=\mathrm{V}_{\text {INP }}=3.7 \mathrm{~V}, \mathrm{I}_{\mathrm{MID}, \mathrm{O} 2}=30 \mathrm{~mA}, \mathrm{C}_{\mathrm{IN}}=4.7 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{MID}, \mathrm{O} 2}=4.7 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{REF}}=1 \mu \mathrm{~F}$, $\mathrm{L} 1=4.7 \mu \mathrm{H}, \mathrm{L} 2=4.7 \mu \mathrm{H}, \mathrm{V}_{\mathrm{EN}}=\mathrm{V}_{\mathrm{INA}}=\mathrm{V}_{\mathrm{INP}}, \mathrm{V}_{\mathrm{MID}}=4.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{O} 2}=-4.9 \mathrm{~V}$ unless otherwise specified.

Table 6. Electrical characteristics

Symbol	Parameter	Test conditions	Min.	Typ.	Max	Unit
General Section						
$\mathrm{V}_{\text {INA }} \mathrm{V}_{\text {INP }}$	Supply input voltage		2.3		4.5	V
UVLO_H	Undervoltage lockout HIGH	$\mathrm{V}_{\text {INA }}$ rising		2.22	2.25	V
UVLO_L	Undervoltage lockout LOW	$V_{\text {INA }}$ falling	1.9	2.18		V
I_V1	Input current	No load condition (Sum of $\mathrm{V}_{\text {INA }}$ and $\mathrm{V}_{\text {INP }}$)		1.3	1.7	mA
$\mathrm{I}_{\mathrm{Q} \text { _SH }}$	Shutdown current	$V_{\text {EN }}=G N D$ (Sum of $V_{\text {INA }}$ and $\mathrm{V}_{\text {INP }}$); $\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$;			1	$\mu \mathrm{A}$
$\mathrm{V}_{\text {EN }} \mathrm{H}$	Enable high threshold	$\begin{aligned} & \mathrm{V}_{\text {INA }}=2.3 \mathrm{~V} \text { to } 4.5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{J}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} ; \end{aligned}$	1.2			V
$\mathrm{V}_{\text {EN }} \mathrm{L}$	Enable low threshold				0.4	
I_{EN}	Enable input current	$\begin{aligned} & \mathrm{V}_{E N}=\mathrm{V}_{\text {INA }}=4.5 \mathrm{~V} ; \\ & \mathrm{T}_{J}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} ; \end{aligned}$			1	$\mu \mathrm{A}$
f_{S}	Switching frequency	PWM Mode	1.2	1.5	1.7	MHz
D1 ${ }_{\text {MAX }}$	Step-up maximum duty cycle	No load		87		\%
D2 MAX	Inverting maximum duty cycle	No load		87		\%
v	Total system efficiency	$\begin{aligned} & \mathrm{I}_{\mathrm{MID}, \mathrm{O} 2}=10 \text { to } 30 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{MID}}=4.6 \mathrm{~V} \mathrm{~V}_{\mathrm{O} 2}=-4.9 \mathrm{~V} \end{aligned}$		80		\%
		$\begin{aligned} & \mathrm{I}_{\mathrm{MID}, \mathrm{O2}}=30 \text { to } 150 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{MID}}=4.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{O} 2}=-4.9 \mathrm{~V} \end{aligned}$		85		\%
$\mathrm{V}_{\text {REF }}$	Voltage reference	$\mathrm{I}_{\text {REF }}=10 \mu \mathrm{~A}$	1.208	1.220	1.232	V
$\mathrm{I}_{\text {REF }}$	Voltage reference current capability	At 98.5% of no load reference voltage	100			$\mu \mathrm{A}$
Step-up converter section						
$\mathrm{V}_{\text {MID }}$	Positive voltage total variation	$\mathrm{V}_{\text {INA }}=\mathrm{V}_{\text {INP }}=2.5 \mathrm{~V}$ to 4.5 V ; $\mathrm{I}_{\mathrm{MID}}=5 \mathrm{~mA}$ to $150 \mathrm{~mA}, \mathrm{I}_{\mathrm{O} 2}$ no load, $\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	4.55	4.6	4.65	V
	Temperature accuracy	$\begin{aligned} & \mathrm{V}_{\mathrm{INA}}=\mathrm{V}_{\mathrm{INP}}=3.7 \mathrm{~V} ; \mathrm{I}_{\mathrm{MID}}=5 \\ & \mathrm{~mA} ; \mathrm{I}_{\mathrm{O} 2} \text { no load; } \\ & \mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$		± 0.5		\%
$\Delta \mathrm{V}_{\text {MID LT }}$	Line transient	$\begin{aligned} & \mathrm{V}_{\mathrm{INA}, \mathrm{P}}=3.5 \mathrm{~V} \text { to } 3.0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{MID}}=100 \mathrm{~mA} ; \mathrm{T}_{\mathrm{R}}=\mathrm{T}_{\mathrm{F}}=50 \mu \mathrm{~s} \end{aligned}$		-12		mV

