
80296SA Evaluation

Board Manual

October, 1996

Order Number: 272947-001

80296SA
Evaluation Board

Manual

October 1996

satarget.bk : satitle.fm5 Page i Wednesday, October 23, 1996 5:46 PM

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or oth-
erwise, to any intellectual property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of
Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to
sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or
infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life
saving, or life sustaining applications.

Intel retains the right to make changes to specifications and product descriptions at any time, without notice.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

*Third-party brands and names are the property of their respective owners.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be
obtained from:

Intel Corporation
P.O. Box 7641
Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

Copyright © INTEL CORPORATION, 1996

satarget.bk : satitle.fm5 Page ii Wednesday, October 23, 1996 5:46 PM

CONTENTS

satarget.bk : satarget.TOC Page iii Wednesday, October 23, 1996 5:46 PM
CHAPTER 1
GUIDE TO MANUAL

1.1 MANUAL CONTENTS ... 1-1
1.2 NOTATIONAL CONVENTIONS AND TERMINOLOGY .. 1-2
1.3 RELATED DOCUMENTS .. 1-5

1.4 APPLICATION SUPPORT SERVICES.. 1-5
1.4.1 World Wide Web ...1-6
1.4.2 Bulletin Board Service (BBS) ..1-6

CHAPTER 2
GETTING STARTED WITH
THE 80296SA EVALUATION BOARD

2.1 EVALUATION BOARD KIT CONTENTS... 2-1
2.2 CONNECTING THE EVALUATION BOARD TO THE HOST SYSTEM........................ 2-3

2.3 INVOKING THE EMBEDDED CONTROLLER MONITOR SOFTWARE....................... 2-4

CHAPTER 3
80296SA EVALUATION BOARD
FUNCTIONAL OVERVIEW

3.1 BLOCK AND COMPONENT DIAGRAMS OF THE BOARD.. 3-1
3.2 THE 80296SA MICROCONTROLLER .. 3-3
3.3 HOST INTERFACE.. 3-3

3.4 DIGITAL I/O ... 3-3
3.5 80296SA MEMORY SYSTEM ... 3-4

3.5.1 Memory Modes ...3-6
3.5.2 Using SRAM, EPROM, and Flash ...3-6

CHAPTER 4
INTRODUCTION TO THE EMBEDDED CONTROLLER MONITOR (ECM)

4.1 EMBEDDED CONTROLLER MONITOR... 4-1
4.2 RESTRICTIONS .. 4-2

CHAPTER 5
ECM96SA COMMANDS

5.1 ECM DEFINED .. 5-1
5.2 COMMAND LINE NOTATION ... 5-1

5.2.1 ECM96SA Command Notation ...5-1
5.2.2 DOS Command Rules ..5-2

5.3 INITIALIZING AND TERMINATING ECM.. 5-3

5.4 GENERAL ECM96SA COMMANDS.. 5-4
iii

80296SA EVALUATION BOARD MANUAL

satarget.bk : satarget.TOC Page iv Wednesday, October 23, 1996 5:46 PM
5.5 FILE OPERATIONS... 5-5
5.5.1 Loading and Saving Object Code ...5-5
5.5.2 Flash Memory Program/Erase ..5-6
5.5.3 Include, Log, and List Files ...5-6

5.6 PROGRAM CONTROL.. 5-8
5.6.1 80296SA Reset ...5-8
5.6.2 Breakpoint Features ..5-9
5.6.3 Program Execution Commands ..5-10
5.6.4 Program Sequence Control ..5-12

5.7 SUPPORTED DATA TYPES ... 5-14
5.7.1 BYTE, WORD, DWORD, and REAL Commands ..5-14
5.7.2 STACK Commands ...5-16
5.7.3 STRING Commands ...5-16
5.7.4 Register Command Variables ...5-16
5.7.5 Displaying and Modifying the Stack Pointer (SP) ..5-17

5.8 ASSEMBLY AND DISASSEMBLY... 5-18
5.8.1 Single Line Assembler (SLA) Commands ...5-18
5.8.2 Disassembly Commands ..5-19

CHAPTER 6
RISM REGISTERS AND COMMANDS

6.1 RISM REGISTERS .. 6-1
6.2 RISM STRUCTURE... 6-2

6.3 RISM COMMAND DESCRIPTIONS.. 6-2

APPENDIX A
COMPONENTS, JUMPERS, AND CONNECTORS

A.1 COMPONENT LIST.. A-3
A.2 JUMPER DEFINITIONS ... A-4
A.3 POWER SUPPLY CONNECTOR... A-5
A.4 LED BANK DESCRIPTIONS .. A-6

A.5 HOST SERIAL CONNECTOR DESCRIPTION .. A-7
iv

v

CONTENTS

FIGURES

Figure Page
2-1 80296SA Evaluation Board Layout ..2-2
3-1 80296SA Evaluation Board Block Diagram..3-1
3-2 Component-level Diagram of the 80296SA Evaluation Board......................................3-2
3-3 80296SA Memory Map...3-5
A-1 80296SA Evaluation Board Diagram... A-2
A-2 Power Supply Connector JP5 ... A-5
A-3 LED Banks DP1 and DP2 ... A-6
A-4 Serial Interface .. A-8

satarget.bk : satarget.LOF Page v Wednesday, October 23, 1996 5:46 PM

80296SA EVALUATION BOARD MANUAL

vi

TABLES

Table Page
1-1 Related Documents..1-5
1-2 Intel Application Support Services..1-5
3-1 Reserved or Non-Available Addresses...3-4
5-1 ECM96SA Command Notation...5-1
5-2 DOS Command Notation..5-2
5-3 Commands for Invoking and Terminating ECM96SA...5-3
5-4 General ECM96SA Commands..5-4
5-5 ECM96SA Commands that Operate on Object Files ...5-5
5-6 Include, Log, and List Commands..5-7
5-7 Breakpoint Command Notations and Descriptions...5-10
5-8 Go and Halt Command Notations and Descriptions...5-11
5-9 STEP and SUPER-STEP Command Notation and Description5-13
5-10 Supported Data Types ...5-14
5-11 BYTE, WORD, DWORD, and REAL Command Notations...5-15
5-12 Stack Command Notations and Descriptions...5-16
5-13 Register Variable Notations and Descriptions..5-17
5-14 SLA Command Notations and Descriptions ...5-18
5-15 Disassembler Command Notations and Descriptions ..5-19
6-1 RISM Registers ..6-1
6-2 RISM Command Descriptions ..6-3
A-1 Components List ... A-3
A-2 Jumper Definitions... A-4
A-3 P1 Host Serial Connector .. A-7

satarget.bk : satarget.LOT Page vi Wednesday, October 23, 1996 5:46 PM

satarget.bk : sa_c01_d.fm5 Page 1 Wednesday, October 23, 1996 5:46 PM
1
Guide to Manual

satarget.bk : sa_c01_d.fm5 Page 2 Wednesday, October 23, 1996 5:46 PM

emory

tor

A
CM)

u
sider

satarget.bk : sa_c01.fm5 Page 1 Wednesday, October 23, 1996 5:46 PM
CHAPTER 1
GUIDE TO THIS MANUAL

This manual contains information for design engineers who are familiar with the principles of
microcontrollers. It describes using the 80296SA Evaluation Board kit for developing and
evaluating an embedded application design based on the 80296SA MCS® 96 microcontroller.
The 80296SA evaluation board kit contains hardware and software that enables you to write,
execute, monitor, and debug application software.

