
Quad Bus Driver/Receiver with Transmit and Receiver Latches

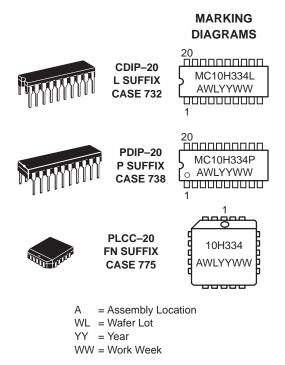
The MC10H334 is a Quad Bus Driver/Receiver with transmit and receiver latches. When disabled, ($\overline{OE} = high$) the bus outputs will fall to -2.0 V. Data to be transmitted or received is passed through its respective latch when the respective latch enable (DLE and RLE) is at a low level. Information is latched on the positive transition of DLE and RLE. The parameters specified are with 25 Ω loading on the bus drivers and 50 Ω loads on the receivers.

- Propagation Delay, 1.6 ns Typical Data-to-Output
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)

DIP & PLCC

- Voltage Compensated
- MECL 10K–Compatible

Pin assignment is for Dual–in–Line Package. For PLCC pin assignment, see the Pin Conversion Tables on page 18 of the ON Semiconductor MECL Data Book (DL122/D).


NOTE:

Each MECL 10H series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained. Receiver outputs are terminated through a 50–ohm resistor to -2.0 volts dc. Bus outputs are terminated through a 25–ohm resistor to -2.0 volts dc.

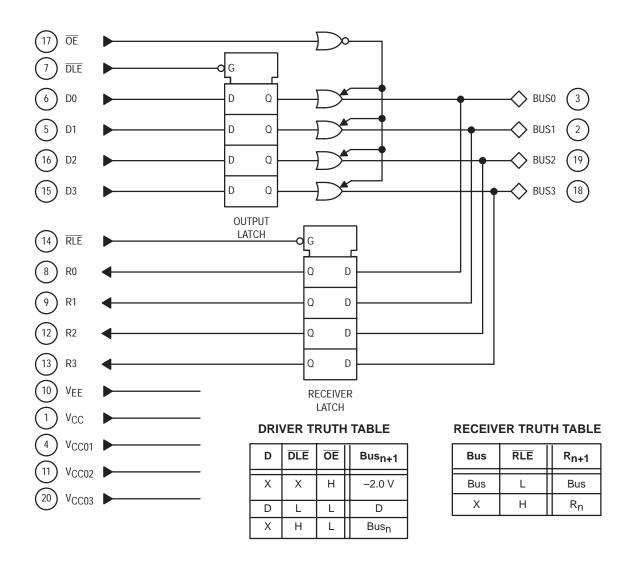
ON Semiconductor

http://onsemi.com

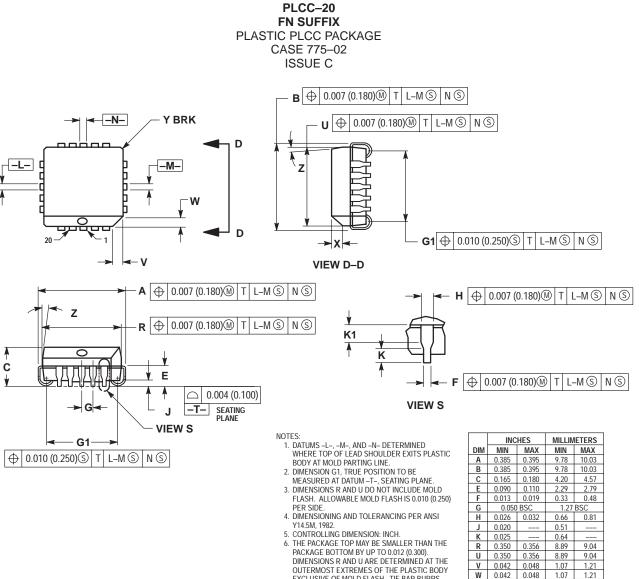
ORDERING INFORMATION

Device	Package	Shipping
MC10H334L	CDIP-20	18 Units/Rail
MC10H334P	PDIP-20	18 Units/Rail
MC10H334FN	PLCC-20	46 Units/Rail

1


MAXIMUM RATINGS

Symbol	Characteristic	Rating	Unit
VEE	Power Supply ($V_{CC} = 0$)	-8.0 to 0	Vdc
VI	Input Voltage (V _{CC} = 0)	0 to V _{EE}	Vdc
lout	Output Current – Continuous – Surge	50 100	mA
TA	Operating Temperature Range	0 to +75	°C
T _{stg}	Storage Temperature Range – Plastic – Ceramic	−55 to +150 −55 to +165	°C ℃


ELECTRICAL CHARACTERISTICS (V_{EE} = $-5.2 \text{ V} \pm 5\%$) (See Note)