Table 6. Electrical characteristics (continued)

Symbol	Parameter	Test conditions	Min.	Typ.	Max	Unit
$\Delta \mathrm{V}_{\text {MIDT }}$	Load transient regulation	$\mathrm{I}_{\mathrm{MID}}=3 \text { to } 30 \mathrm{~mA} \text { and } \mathrm{I}_{\mathrm{MID}}=30$ $\text { to } 3 \mathrm{~mA}, \mathrm{~T}_{\mathrm{R}}=\mathrm{T}_{\mathrm{F}}=30 \mu \mathrm{~s}$		± 20		mV
		$\begin{aligned} & \mathrm{l}_{\mathrm{MID}}=10 \text { to } 100 \mathrm{~mA} \text { and } \\ & \mathrm{I}_{\mathrm{MID}}=100 \text { to } 10 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{R}}=\mathrm{T}_{\mathrm{F}}=30 \mu \mathrm{~s} \end{aligned}$		± 25		mV
$\mathrm{V}_{\text {MID-PP }}$	TDMA noise line transient regulation	$\mathrm{I}_{\mathrm{MID}}=5$ to $100 \mathrm{~mA} ; \mathrm{V}_{\mathrm{INA}, \mathrm{P}}$ $=2.9 \mathrm{~V}$ to 3.4 V ; $\mathrm{F}=200 \mathrm{~Hz}$; $\mathrm{T}_{\mathrm{R}}=\mathrm{T}_{\mathrm{F}}=50 \mu \mathrm{~s} ; \mathrm{I}_{\mathrm{O} 2}$ no load		± 20		mV
$\mathrm{I}_{\text {MID MAX }}$	Max step-up load current	$\mathrm{V}_{\text {INA, }}=2.9 \mathrm{~V}$ to 4.5 V	-200			mA
$\mathrm{I}-\mathrm{L}_{1 \text { max }}$	Step-up inductor peak current	$\mathrm{V}_{\text {MID }} 10 \%$ below nominal value	0.9		1.1	A
$\mathrm{R}_{\text {DSON }} \mathrm{P}^{1}$				1.0	2.0	Ω
$\mathrm{R}_{\text {DSON }} \mathrm{N} 1$				0.4	1.0	Ω
Inverting converter section						
$\mathrm{V}_{\mathrm{O} 2}$	Output negative voltage range	31 different values set by $\mathrm{S}_{\text {WIRE }}$ pin (see $\mathrm{S}_{\text {WIRE }}$ protocol)	-5.4		-2.4	V
	Output negative voltage total variation on default value	$\begin{aligned} & \mathrm{V}_{\text {INA }}=\mathrm{V}_{\text {INP }}=2.5 \mathrm{~V} \text { to } 4.5 \mathrm{~V} ; \\ & \mathrm{T}_{J}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} ; \mathrm{I}_{\mathrm{O} 2}=5 \\ & \mathrm{~mA} \text { to } 150 \mathrm{~mA}, \\ & \mathrm{I}_{\text {MID }} \text { no load } \end{aligned}$	-4.97	-4.9	-4.83	V
	Temperature accuracy	$\begin{aligned} & \mathrm{V}_{\text {INA }}=\mathrm{V}_{\text {INP }}=3.7 \mathrm{~V} ; \mathrm{T}_{J}=-40 \\ & { }^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} ; \mathrm{I}_{\mathrm{O} 2}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{MID}} \\ & \text { no load } \end{aligned}$		± 0.5		\%