1.1 MANUAL CONTENTS

This manual has six chapters and an appendix.

This chapter provides an overview of the manual. It summarizes the contents of the remaining
chapters and the appendix. It also describes notational conventions and terminology; lists related
documents, products, data sheets, and user manual supplements; and gives important numbers for
obtaining application support.

Chapter 2, “Getting Started with the 80296SA Evaluation Board” — includes a list of the kit
contents and instructions on initializing the evaluation board and installing the software.

Chapter 3, “80296SA Evaluation Board Functional Overview” — describes the 80296SA
evaluation board; it includes a component-level diagram and describes the installation of m
devices.

Chapter 4, “Introduction to the Embedded Controller Monitor (ECM)” — introduces the user
interface software, which comprises ECM96SA and RISMSA.

Chapter 5, “ECM96SA Commands” — describes the part of the Embedded Controller Moni
(ECM) that executes on the host PC.

Chapter 6, “RISM Registers and Commands” — describes the commands for the 80296S
reduced instruction set monitor (RISMSA), the part of the Embedded Controller Monitor (E
that executes on the evaluation board microcontroller.

Appendix A, “Components, Jumpers, and Connectors” — provides figures and tables to help yo
configure the 80296SA evaluation board. It also provides other information for you to con
as you develop your hardware design.
1-1

80296SA EVALUATION BOARD MANUAL

n’t
or
the

wn;
tes

ctive

satarget.bk : sa_c01.fm5 Page 2 Wednesday, October 23, 1996 5:46 PM
1.2 NOTATIONAL CONVENTIONS AND TERMINOLOGY

The following notations and terminology are used throughout this manual.

The pound symbol (#) has two meanings, depending on the context.
When used with a signal name, it indicates that the signal is active
low. When used in an instruction, the symbol prefixes an immediate
value in immediate addressing mode.

italics Italics identify variables and introduce new terminology. The context
in which italics are used distinguishes between the two possible
meanings.

Variables in registers and signal names are commonly represented by
x and y, where x represents the first variable and y represents the
second variable. For example, in register Px_MODE.y, x represents
the variable that identifies the specific port, and y represents the
register bit variable [7:0 or 15:0].

X Uppercase X (no italics) represents an unknown value or a “do
care” state or condition. The value may be either binary
hexadecimal, depending upon the context. For example,
hexadecimal value FF2XAFH indicates that bits 11:8 are unkno
10XX in binary context indicates that the two least significant by
(LSBs) are unknown.

Board Components The following abbreviations are used to represent discrete and a
components.

Cx capacitor

Dx diode

DPx LED bank

Ex jumper

JPx connector

Lx inductor

Px port

Rx resistor

RPx resistor pack

Sx switch

Ux device socket (e.g., latch, buffer, memory, controller)
1-2

GUIDE TO THIS MANUAL

s

imal
are
imal
ter B

re:

satarget.bk : sa_c01.fm5 Page 3 Wednesday, October 23, 1996 5:46 PM
Assert and Deassert The terms assert and deassert refer to the act of making a signal
active (enabled) and inactive (disabled), respectively. The active
polarity (high/low) is defined by the signal name. Active-low signals
are designated by a pound symbol (#) suffix; active-high signals have
no suffix. To assert RD# is to drive it low (equal to or less than VOL);
to assert ALE is to drive it high (equal to or greater than VOH); to
deassert RD# is to drive it high; to deassert ALE is to drive it low.

Instructions Instruction mnemonics are shown in upper case; however, you may
use either upper case or lower case in your source code.

NC The term “NC” is an abbreviation for “no connection.” It indicate
that no connection is required.

Numbers Hexadecimal numbers are represented by a string of hexadec
digits followed by the character H. Decimal and binary numbers
represented by their customary notations. (That is, 255 is a dec
number and 11111111 is a binary number. In some cases, the let
is appended to binary numbers for clarity.)

Units of Measure The following abbreviations are used to represent units of measu

A amps, amperes

mA milliamps, milliamperes

Kbyte kilobytes

KHz kilohertz

KΩ kilo-ohms

Mbyte megabytes

MHz megahertz

ms milliseconds

mW milliwatts

ns nanoseconds

pF picofarads

V voltage, volts

VDC voltage, direct current

VAC voltage, alternating current

W watts

µA microamps, microamperes

µF microfarads

µs microseconds
1-3

80296SA EVALUATION BOARD MANUAL

this
sure
ta-

less

g

are a
ame
ed

re-
und
nal.

nd
5.2,

satarget.bk : sa_c01.fm5 Page 4 Wednesday, October 23, 1996 5:46 PM
Register Bits Bit locations are indexed by 7:0 (or 15:0), where bit 0 is the least-
significant bit and 7 (or 15) is the most-significant bit. An individual
bit is represented by the register name, followed by a period and the
bit number. For example, WSR.7 is bit 7 of the window select
register. In some discussions, bit names are used. For example, the
name of WSR.7 is HLDEN.

Register Names Register names are shown in upper case. For example, TIMER2 is
the timer 2 register; timer 2 is the timer. If a register name contains a
lowercase character, it represents more than one register. For
example, Px_REG represents four registers: P1_REG, P2_REG,
P3_REG, and P4_REG.

Reserved Bits Certain bits are described as reserved bits. In illustrations, reserved
bits are indicated with a dash (—). These bits are not used in
device and may be used in future implementations. To help en
that a current software design is compatible with future implemen
tions, reserved bits should be cleared (given a value of “0”), un
otherwise noted.

Set and Clear The terms set and clear refer to the value of a bit or the act of givin
it a value. When a bit is set, its value is “1”; setting a bit gives it a “1”
value. When a bit is clear, its value is “0”; clearing a bit gives it a
“0” value.