		0 °		25°		75°		
Symbol	Characteristic	Min	Max	Min	Max	Min	Max	Unit
١E	Power Supply Current	-	161	-	161	-	161	mA
linH	Input Current High Pins 5,6,15,16 Pins 7,14 Pin 17	- - -	397 460 520	- - -	273 297 357	- - -	273 297 357	μΑ
l _{inL}	Input Current Low	0.5	-	0.5	-	0.3	-	μΑ
Vон	High Output Voltage	-1.02	-0.84	-0.98	-0.81	-0.92	-0.735	Vdc
VOL	Low Output Voltage	-1.95	-1.63	-1.95	-1.63	-1.95	-1.60	Vdc
VIH	High Input Voltage	-1.17	-0.84	-1.13	-0.81	-1.07	-0.735	Vdc
VIL	Low Input Voltage	-1.95	-1.48	-1.95	-1.48	-1.95	-1.45	Vdc
AC PARAM	IETERS							
tpd	Propagation Delay Data-to-Bus Output DLE-to-Bus Output OE-to-Bus Output Bus-to-R0 RLE-to-R0 Data-to-Receiver R0	0.5 1.0 0.5 0.5 0.5 1.0	2.5 2.7 2.5 1.9 2.1 3.8	0.5 1.0 0.5 0.5 0.5 1.0	2.5 2.7 2.5 1.9 2.1 3.8	0.5 1.0 0.5 0.5 0.5 1.0	2.5 2.7 2.5 1.9 2.1 3.8	ns
tr	Rise Time	0.5	2.2	0.5	2.2	0.5	2.2	ns
t _f	Fall Time	0.5	2.2	0.5	2.2	0.5	2.2	ns

LOGIC DIAGRAM

PACKAGE DIMENSIONS

PACKAGE BOTTOM BY UP TO 0.012 (0.300). DIMENSIONS R AND U ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS, GATE BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY.

1.42

0.50

10 °

8.38

1.07

7.88

1.02

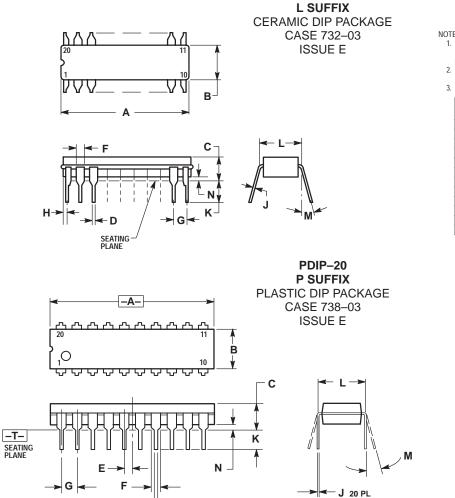
X 0.042 Y ----

K1 0.040

2° 10°

G1 0.310 0.330

Ζ


0.056

0.020

AND BOTTOM THE PLASTIC BODT. 7. DIMENSION OF THE PLASTIC BODT. PROTRUSION OR INTRUSION. THE DAMBAR PROTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE GREATER THAN 0.037 (0.940). THE DAMBAR INTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE SMALLER THAN 0.025 (0.635).

PACKAGE DIMENSIONS

CDIP-20

D 20 PL

⊕ 0.25 (0.010) M T A M

NOTES: 1. LEADS WITHIN 0.010 DIAMETER, TRUE POSITION AT SEATING PLANE, AT MAXIMUM MATERIAL CONDITION. 2. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 3. DIMENSIONS A AND B INCLUDE MENISCUS.

	INCHES			
DIM	MIN MAX			
Α	0.940	0.990		
В	0.260	0.295		
С	0.150	0.200		
D	0.015	0.022		
F	0.055	0.065		
G	0.100 BSC			
Н	0.020	0.050		
J	0.008	0.012		
K	0.125	0.160		
L	0.300 BSC			
Μ	0°	15°		
N	0.010	0.040		

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. 4. DIMENSION B DOES NOT INCLUDE MOLD EI ASH

FLASH.

	INC	HES	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	1.010	1.070	25.66	27.17	
В	0.240	0.260	6.10	6.60	
С	0.150	0.180	3.81	4.57	
D	0.015	0.022	0.39	0.55	
E	0.050 BSC		1.27 BSC		
F	0.050	0.070	1.27	1.77	
G	0.100 BSC		2.54 BSC		
J	0.008	0.015	0.21	0.38	
К	0.110	0.140	2.80	3.55	
L	0.300 BSC		7.62 BSC		
М	0 °	15°	0°	15°	
Ν	0.020	0.040	0.51	1.01	

⊕ 0.25 (0.010) M T

ΒŴ

Notes

Notes

ON Semiconductor and without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

North America Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone:** 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax:** 303–675–2176 or 800–344–3867 Toll Free USA/Canada **Email:** ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor – European Support

German Phone: (+1) 303–308–7140 (M–F 2:30pm to 5:00pm Munich Time) Email: ONlit–german@hibbertco.com

French Phone: (+1) 303–308–7141 (M–F 2:30pm to 5:00pm Toulouse Time) Email: ONlit-french@hibbertco.com

English Phone: (+1) 303–308–7142 (M–F 1:30pm to 5:00pm UK Time) Email: ONlit@hibbertco.com ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong 800–4422–3781 Email: ONlit–asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549 Phone: 81–3–5740–2745 Email: r14525@onsemi.com

Fax Response Line: 303–675–2167 800–344–3810 Toll Free USA/Canada

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.