$\Delta \mathrm{V}_{\text {O2 LT }}$	Line transient	$\begin{aligned} & \mathrm{V}_{\mathrm{INA}, \mathrm{P}}=3.5 \mathrm{~V} \text { to } 3.0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{O} 2}=100 \mathrm{~mA}, \mathrm{~T}_{\mathrm{R}}=\mathrm{T}_{\mathrm{F}}=50 \mu \mathrm{~s} \end{aligned}$		+12		mV
$\Delta \mathrm{V}_{\text {O2T }}$	Load transient regulation	$\mathrm{I}_{\mathrm{O} 2}=3$ to 30 mA and $\mathrm{I}_{\mathrm{O} 2}=30$ to $3 \mathrm{~mA}, \mathrm{~T}_{\mathrm{R}}=\mathrm{T}_{\mathrm{F}}=100 \mu \mathrm{~s}$		± 20		mV
	Load transient regulation	$\begin{aligned} & \mathrm{I}_{\mathrm{O}_{2}}=10 \text { to } 100 \mathrm{~mA} \text { and } \\ & \mathrm{I}_{2}=100 \text { to } 10 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{R}}=\mathrm{T}_{\mathrm{F}}=100 \mu \mathrm{~s} \end{aligned}$		± 25		mV
$\mathrm{V}_{\text {O2-PP }}$	TDMA noise line transient regulation	$\begin{aligned} & \mathrm{I}_{\mathrm{O} 2}=5 \text { to } 100 \mathrm{~mA} ; \mathrm{V}_{\mathrm{INA}, \mathrm{P}}=2.9 \\ & \mathrm{~V} \text { to } 3.4 \mathrm{~V} ; \mathrm{F}=200 \mathrm{~Hz} ; \\ & \mathrm{T}_{\mathrm{R}}=\mathrm{T}_{\mathrm{F}}=50 \mu \mathrm{~s} ; \mathrm{I}_{\mathrm{MID}} \text { no load } \end{aligned}$		± 25		mV
$\mathrm{I}_{\mathrm{O} 2}$	Maximum inverting output current	$\mathrm{V}_{\text {INA, }}=2.9 \mathrm{~V}$ to 4.5 V	-200			mA
I-L ${ }_{\text {2MAX }}$	Inverting peak current	$\mathrm{V}_{\mathrm{O} 2}$ below 10% of nominal value	-1.2		-0.9	A
$\mathrm{R}_{\text {DSON }} \mathrm{P} 2$				0.42		Ω
$\mathrm{R}_{\text {DSON }}{ }^{\text {N2 }}$				0.43		Ω

Table 6. Electrical characteristics (continued)

Symbol	Parameter	Test conditions	Min.	Typ.	Max	Unit
Thermal shutdown						
OTP	Overtemperature protection			140		${ }^{\circ} \mathrm{C}$
OTP $_{\text {HYST }}$	Overtemperature protection hysteresis		15		${ }^{\circ} \mathrm{C}$	
Discharge resistor						
$\mathrm{R}_{\text {DIS }}$	Resistor value					
$\mathrm{T}_{\text {DIS }}$	Discharge time	No load, $\mathrm{V}_{\text {MID }}-\mathrm{V}_{\mathrm{O} 2}$ at 10% of nominal value		8		ms

5 Typical performance characteristics

$\mathrm{V}_{\mathrm{O} 2}=-4.9 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$; See Table 1 for external components used in the tests below.