Signal Names Signal names are shown in upper case. When several signals sh
common name, an individual signal is represented by the signal n
followed by a number. For example, the EPA signals are nam
EPA0, EPA1, EPA2, etc. Port pins are represented by the port abb
viation, a period, and the pin number (e.g., P1.0, P1.1). A po
symbol (#) appended to a signal name identifies an active-low sig

Command Lines For command line input to software, such as MS-DOS* a
ECM96SA, this manual uses notation described in Section
“Command Line Notation”.
1-4

GUIDE TO THIS MANUAL

pport
 week,

d 5 p.m.
ibutor.

satarget.bk : sa_c01.fm5 Page 5 Wednesday, October 23, 1996 5:46 PM
1.3 RELATED DOCUMENTS

Table 1-1 lists the names of documents that are useful in designing systems using an 80296SA
embedded microcontroller. The documents are available through Intel Literature (1-800-548-
4725 in the U.S. and Canada) on the Intel World Wide Web site (http://www.intel.com).

1.4 APPLICATION SUPPORT SERVICES

You can get up-to-date technical information from a variety of electronic support systems: the
World Wide Web, the FaxBack* service, and Intel’s Brand Products and Applications Su
bulletin board service (BBS). These systems are available 24 hours a day, 7 days a
providing technical information whenever you need it.

In the U.S. and Canada, technical support representatives are available between 5 a.m. an
Pacific Stand Time (PST). Outside the U.S. and Canada, please contact your local distr
You can order product literature from Intel literature centers and sales offices.

Table 1-4 lists the information you need to access these services.

Table 1-1. Related Documents

Document Name Order Number

80296SA Commercial CHMOS 16-Bit Microcontroller 272748

80296SA Microcontroller User’s Manual 272803

AP-125, Designing Microcontroller Systems for Electrically Noisy Environments 210313

AP-715, Interfacing an 12C Serial EEPROM to an MCS ® 96 Microcontroller 272680

AP-717, Migration from the 8XC196Nx to the 80296SA 272730

Table 1-2. Intel Application Support Services

Service U.S. and Canada Asia-Pacific and Japan Europe

World Wide Web http://www.intel.com/ http://www.intel.com/ http://www.intel.com/

FaxBack* 800-525-3019 503-264-6835

916-356-3105

+44(0)1793-496646

BBS 503-264-7999

916-356-3600

503-264-7999

916-356-3600

+44(0)1793-432955

Help Desk 800-628-8686
916-356-7999

Please contact your local
distributor.

Please contact your local
distributor.

Literature 800-548-4725 708-296-9333

+81(0)120 47 88 32

+44(0)1793-431155 England

+44(0)1793-421777 France

+44(0)1793-421333 Germany
1-5

80296SA EVALUATION BOARD MANUAL

ou can
ristics,
 day,

phone.
rompts.

ou use
ument

 BBS
ers,

tomatic
gs: no

d to the
ystem
ccount

 list of
ta bits,

satarget.bk : sa_c01.fm5 Page 6 Wednesday, October 23, 1996 5:46 PM
1.4.1 World Wide Web

We offer a variety of information on the World Wide Web (http://www.intel.com/design/mcs96).
Also visit Intel’s Web site for financial information, history, and news.

1.4.1.1. FaxBack* Service

FaxBack is an on-demand publishing system that sends documents to your fax machine. Y
get product announcements, change notifications, product literature, device characte
design recommendations, and quality and reliability information from FaxBack 24 hours a
7 days a week.

Think of the FaxBack service as a library of technical documents you can access with your
Just dial the telephone number listed in Table 1-2 on page 1-5 and respond to the system p
After you select a document, the system sends a copy to your fax machine.

Each document has an order number and is listed in a subject catalog. The first time y
Fax-Back, you should order the appropriate subject catalogs to get a complete listing of doc
order numbers. Catalogs are updated regularly, so call for the latest information.

1.4.2 Bulletin Board Service (BBS)

The bulletin board system (BBS) lets you download files to your computer. The application
has the latest ApBUILDER software, hypertext manuals and datasheets, software driv
firmware upgrades, application notes and utilities, and quality and reliability data.

Any customer with a modem and computer can access the BBS. The system provides au
configuration support for 1200- through 19200-baud modems. Use these modem settin
parity, 8 data bits, and 1 stop bit.

To access the BBS, just dial the telephone number (see Table 1-2 on page 1-5) and respon
system prompts. During your first session, the system asks you to register with the s
operator by entering your name and location. The system operator will set up your access a
within 24 hours. At that time, you can access the files on the BBS.

NOTE

In the U.S. and Canada, you can get a BBS user’s guide, a master list of BBS files, and a
FaxBack documents by calling 1-800-525-3019. Use these modem settings: no parity, 8 da
and 1 stop bit.
1-6

satarget.bk : sa_c02_d.fm5 Page 7 Wednesday, October 23, 1996 5:46 PM
2
Getting Started with
the 80296SA
Evaluation Board

satarget.bk : sa_c02_d.fm5 Page 8 Wednesday, October 23, 1996 5:46 PM

pre-
ser

in an

satarget.bk : sa_02.fm5 Page 1 Wednesday, October 23, 1996 5:46 PM
CHAPTER 2
GETTING STARTED WITH

THE 80296SA EVALUATION BOARD

The 80296SA evaluation board kit contains hardware and software that enables you to write, ex-
ecute, monitor, and debug application software. This chapter includes a list of the 80296SA eval-
uation board kit contents. It previews the hardware and software design tools, and it steps you
through the procedure for initializing and running the evaluation board.

2.1 EVALUATION BOARD KIT CONTENTS

The 80296SA Evaluation Board kit includes the following items.

• 80296SA Evaluation Board, which includes:

— An 80296SA embedded microcontroller in a shrink quad flatpack (SQFP) package

— Two external memory devices (installed on the board): 256-Kword flash (
programmed with the RISMSA monitor) and 256Kbyte-SRAM for downloaded u
code (see Figure 2-1 on page 2-2)

• A DB-9S RS-232 9-pin straight-through cable.

• 3.5-inch MS-DOS* Diskette. This diskette contains Embedded Controller Monitor (ECM)
software, which is detailed in Chapters 4, 5, and 6. The software consists of the following
files that run and debug 80296SA programs from a host PC:

— ecm96sa.exe

— sar_main.asm

— sar_main.lst

— sar_main.obj

— sar_main.hex

— 80296sa.inc

• Third-party vendor software.

• ApBUILDER Interactive programming software.

• Various documentation on the device and development tools.

