

SEMITOP[®] 3

IGBT Module

SK25GD12T4ET

Target Data

Features

- One screw mounting module
- Trench4 IGBT technology
- CAL4 technology FWD
- Integrated NTC temperature sensor

Typical Applications*

Remarks

• V_{CE,sat} , V_F = chip level value

 $T_s = 25 \text{ °C}$, unless otherwise specified **Absolute Maximum Ratings** Symbol Conditions Values Units IGBT 1200 V_{CES} T_i = 25 °C V T_i = 175 °C T_s = 25 °C 37 А I_{C} T_s = 70 °C 30 А 75 А I_{CRM} = 3 x I_{Cnom} I_{CRM} ± 20 V V_{GES} V_{CC} = 800 V; $V_{GE} \le 15$ V; T_{i} = 150 °C 10 μs t_{psc} VCES < 1200 V Inverse Diode T_i = 175 °C T_s = 25 °C 30 А I_{F} T_s = 70 °C 25 А 75 А I_{FRM} = 3 x I_{Fnom} I_{FRM} I_{FSM} $t_n = 10 \text{ ms}$; half sine wave $T_i = 150 \text{ °C}$ 160 А Module А I_{t(RMS)} °C Τ_{vj} -40 ... +175 -40 ... +125 °C T_{stg} V_{isol} AC, 1 min. 2500 V

Characteristics T _s			= 25 °C, unless otherwise specified					
Symbol	Conditions		min.	typ.	max.	Units		
IGBT								
V _{GE(th)}	$V_{GE} = V_{CE}, I_{C} = 0,85 \text{ mA}$		5	5,8	6,5	V		
I _{CES}	V_{GE} = 0 V, V_{CE} = V_{CES}	T _j = 25 °C			0,0024	mA		
		T _j = 125 °C				mA		
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			120	nA		
		T _j = 125 °C				nA		
V _{CE0}		T _j = 25 °C		1,1	1,3	V		
		T _j = 150 °C		1	1,2	V		
r _{CE}	V _{GE} = 15 V	T _j = 25°C		30		mΩ		
		T _j = 150°C		50		mΩ		
V _{CE(sat)}	I _{Cnom} = 25 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		1,85	2,05	V		
		T _j = 150°C _{chiplev.}		2,25	2,45	V		
C _{ies}				1,43		nF		
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz		0,115		nF		
C _{res}				0,085		nF		
Q_{G}	V _{GE} =-7V+15V			137,5		nC		
t _{d(on)}				22		ns		
t,	$R_{Gon} = 19 \Omega$	$V_{CC} = 600V$		19,5		ns		
E _{on}	di/dt = 2825 A/µs	I _C = 25A		2,27		mJ		
t _{d(off)}	$R_{Goff} = 19 \Omega$	$T_{j} = 150 \text{ °C}$		288		ns		
t _í	di/dt = 2825 A/µs	V _{GE} = -7/+15V		77,5		ns		
E _{off}				2,7		mJ		
R _{th(j-s)}	per IGBT			1,31		K/W		

GD-ET

SEMITOP[®] 3

IGBT Module

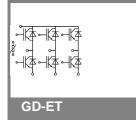
SK25GD12T4ET

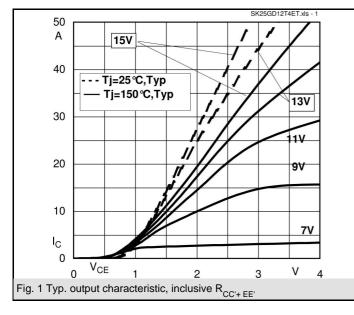
Characteristics										
Symbol	Conditions		min.	typ.	max.	Units				
Inverse D	Diode									
$V_F = V_{EC}$	I _{Fnom} = 25 A; V _{GE} = 0 V	T _j = 25 °C _{chiplev.}		2,4	2,62	V				
		T _j = 150 °C _{chiplev.}		2,45	2,8	V				
V _{F0}		T _j = 25 °C		1,3	1,5	V				
		T _j = 150 °C		0,9	1,1	V				
r _F		T _i = 25 °C		44	45	mΩ				
		T _i = 150 °C		62	68	mΩ				
I _{RRM}	I _F = 25 A	T _i = 150 °C		31,5		А				
Q _{rr}	di/dt = 2825 A/µs			1,15		μC				
E _{rr}	V _{CC} = 600V			1,28		mJ				
R _{th(j-s)D}	per diode			1,91		K/W				
M _s	to heat sink		2,25		2,5	Nm				
w				30		g				
Temperat	ture sensor									
R ₁₀₀	T _s =100°C (R ₂₅ =5kΩ)			493±5%		Ω				

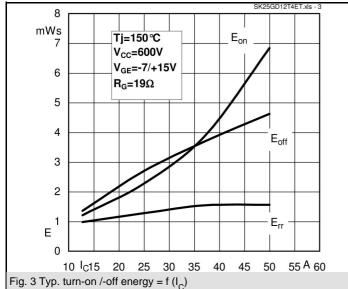
Target Data

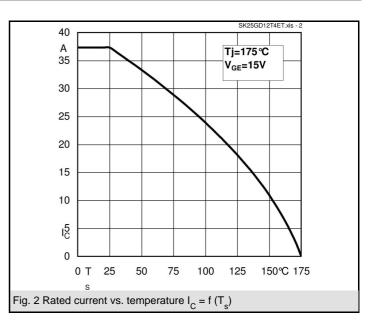
Features

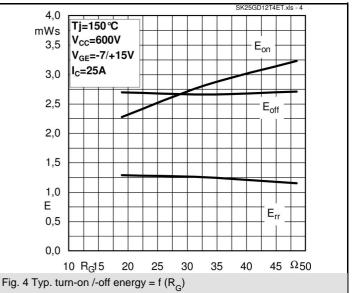
- One screw mounting module
- Trench4 IGBT technology
- CAL4 technology FWD
- Integrated NTC temperature sensor


Typical Applications*


Remarks


V_{CE,sat}, V_F = chip level value


This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.


* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