Figure 4. Efficiency vs. input voltage

Figure 5. Efficiency vs. output current

Figure 6. Quiescent current vs. V_{IN} no load

Figure 7. Max power output vs. $\mathrm{V}_{\text {IN }}$

Figure 8. Fast discharge $\mathrm{V}_{\mathrm{IN}}=3.7 \mathrm{~V}$, no load
Figure 9. Startup and inrush $\mathrm{V}_{\mathrm{IN}}=3.7 \mathrm{~V}$, no load

Figure 10. Step-up CCM operation

$\mathrm{V}_{\text {EN }}=\mathrm{V}_{\text {INA }}=\mathrm{V}_{\text {INP }}=3.7 \mathrm{~V}, \mathrm{I}_{\mathrm{MID}}=100 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Figure 12. Line transient

Figure 11. Inverting CCM operation

Figure 13. Output voltage vs. input voltage $\mathrm{I}_{\mathrm{MID}, \mathrm{O2}}=200 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O} 2}=-4.9 \mathrm{~V}$

6 Detailed description

6.1 SWIRE protocol

Figure 14. $\mathrm{S}_{\text {WIRE }}$ timing waveform

Table 7. $S_{\text {WIRE }}$ timing ${ }^{(1)}$

Rating	Symbol	Min.	Typ.	Max.	Unit
Enable high delay time	Ten_dly		300		$\mu \mathrm{s}$
Soft-start delay	Tss1		2		ms
Turn-off delay	Toff_dly 1		50		$\mu \mathrm{s}$
$V_{\text {OUT }}$ turn-off delay	Tvo_off_dly 1		12		ms
$S_{\text {WIRE }}$ initial time	Tih		300		$\mu \mathrm{s}$
Soft-start time by $\mathrm{S}_{\text {WIRE }}$ enable	Tss2		2		ms
$\mathrm{S}_{\text {WIRE }}$ High	Tsh	2	10	20	$\mu \mathrm{s}$
SWIRE Low	TsL	2	10	20	$\mu \mathrm{s}$
$\mathrm{S}_{\text {WIRE }}$ signal stop indicate time	Tstop	300			$\mu \mathrm{s}$
$\mathrm{V}_{\text {OUT }}$ turn-off delay by $\mathrm{S}_{\text {WIRE }}$	Tvo_off_dly2		12		ms
$\mathrm{T}_{\text {WAIT }}$ after data	Twait		1		$\mu \mathrm{s}$
$\mathrm{S}_{\text {WIRE }}$ turn-off detection time	Toff_dly2		50		$\mu \mathrm{s}$
$\mathrm{S}_{\text {WIRE }}$ store data delay			300		$\mu \mathrm{s}$

[^0]Figure 15. $\mathrm{S}_{\text {WIRE }}$ level waveform

Table 8. $S_{\text {WIRE }}$ levels

Rating	Symbol	Min.	Typ.	Max.	Unit
Rising input high threshold voltage level	V_{IH}	1.2		$V_{\text {BAT }}$	V
Falling input high threshold voltage level	$\mathrm{V}_{\text {IL }}$	0		0.6	V
Pull-down resistor	$\mathrm{RS}_{\text {WIRE }}$		150		$\mathrm{k} \Omega$
Wake up delay	$\mathrm{T}_{\text {WK }}$			1	$\mu \mathrm{s}$
$S_{\text {WIRE }}$ rising time	T_{r}			200	ns
$S_{\text {WIRE }}$ falling time	T_{f}			200	ns
Clocked S ${ }_{\text {WIRE }}$ high	T_{ON}			75	$\mu \mathrm{s}$
$S_{\text {WIRE }}$ low	TofF	1			$\mu \mathrm{s}$
Input $\mathrm{S}_{\text {WIRE }}$ frequency	$\mathrm{FS}_{\text {WIRE }}$			250	kHz