• Technical Documentation: The evaluation board kit includes this manual, the 80296SA
Evaluation Board User’s Manual. For available related documentation, see “Related
Documents” on page 1-5. A set of evaluation board schematics is also provided
envelope.
2-1

80296SA EVALUATION BOARD MANUAL

satarget.bk : sa_02.fm5 Page 2 Wednesday, October 23, 1996 5:46 PM
Figure 2-1. 80296SA Evaluation Board Layout

C B A

A5183-01

P2 P3

JP
5

S
1

1

U6

D
E3

U9

U3
P4

U10

F9

U5

U7U1

D
E2

C B A
C

B

A

RP1

0

U2
U8

DP1
RP6

DP2R
P

7

TP1

E6

A B C

E5

C B A

D E4

A B
E8

A B C
E7 RP8

E10

A
 B

 C
E

1

1

P1

RP4

RP5

RP6

U
4

R
P

2

E
11

C
1

JP71

JP12

1
1

JP14

1
JP11

80
29

6S
A

 E
V

A
L

B
O

A
R

D

D
1

2-2

GETTING STARTED WITH THE 80296SA EVALUATION BOARD

r,

m1 or

s
e A-3

96SA

 DP2
ower-
uring
r-up

o the

power

h the
4.

es not
e.

satarget.bk : sa_02.fm5 Page 3 Wednesday, October 23, 1996 5:46 PM
2.2 CONNECTING THE EVALUATION BOARD TO THE HOST SYSTEM

Complete the following procedure to connect the 80296SA to the host system and power up the
evaluation board (Figure 2-1 on page 2-2 shows the location of the evaluation board’s powe
ground, and serial port connections.):

1. Turn off power to the PC and the power supply.

2. Connect the serial port cable (DB9) from the board’s P4 connector to either the co
com2 serial port on your PC.

(You will use the board-to-PC connection after invoking the ECM, but connect the cable
now. If you need details about the individual components of the DB9 cable, see Tabl
on page A-7.)

3. Connect the power cable from the power supply to the JP5 connector on the 802
evaluation board.

Use a regulated +5 VDC power supply. Lower voltage might not operate the
evaluation board. Higher voltage might damage the evaluation board. An
unregulated power supply may cause unpredictable failure conditions. A
regulated +12VDC is optional. Even so, you will need it if you program or
erase flash.

CAUTION

The power-supply plug is keyed, so it should easily attach to the board; if you
forced it on, you may have attached it backward. Powering up the board
through a backward plug may damage board components.

4. Turn on the PC and power supply. The LED (light-emitting diode) banks at DP1 and
on the 80296SA evaluation board should flash through a power-up sequence. At p
on, LEDs 1 through 8, in both banks, sequentially blink. LED 9 on DP1 comes on d
the power-up sequence, while LED 9 on DP2 remains off during the entire powe
sequence. LED 10 remains on to indicate that +5 VDC is applied to the board.

— If the LED bank flashed, the board is working correctly and you are ready to skip t
next section.

— If the LED bank did not flash, continue to step 5.

5. If the LED bank did not flash as described, check the following items:

— Be sure that power is supplied to the board. Check the connection between the
supply cable and the board’s power connector.

— Confirm that the jumper settings are correct for the memory devices shipped wit
board (or for a memory device that you have installed). See Table A-2 on page A-

— Press the reset button (S1) on the 80296SA evaluation board. If the board still do
respond, see Chapter 1, “Application Support Services” on page 1-5 for assistanc
2-3

80296SA EVALUATION BOARD MANUAL

 the

pt:

rupts
attern
; this
ed in

satarget.bk : sa_02.fm5 Page 4 Wednesday, October 23, 1996 5:46 PM
2.3 INVOKING THE EMBEDDED CONTROLLER MONITOR SOFTWARE

After the 80296SA evaluation board is initialized and executing RISMSA from the flash, you can
start the ECM and run the demonstration program by completing the following procedure:

1. Insert the 3.5-inch diskette in the drive of your PC.

2. Create a directory for the ECM software and copy the contents of the diskette to the
directory.

3. To invoke ECM, complete the appropriate bulleted item:

— To invoke ECM from the directory you created in step 2 of this procedure, type
following command from a DOS prompt: ecm96sa <Enter>

— To invoke ECM from the diskette, type the following command from a DOS prom
[drivename] :\ecm96sa <Enter>
(For example, if the diskette is in drive A, type a:\ecm96sa <Enter>)

4. Observe the ECM96SA monitor screen on your host PC.

When you invoke the ECM96SA program, it communicates with the board and inter
the RISMSA monitor. The continuous LED sequencing terminates, and a steady p
displays. The ECM96SA program displays the baud rate followed by an asterisk (*)
is the input prompt. At this point, you can use the ECM96SA commands describ
Chapter 5.
2-4

satarget.bk : sa_c03_d.fm5 Page 5 Wednesday, October 23, 1996 5:46 PM
3
80296SA Evaluation
Board Functional
Overview

satarget.bk : sa_c03_d.fm5 Page 6 Wednesday, October 23, 1996 5:46 PM

satarget.bk : sa_c03.fm5 Page 1 Wednesday, October 23, 1996 5:46 PM
CHAPTER 3
80296SA EVALUATION BOARD

FUNCTIONAL OVERVIEW

This chapter describes functional units of the 80296SA evaluation board. The board is designed
as a basic demonstration system for evaluating hardware and software performance. This chapter
also includes a block diagram of the board and a diagram of the major components of the board
with a brief description of each functional section.

3.1 BLOCK AND COMPONENT DIAGRAMS OF THE BOARD

Figure 3-1 is a block diagram of the 80296SA evaluation board. The diagram illustrates the four
main parts of the board: the 80296SA microcontroller, digital I/O, memory, and the interface
between the 80296SA and the host PC. As shipped, the board has a both a 128-Kbyte and a 64-
Kword SRAM. It also has a 256-Kword flash.

Figure 3-1. 80296SA Evaluation Board Block Diagram

A5171-01

80C296SA Target Board Host PC

CS5#

RD#

NMI

WR#

80C296SA

Microcontroller

Memory

(RAM, Flash)

COM1/

COM2

Digital I/O

U

A

R

T

3-1

80296SA EVALUATION BOARD MANUAL

satarget.bk : sa_c03.fm5 Page 2 Wednesday, October 23, 1996 5:46 PM
C B A

A5183-01

P2 P3

JP
5

S
1

1

U6

D
E3

U9

U3
P4

U10

F9

U5

U7U1

D
E2

C B A
C

B

A

RP1

0

U2
U8

DP1
RP6

DP2R
P

7

TP1

E6

A B C

E5

C B A

D E4

A B
E8

A B C
E7 RP8

E10

A
 B

 C
E

1

1

P1

RP4

RP5

RP6

U
4

R
P

2

E
11

C
1

JP71

JP12

1
1

JP14

1
JP11

80
29

6S
A

 E
V

A
L

B
O

A
R

D

D
1

Figure 3-2. Component-level Diagram of the 80296SA Evaluation Board
3-2

80296SA EVALUATION BOARD FUNCTIONAL OVERVIEW

om-

wing

satarget.bk : sa_c03.fm5 Page 3 Wednesday, October 23, 1996 5:46 PM
Figure 3-2 is a component-level diagram of the evaluation board. Physically, the 80296SA eval-
uation board measures 4.75 inches × 7 inches. Component details are in both Appendix A, “C
ponents, Jumpers, and Connectors”.