6.2 Negative output voltage levels

Table 9. Negative output voltage levels

Pulse	$\mathbf{V}_{\mathbf{0} 2}$	Pulse	$\mathbf{V}_{\mathbf{0} 2}$	Pulse	$\mathbf{V}_{\mathbf{O 2}}$
1	-5.4	11	-4.4	21	-3.4
2	-5.3	12	-4.3	22	-3.3
3	-5.2	13	-4.2	23	-3.2
4	-5.1	14	-4.1	24	-3.1
5	-5.0	15	-4.0	25	-3.0
$6^{(1)}$	-4.9	16	-3.9	26	-2.9
7	-4.8	17	-3.8	27	-2.8
8	-4.7	18	-3.7	28	-2.7
9	-4.6	19	-3.6	29	-2.6
10	-4.5	20	-3.5	30	-2.5
				31	-2.4

1. Default output voltage

Figure 16. $S_{\text {WIRE }}$ programming

Table 10. Enable and S WIRE operation table ${ }^{(1)}$

Enable	S WIRE	Action
Low	Low	Device off
Low	High	Negative output set by SWIRE
High	Low	Default negative output voltage
High	High	Default negative output voltage

1. Enable pin must be set to $A G N D$ while using $\mathrm{S}_{\text {wIRE }}$ function

7 Application information

7.1 External passive components

7.1.1 Inductor selection

The inductor is the key passive component for switching converters.
For the step-up converter an inductance between $4.7 \mu \mathrm{H}$ and $6.8 \mu \mathrm{H}$ is recommended. For the inverting stage the suggested inductance ranges from $2.2 \mu \mathrm{H}$ to $4.7 \mu \mathrm{H}$.

It is very important to select the right inductor according to the maximum current the inductor can handle to avoid saturation. The step-up and the inverting peak current can be calculated as follows:

Equation 1

$$
\mathrm{I}_{\text {PEAK-BOOST }}=\frac{\mathrm{V}_{\text {MID }} \times \mathrm{I}_{\mathrm{OUT}}}{\eta 1 \times \mathrm{VIN}_{\mathrm{MIN}}}+\frac{\mathrm{VIN}_{\text {MIN }} \times\left(\mathrm{V}_{\mathrm{MID}}-\mathrm{VIN}_{\mathrm{MIN}}\right)}{2 \times \mathrm{V}_{\mathrm{MID}} \times \mathrm{fs} \times \mathrm{L} 1}
$$

Equation 2

$$
I_{\text {PEAK-INVERTING }}=\frac{\left(V I N_{M I N}-V O 2_{\text {MIN }}\right) \times I_{\text {OUT }}}{\eta 2 \times V I N_{\text {MIN }}}+\frac{V I N_{M I N} \times V O 2_{\text {MIN }}}{2 \times\left(V O 2_{\text {MIN }}-V I N_{M I N}\right) \times f s \times L 2}
$$

Where
$\mathrm{V}_{\text {MID }}$: step-up output voltage, fixed at 4.6 V ;
$\mathrm{V}_{\mathrm{O} 2}$: inverting output voltage including sign; (minimum value is the absolute maximum value)
I_{O} : output current for both DC-DC converters;
V_{IN} : input voltage of STOD03A;
f_{s} : switching frequency. Use the minimum value of 1.2 MHz for worst case;
$\eta 1$: efficiency of step-up converter. Typical value is 0.85 ;
$\eta 2$: efficiency of inverting converter. Typical value is 0.75 ;
The negative output voltage can be set via S-Wire at - 5.4 V . Accordingly, the inductor peak current, at the maximum load condition, increases. A proper inductor, with a saturation current as a minimum of 1 A , is preferred.

7.1.2 Input and output capacitor selection

It is recommended to use ceramic capacitors with low ESR as input and output capacitors in order to filter any disturbance present in the input line and to obtain stable operation for the two switching converters. A minimum real capacitance value of $2 \mu \mathrm{~F}$ must be guaranteed for $\mathrm{C}_{\mathrm{MID}}$ and $\mathrm{C}_{\mathrm{O} 2}$ in all conditions. Considering tolerance, temperature variation, and DC polarization, a $4.7 \mu \mathrm{~F} 10 \mathrm{~V}$ capacitor can be used to achieve the required $2 \mu \mathrm{~F}$.

7.2 Recommended PCB layout

The STOD03A is a high frequency power switching device so it requires a proper PCB layout in order to obtain the necessary stability and optimize line/load regulation and output voltage ripple.

Analog input $\left(\mathrm{V}_{\mathrm{INA}}\right)$ and power input $\left(\mathrm{V}_{\mathrm{INP}}\right)$ must be kept separated and connected together at the C_{IN} pad only. The input capacitor must be as close as possible to the IC.

In order to minimize ground noise, a common ground node for power ground and a different one for analog ground must be used. In the recommended layout, the AGND node is placed close to $\mathrm{C}_{\text {REF }}$ ground while the PGND node is centered at C_{IN} ground. They are connected by a separated layer routing on the bottom through vias.
The exposed pad is connected to AGND through vias.

Figure 17. Top layer and top silkscreen top

Figure 18. Bottom layer and silkscreen top

8 Detailed description

8.1 General description

The STOD03A is a high efficiency dual DC-DC converter which integrates a step-up and inverting power stage suitable for supplying AMOLED panels. Thanks to the high level of integration it needs only 6 external components to operate and it achieves very high efficiency using a synchronous rectification technique for each of the two DC-DC converters.
The controller uses an average current mode technique in order to obtain good stability and precise voltage regulation in all possible conditions of input voltage, output voltage, and output current. In addition, the peak inductor current is monitored in order to avoid saturation of the coils.

The STOD03A implements a power saving technique in order to maintain high efficiency at very light load and it switches to PWM operation as the load increases, in order to guarantee the best dynamic performance and low noise operation.

The STOD03A avoids battery leakage thanks to the true-shutdown feature and it is self protected from overtemperature. Undervoltage lockout and soft-start guarantee proper operation during startup.

8.1.1 Multiple mode of operation

Both the step-up and the inverting stage of the STOD03A operate in three different modes: pulse skipping (PS), discontinuous conduction mode (DCM), and continuous conduction mode (CCM). It switches automatically between the three modes according to input voltage, output current, and output voltage conditions.

Pulse skipping operation:

The STOD03A works in pulse skipping mode when the load current is below some tens of mA . The load current level at which this way of operating occurs depends on input voltage only for the step-up converter and on input voltage and negative output voltage $\left(\mathrm{V}_{\mathrm{O} 2}\right)$ for the inverting converter.

Discontinuous conduction mode:

When the load increases above some tens of mA the STOD03A enters DCM operation. In order to obtain this type of operation the controller must avoid the inductor current going negative. The discontinuous mode detector (DMD) blocks sense the voltage across the synchronous rectifiers (P1B for the step-up and N2 for the inverting) and turn off the switches when the voltage crosses a defined threshold which, in turn, represents a certain current in the inductor. This current can vary according to the slope of the inductor current which depends on input voltage, inductance value, and output voltage.

Continuous conduction mode:

At medium/high output loads the STOD03A enters full CCM at constant switching frequency mode for each of the two DC-DC converters.

8.1.2 Enable pin

The device operates when the EN pin is set high. If the EN pin is set low, the device stops switching, and all the internal blocks are turned off. In this condition the current drawn from $\mathrm{V}_{\text {INP }} / \mathrm{V}_{\text {INA }}$ is below $1 \mu \mathrm{~A}$ in the whole temperature range. In addition, the internal switches are in an Off state so the load is electrically disconnected from the input, this avoids unwanted current leakage from the input to the load.