3.2 THE 80296SA MICROCONTROLLER

The 80296SA is a highly integrated 16-bit CHMOS microcontroller. Like all MCS® 96 micro-
controllers, the 80296SA is optimized for control applications. It is pin-compatible with the
8XC196NP and 8XC196NU microcontrollers; however, some electrical and timing differences
exist. Please consult the Intel web site at http://www.intel.com for a current datasheet.

A key feature of the 80296SA is its extremely fast execution engine; it is capable of high program
and data throughput. The internal address/data bus maps into a single, linear 16-Mbyte address
space for both code and data storage. Other important features include a 32-bit accumulator to
increase math performance, an 8-byte prefetch queue, and clock doubling/quadrupling circuitry
with phase-locked loop circuitry to support 50 MHz operation at + 5 VDC. Refer to the 80296SA
Microcontroller User’s Manual (order number 272803) for additional feature information.

3.3 HOST INTERFACE

The host interface is a connection between the host PC serial port (com1 or com2) and the
80296SA serial I/O port (Figures 3-1 and 3-2). The com1 or com2 port connects to a 9-pin con-
nector (P4) on the board and then to the on-board serial I/O (SIO) port via an RS-232 interface.
Four 80296SA signals are used for the host interface. The RS-232 interface uses the nonmaskable
interrupt (NMI) to signal the 80296SA that a character from the host is ready for reception.

3.4 DIGITAL I/O

You can use all digital I/O functions of ports 1–4 for general purposes, except for the follo
chip selects:

• P3.0/CS0#

• P3.1/CS1#

• P3.2/CS2#

• P3.5/CS5#
3-3

80296SA EVALUATION BOARD MANUAL

can be
).

 by ex-
 low-
rollers.
al ad-

 3-5). If
 20 ex-
her, the
nected to

satarget.bk : sa_c03.fm5 Page 4 Wednesday, October 23, 1996 5:46 PM
3.5 80296SA MEMORY SYSTEM

The 80296SA evaluation board is configureable for extended and nonextended external memory
transfer. A key to using the 80296SA memory interface is understanding the relationship between
internal memory addresses and external memory addresses. The 80296SA has 24 internal address
bits (A23:0). These bits support an internal 16-Mbyte linear address space (see Figure 3-3 on page
3-5). For convenience in discussions, the internal address space (000000H–FFFFFFH)
viewed as comprising 16 memory pages; each page is 1 Mbyte in size (00000H–FFFFFH

On the external system bus, the lower 20 of the 24 internal address bits are implemented
ternal pins: A19:0 in demultiplexed mode, or A19:16 and AD15:0 in multiplexed mode. The
er 16 address/data pins (AD15:0) are the same as those in all other MCS 96 microcont
EPORT provides the four extended address pins (A19:16). Therefore, each 20-bit extern
dress can originate from any one of 16 internal 24-bit addresses (see Figure 3-3 on page
the internal 24-bit address issued to the external bus during a fetch cycle is FF2018H, the
ternal-address pins output that address minus the upper four address bits, or F2018H. Furt
address seen by an external device depends on how many of the 20 address pins are con
the external device. For more information, see the 80296SA Microcontroller User’s Manual.

Some specific internal addresses are reserved for in-circuit emulation or are not available exter-
nally. Table 3-1 describes the availability of these internal addresses.

Table 3-1. Reserved or Non-Available Addresses

Address Description Notes

FF0000-FF00FFH Reserved for ICE Always reserved

001F00-001FFFH Peripheral SFRs Always internal

000000-0001FFH Upper and lower register file (register RAM,
stack pointer, and CPU SFRs)

Always internal
3-4

80296SA EVALUATION BOARD FUNCTIONAL OVERVIEW

satarget.bk : sa_c03.fm5 Page 5 Wednesday, October 23, 1996 5:46 PM
Figure 3-3. 80296SA Memory Map

A3106-03

FFFFF

00000

FFFFF

00000

FFFFF

00000

FFFFF

00000

FFFFF

00000

FFFFF

00000

FFFFF

00000

FFFFF

00000

FFFFF

00000

FFFFF

00000

FFFFF

00000

FFFFF

00000

FFFFF

00000

FFFFF

00000

FFFFF

00000

FFFFF

00000

F

F

E

E

D

D

C

C

B

B

A

A

9

9

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0

Internal

Addresses

FFFFF

00000

External

Addresses

20 Bits

4 Additional Internal Only Address Bits = 24 Bits (16 Mbytes)

20 Bits

20 External Bits = 1 Mbyte

(Repeated 16 Times)
3-5

80296SA EVALUATION BOARD MANUAL

000–

 for
byte

s, and
 items

king

ice and

satarget.bk : sa_c03.fm5 Page 6 Wednesday, October 23, 1996 5:46 PM
3.5.1 Memory Modes

The MODE64 bit (CCB1.1) selects one of two memory modes: 1-Mbyte mode (CCB1.1=0) and
64-Kbyte mode (CCB1.1=1). In 1-Mbyte mode, code can execute from any page in the linear
1-Mbyte space. In 64-Kbyte mode, code can execute only from the 64-Kbyte area FF0
FFFFFFH. Extended instructions (e.g., JUMP, BRANCH, and CALL) do not function in the 64-
Kbyte mode. However, this mode provides compatibility with existing software written
MCS 96 64-Kbyte memory maps. The RISMSA software configures the 80296SA in 1-M
mode.

NOTE

Data accesses are the same in the 1-Mbyte and 64-Kbyte modes. The device
can access data in any page. Data accesses to page 00H are nonextended. Data
accesses to any other page are extended.

3.5.2 Using SRAM, EPROM, and Flash

The 80296SA evaluation board supports SRAM (static operation) in 8-bit and 16-bit mode
flash devices. The 80296SA ships with the following (to see a visual representation of the
listed below, see Figure 3-2 on page 3-2):

• 128-Kbyte SRAM in U7

• 64-Kword SRAM in U1

• 128-Kword flash with the RISMSA software installed in U2

At power-up, the 80296SA boots from this flash in U2, which is selected by chip-select 0 (CS0#).
You can then download your application code to the 128-Kbyte SRAM in U7, which is selected
by CS1#. (See “Connecting the Evaluation Board to the Host System” on page 2-3 and “Invo
the Embedded Controller Monitor Software” on page 2-4.)