When the EN is pulled high, the P1B switch is turned on for $100 \mu \mathrm{~s}$. In normal operation, during this time, apart from a small drop due to parasitic resistance, $\mathrm{V}_{\mathrm{MID}}$ reaches V_{IN}. If, after this $100 \mu \mathrm{~s}, \mathrm{~V}_{\text {MID }}$ stays below V_{IN}, the P1B is turned off and stays off until a new pulse is applied to the EN. This mechanism avoids STOD03A starting if a short circuit is present on $\mathrm{V}_{\text {MID }}$.

8.1.3 Soft-start and inrush current limiting

After the EN pin is pulled high, or after a suitable voltage is applied to $\mathrm{V}_{\text {INP }}, \mathrm{V}_{\text {INA }}$, and EN the device initiates the startup phase.

As a first step, the $\mathrm{C}_{\text {MID }}$ capacitor is charged and the P1B switch implements a current limiting technique in order to keep the charge current below 400 mA . This avoids the battery overloading during startup.
After $\mathrm{V}_{\text {MID }}$ reaches $\mathrm{V}_{\text {INP }}$ voltage level the P 1 B switch is fully turned on and the soft-start procedure for the step-up is started. After about 2 ms the soft-start for the inverting is started. The positive and negative voltage is under regulation by around 6 ms after the EN pin is asserted high.

8.1.4 Undervoltage lockout

The undervoltage lockout function avoids improper operation of STOD03A when the input voltage is not high enough. When the input voltage is below the UVLO threshold the device is in shutdown mode. The hysteresis of 50 mV avoids unstable operation when the input voltage is close to the UVLO threshold.

8.1.5 Overtemperature protection

An internal temperature sensor continuously monitors the IC junction temperature. If the IC temperature exceeds $140^{\circ} \mathrm{C}$ typically the device stops operating. As soon as the temperature falls below $125^{\circ} \mathrm{C}$ typically normal operation is restored.

8.1.6 Fast discharge

When ENABLE turns from high to low level, the device goes into shutdown mode and LX1 and LX2 stop switching. Then discharge switch between $\mathrm{V}_{\text {MID }}$ and $\mathrm{V}_{\text {IN }}$ and switch between $\mathrm{V}_{\mathrm{O} 2}$ and GND turn on and discharge the positive output voltage and negative output voltage. When the output voltages are discharged to 0 V , the switches turn off and the outputs are high impedance.

$9 \quad$ Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK ${ }^{\circledR}$ packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions, and product status are available at: www.st.com. ECOPACK is an ST registered trademark.
\square

Dim.	mm.			inch.		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A	0.51	0.55	0.60	0.020	0.022	0.024
A1	0	0.02	0.05	0	0.001	0.002
A3		0.20			0.008	
b	0.18	0.25	0.30	0.007	0.010	0.012
D	2.85	3	3.15	0.112	0.118	0.124
D2	1.87	2.02	2.12	0.074	0.080	0.083
E	2.85	3	3.15	0.112	0.118	0.124
E2	1.06	1.21	1.31	0.042	0.048	0.052
e		0.45			0.018	
L	0.30	0.40	0.50	0.012	0.016	0.020

Tape \& reel QFNxx/DFNxx (3x3) mechanical data

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A			330			12.992
C	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	99		101	3.898		3.976
T		3.3			0.130	
Ao		3.3			0.130	
Bo		1.1			0.043	
Ko		4			0.157	
Po		8			0.315	
P						

Doc ID 17785 Rev 1

Figure 19. DFN12L ($3 \times 3 \mathrm{~mm}$) footprint recommended data

10 Revision history

Table 11. Document revision history

Date	Revision	Changes
08-Sep-2010	1	Initial release.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

[^0]: 1. $S_{\text {WIRE }}$ internal signal is filtered by a low pass filter with a cut-off frequency of 1 MHz typical.