The memory can also be used in other ways. For example, you can program a flash dev
execute that software without using the Embedded Controller Monitor (ECM).
3-6

satarget.bk : sa_c04_d.fm5 Page 7 Wednesday, October 23, 1996 5:46 PM
4
Introduction to the
Embedded Controller
Monitor (ECM)

satarget.bk : sa_c04_d.fm5 Page 8 Wednesday, October 23, 1996 5:46 PM

and

evalua-
AM,

satarget.bk : sa_c04.fm5 Page 1 Wednesday, October 23, 1996 5:46 PM
CHAPTER 4
INTRODUCTION TO THE EMBEDDED

CONTROLLER MONITOR (ECM)

This chapter introduces the Embedded Controller Monitor (ECM) user interface. This is the in-
terface between the PC-resident software and the evaluation board firmware. The ECM software
consists of two programs: ecm96sa.exe and sar_main.hex. The commands for these programs are
described in Chapter 5, “ECM96SA Command Notation” and Chapter 6, “RISM Registers
Commands”.

4.1 EMBEDDED CONTROLLER MONITOR

ECM is the software interface between the host system and the user code running on the
tion board. It provides basic debug capabilities, including loading object files into system R
examining and modifying variables, and executing and stepping through code.

The 80296SA evaluation board uses a version of the ECM written for the MCS® 96 microcon-
trollers with extended addressing capability. The ECM environment comprises two independent
programs: sar_main.hex and ecm96sa.exe. The sar_main.hex program (referred to as RISMSA)
resides in the evaluation board flash; 80296SA executes it. The ecm96sa.exe software (known as
ECM96SA) resides and executes in DOS*- and Windows*-based PCs and BIOS-compatible
computers.

RISMSA is a reduced instruction set monitor for the 80296SA. It executes rudimentary opera-
tions issued by ecm96sa.exe, which operates in the host PC. RISMSA consists of approximately
700 bytes of 80296SA code: a short section of initialization code and an interrupt service routine
(ISR) that processes interrupts from the host system. The RISMSA ISR consists of a short pro-
logue and then a case-jump to one of several handlers.

ECM96SA, executing in the host PC, provides commands for loading and running code on the
80296SA. It also has features that facilitate test and debug tasks. For example, it can use include,
list, and log files to record on-line ECM sessions and construct batch ECM sessions.
4-1

80296SA EVALUATION BOARD MANUAL

tion

gisters

satarget.bk : sa_c04.fm5 Page 2 Wednesday, October 23, 1996 5:46 PM
Partitioning the ECM into two separate programs supports a number of goals in developing this
system:

• The RISMSA code in the evaluation board is simple and small. This maximizes the space
available for user code.

• The ECM96SA user interface’s features expand beyond the resources of the evalua
board because ECM96SA runs in the host PC.

• RISMSA and ECM96SA run concurrently. They allow you to interrogate and modify the
state of the evaluation board system while it is running.

4.2 RESTRICTIONS

The ECM operates under several restrictions:

• Several user stack words are reserved for RISMSA software use when the evaluation board
processes a host interrupt (see the CAUTION on page 5-17). Internal register locations
0001E0H–0001FFH are reserved for RISMSA code use. Users must ensure that no re
in this partition are used by code operating with the RISMSA.

• A 9600-baud asynchronous serial port must be available on the host PC.

• The TRAP instruction is reserved.

• The breakpoint and step commands operate only with user code located in RAM. (User
code located in EPROM or flash memory cannot use the breakpoint and step commands.)
4-2

satarget.bk : sa_c05_d.fm5 Page 3 Wednesday, October 23, 1996 5:46 PM
5
ECM96SA
Commands

satarget.bk : sa_c05_d.fm5 Page 4 Wednesday, October 23, 1996 5:46 PM

-3)
ft-

t PC.
oard.

initial-

 lower-

ples of

satarget.bk : sa_c05.fm5 Page 1 Wednesday, October 23, 1996 5:46 PM
CHAPTER 5
ECM96SA COMMANDS

This chapter describes the ECM96SA commands. To begin using ECM96SA, see the procedures
for powering up the board (“Connecting the Evaluation Board to the Host System” on page 2
and invoking ECM96SA for the first time (“Invoking the Embedded Controller Monitor So
ware” on page 2-4).

5.1 ECM DEFINED

ECM96SA is the portion of the Embedded Controller Monitor (ECM) that runs on the hos
It provides several tools with RISMSA for testing and debugging code on the evaluation b
ECM96SA commands support tasks such as displaying and modifying program variables,
izing and operating program breakpoints, and single-stepping program execution.

5.2 COMMAND LINE NOTATION

This subsection explains command line notation. Even though the commands are listed in
case, both ECM96SA and DOS are case insensitive.

5.2.1 ECM96SA Command Notation

When entering ECM96SA commands, use the basic rules below (Table 5-1 includes exam
the rules):

• Use parameters and keywords when using commands that affect specific addresses and
files.

• Use a comma as a Boolean OR. For example [this,that] is interpreted as [this] OR [that].

• Insert a hyphen immediately before the command when invoking ECM96SA.

Table 5-1. ECM96SA Command Notation

Rules Example Command Line Notation and Descriptions†

Parameter Example: string byte_address <Enter>

Parameter: byte_address (used to specify a specific address)

Keyword Example: go [from code_address1 till code_address2] <Enter>

Keyword: till (used to indicate a range. In this example, it indicates the
range between the two parameters codeaddress1 and codeaddress2.)

† The square brackets [] indicate an optional argument.
5-1

80296SA EVALUATION BOARD MANUAL

satarget.bk : sa_c05.fm5 Page 2 Wednesday, October 23, 1996 5:46 PM
5.2.2 DOS Command Rules

When entering DOS commands, follow these basic rules (Table 5-2 includes examples of the
rules):

• Use parameters and keywords when using commands that affect specific addresses and
files.

• Use commas to separate parameters.

Comma Example: dasm [code_address], [count] <Enter>

Comma: used to separate distinct parameters. In this example, it
separates the parameters [code_address] and [count].

Hyphenation Example: ecm96sa [-com1(default), com2] <Enter>

Mandatory item: A hyphen must precede the first command.

Description: only used to invoke ECM96SA.

Table 5-2. DOS Command Notation

Rules Example Command Line Notation and Descriptions†

Parameter Example: string byte_address <Enter>

Parameter: byte_address (used to specify a specific address)

Keyword Example: go [from code_address1 till code_address2] <Enter>

Keyword: till (used to indicate a range. In this example, it indicates the
range between the two parameters code_address1 and
code_address2.)

Comma Example: dasm [code_address], [count] <Enter>

Comma: used to separate distinct parameters. In this example, it
separates the parameters [code_address] and [count].

† The square brackets [] indicate an optional argument.

Table 5-1. ECM96SA Command Notation (Continued)

Rules Example Command Line Notation and Descriptions†

† The square brackets [] indicate an optional argument.
5-2

ECM96SA COMMANDS

satarget.bk : sa_c05.fm5 Page 3 Wednesday, October 23, 1996 5:46 PM
5.3 INITIALIZING AND TERMINATING ECM

The commands discussed in Table 5-3 invoke and terminate ECM96SA from DOS, specify nu-
merical bases (octal, decimal, or hexadecimal), and temporarily exit to DOS.

Table 5-3. Commands for Invoking and Terminating ECM96SA

Command Names Command Notations and Descriptions1,2

ecm96sa Notation: ecm96sa [-option1, option2, optionN] <Enter>

Description: Loads and executes the ECM96SA software. Command
options are described below. You can enter string options in any order; if
the options are contradictory, the system accepts the last option entered.

If ECM96SA detects valid CTS (Clear to Send) and DSR (Data Set
Ready) signals from the appropriate COM port, it signs on and displays
one of the following command prompts:

• When the board is executing code, it displays a greater-than
sign (>).

• When the board is not executing code, it displays an asterisk (*).

• When CTS or DSR is not present, ECM96SA notifies you and asks
if you want to proceed or exit. If you proceed, ECM96SA may
operate properly, but your serial port or cabling may have a problem
that will prevent proper operation.

com Notation: [-com1 (default), com2]

Description: Specifies the serial communication port to be used for host
interface. The default is COM1.

baud Notation:[-baud 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200]

Description: Specifies the host-evaluation board communication rate.
Baud rates higher than 9600 baud may not be supported on 8088-based
PCs. A baud rate of 9600 baud can load 8 Kbytes of data in about 20
seconds. A baud rate of 57600 can load 8 Kbytes of data in about 4
seconds.

notypes Notation: [-notypes]

Description: Causes the object file loader to ignore type definition
records in the object module. If it is invoked, the I/O routines recognize
only basic data types, such as BYTEs, WORDs, and LONGs. More
complex data types, such as PLM arrays and structures, are not
recognized.

Notes:

1. All commands used to invoke ECM96SA begin with a hyphen.

2. The square brackets [] indicate an optional argument.
5-3

80296SA EVALUATION BOARD MANUAL

satarget.bk : sa_c05.fm5 Page 4 Wednesday, October 23, 1996 5:46 PM
5.4 GENERAL ECM96SA COMMANDS

Issue the general commands discussed in Table 5-4 after you invoke ECM96SA.

Table 5-4. General ECM96SA Commands

Command Names Command Notations and Descriptions†

dos Notation: dos <Enter>

Description: Lets you temporarily leave ECM96SA and return to DOS to
run other application software.

To return to ECM96SA, type:

exit <Enter>

exit Notation: exit <Enter>

Description: This command has two functions:

• Returns the user to ECM96SA from DOS. When it returns,
ECM96SA has the conditions that were in effect when it was
temporarily suspended.

• Closes any file that ECM96SA has opened and exits to DOS. You
can use this command even if the evaluation board is running a
program (execution continues). ECM96SA sets the selected COM
port to 9600 baud, 8 data bits, no parity, and one stop bit, and then
returns to DOS. The quit command also performs this duty.

base Notations:

• base <Enter>

• base = 10t

• base [= 10o, 10t (breakpoint default), 10h (address default)]
<Enter>

Description: Displays the default arithmetic base. The default base is
used to display variables and to enter numbers into the command
parser. However, you can override the default base during input by
adding an override character to the end of the number. The override
characters are: o (octal), t (decimal), and h (hexadecimal). You must add
the override character immediately after the last digit of the number. Do
not include a space.

Program addresses are always displayed in hexadecimal; and,
breakpoint numbers are always displayed in decimal.

quit Notation: quit <Enter>

Description: Closes any file that ECM96SA opened and exits to DOS.
You can use this command even if the evaluation board is running a
program (execution continues). ECM96SA sets the selected COM port to
9600 baud, 8 data bits, no parity, and one stop bit, and then returns to
DOS. The quit command also performs this duty.

† The square brackets [] indicate an optional argument.
5-4

ECM96SA COMMANDS

satarget.bk : sa_c05.fm5 Page 5 Wednesday, October 23, 1996 5:46 PM
5.5 FILE OPERATIONS

This section describes the commands that ECM96SA uses to load and save object code, enter pre-
defined strings of commands, log commands, and record entire debug sessions including user en-
tries and the response generated by ECM96SA on the host screen.

5.5.1 Loading and Saving Object Code

ECM96SA accepts object files generated by Tasking (formerly BSO) development tools in the
OMF96 version 3.0 format. ECM96SA does not accept files containing unresolved externals or
files containing relocateable records. Pass these files through the RL196 linker to resolve the ex-
ternals and/or absolutely locate the relocateable segments.

To load new code from the PC into the 80296SA evaluation board, use the load and program op-
erations. The load command downloads code that will reside in RAM. Code that will reside in
flash is downloaded to the evaluation board using the “program/erase” commands.

Table 5-5 discusses the ECM96SA commands that currently operate on object files.

Table 5-5. ECM96SA Commands that Operate on Object Files

Command Names Command Notations and Descriptions

load Notation: load filename <Enter>

Description: Loads the content records of the object filename into the
evaluation board’s code RAM or external RAM. The LOAD instruction
cannot be used on flash.

save Notations:

• save filename <Enter>

• save code_address1 to code_address2 in filename <Enter>

Description: Saves a region of memory as an object file that can be
reloaded into the evaluation board’s memory.

ramrism Notation: ramrism

Description: Copies RISM to external RAM and switches RISM
execution to RAM. This command overwrites the contents of external
RAM FF2080h-FF2700h.

flashrism Notation: flashrism

Description: Switches RISM execution back to the flash. This is the
default.

erase Notation: erase addr <Enter>

Description: Erases the flash block associated with the given address.
The command then erases the flash block associated with the addr
argument. The user must issue an erase command for each block of
flash that the user wants to erase. This command overwrites the
contents of external RAM at FF2080-FF2700H.
5-5

80296SA EVALUATION BOARD MANUAL

satarget.bk : sa_c05.fm5 Page 6 Wednesday, October 23, 1996 5:46 PM
5.5.2 Flash Memory Program/Erase

This subsection discusses commands used for programming and erasing flash memory.

WARNING

As a rule, do not erase or program over flash locations 0F2000-0F2700H because the RISM is in
this location. Erasing or programming over the RISM renders the board useless. The only excep-
tion to this rule is you can use the procedures when updating the RISM. Each update will include
specific procedures that must be followed exactly. Altering the update instructions may render
the board useless.

You can easily program the flash regions that do not contain RISM by typing the following
commands:

erase baseaddress <Enter>.

program filename <Enter>.

Where:

baseaddress = the base address of the memory block you want to erase

filename = the name of the file that contains your absolute code

5.5.3 Include, Log, and List Files

Include files contain commands that ECM96SA executes. You can prepare a command sequence
off-line and later have ECM96SA execute the commands just as if they were entered from the
keyboard. An include file can be tedious to generate with a text editor. However, ECM96SA can
use a log file to store characters that you enter during an ECM96SA session. Later, you can use
the log file as an include file to recreate a command sequence. List files keep a running record of
commands you enter and the response ECM96SA generates.

program Notation: program filename <Enter>

Description: Programs the flash with the object filename. It does not do
an erase before programming. Use the erase command to erase each
block that will be reprogrammed before programming. This command
overwrites the contents of external RAM at FF2080-FF2700H.

Table 5-5. ECM96SA Commands that Operate on Object Files (Continued)

Command Names Command Notations and Descriptions
5-6

ECM96SA COMMANDS

satarget.bk : sa_c05.fm5 Page 7 Wednesday, October 23, 1996 5:46 PM
You can insert comments in list and log files to make them easier to understand. A comment be-
gins with a semicolon (;) and ends with an <Enter> or <Esc> character. The semicolon is part of
the comment. The <Enter> or <Esc> character is not part of the comment.

When creating a log file, keep in mind you can place characters in the file to help you transform
the file into a list file. You can use the list file to re-create command sequences. List files keep a
running record of both the commands you enter and the responses ECM96SA generates.

With the list file and log file commands, you can either overwrite existing data in the file or ap-
pend data to the file. By using default filenames, you can gather list and log data in the default
files and avoid having to create and manage a large number of separate files. ECM96SA appends
the date and time to log files and list files whenever they are opened. This information makes it
easier for you to use a text editor to sort the data from the debug sessions.

The commands involved in include, log, and list operations are discussed in Table 5-6.

Table 5-6. Include, Log, and List Commands

Command Names Command Notations and Descriptions

include Notation: include filename <Enter>

Description: Attempts to open filename as a read-only file. If the file can
be opened, the command parser takes commands from that file. These
commands must contain the exact sequence of ASCII characters you
would type to execute them from the keyboard. Once the command
parser reaches the end of the file, the file closes. Only one include file
can be opened at a time.

pause Notation: pause filename <Enter>

Description: (Use within include files.) Pause is not a file-oriented
command. When the command parser reads this command, it stops
parsing and waits for you to press <Space> from the keyboard. The
<Space> character cannot come from the include file. The pause
command provides a way to pause in the middle of an include file
operation. When you press <Space>, the parser continues parsing
commands within the include file.

list Notations:

• list filename <Enter>

• list <Enter>

Description: Attempts to open filename as a writable file. If a file with
filename already exists, ECM96SA asks if the file is to be overwritten or if
the new data should be appended to the end of the existing file. It then
opens the file and stamps it with the current date and time from the
system clock. After this, the file records the commands you enter and the
responses ECM96SA generates.

If you do not enter a filename, the list command uses the last filename
entered as part of a list filename command. If you have not entered any
list filename commands, it uses the default filename “LIST.ECM”
5-7

80296SA EVALUATION BOARD MANUAL

satarget.bk : sa_c05.fm5 Page 8 Wednesday, October 23, 1996 5:46 PM
5.6 PROGRAM CONTROL

Commands in this group control program execution and allow you to reset the microcontroller,
set execution breakpoints, start execution, stop execution, step, and super-step.

5.6.1 80296SA Reset

The following command resets the 80296SA without resetting the entire evaluation board.

listoff Notation: listoff <Enter>

Description: Closes the last list file specified by the list command. If no
filename is specified, it uses the default filename “LIST.ECM”. ECM96SA
then stops recording new commands and responses.

liston Notation: liston <Enter>

Description: Re-opens the list file in the append mode, so recording can
start again. It also stamps the list file with the current date and time from
the system clock. This stops new list information from being recorded.

log Notations:

• log filename <Enter>

• log <Enter>

Description: Attempts to open filename as a writable file. If a file with
filename already exists, ECM96SA asks if the file is to be overwritten or if
the new data should be appended to the end of the file. It then opens the
file and stamps it with the current data and time. After this, the file
records the commands you enter. This file may contain nonprintable
characters (e.g., <Esc>).

If you do not enter a filename, the log command uses the last filename
entered as part of a log filename command. If you have not entered any
log filename commands, it uses the default filename “LOG.ECM”

logoff Notation: logoff <Enter>

Description: Closes a log file that has been specified by the log
command. ECM96SA then stops recording new commands.

logon Notation: logon <Enter>

Description: Re-opens the list file in the append mode, so recording can
begin again. LOGON also stamps the list file with the current date and
time from the system clock.

reset Notation: reset chip <Enter>

Description: Physically resets the microcontroller by writing 0XXXX0001B to the
RISM_DATA register. It then issues a “monitor_escape rism” command, which causes
the evaluation board to execute a reset (RST) instruction.

Table 5-6. Include, Log, and List Commands (Continued)

Command Names Command Notations and Descriptions
5-8

ECM96SA COMMANDS

ution
signifi-
 an in-

<En-
break-
cutes,
pplica-
ng im-
en a

 break
 break
n which
 state

satarget.bk : sa_c05.fm5 Page 9 Wednesday, October 23, 1996 5:46 PM
5.6.2 Breakpoint Features

You can use breakpoints to stop execution at specified addresses. You may also use breakpoints
to examine and/or modify registers and memory before resuming execution.

NOTE

When breakpoints are used to halt application code, microcontroller timers and
peripherals (such as EPA, serial ports, and PWM) may remain active.

5.6.2.1 Breakpoint Operation

ECM96SA provides 16 program execution breakpoints, BR0 to BR15, and a set of commands to
set or clear the breakpoints. A command activates a breakpoint by assigning a specific address of
an instruction where execution is to stop. For example, if “br2 = 0ff209dh <enter>”, exec
halts at address FF209DH. You must set the breakpoint to the address of the first (least
cant) byte of the instruction. If a breakpoint is set to an address that is not the first byte of
struction, execution is unpredictable.

To clear a breakpoint (make it “inactive”) assign a zero to the breakpoint (e.g., “br2 = 0
ter>”). When execution begins, ECM96SA saves the application code byte at any active
point and substitutes a TRAP instruction for the saved byte. When the TRAP instruction exe
ECM96SA restores the application code byte to its original address and decrements the a
tion program counter to point at the restored instruction. The application code stops executi
mediately before the instruction with a breakpoint. Two things happen on the screen wh
break occurs:

• The prompt changes from a greater-than symbol (>) to an asterisk (*), indicating a halt
condition has occurred.

• The target status (shown in the control panel at the top of the console screen) changes from
“TARGET STATUS...RUNNING” to “TARGET STATUS...STOPPED”.

Many monitor programs similar to ECM96SA display a message on the console when a
occurs (e.g., “program break at 001234H”). However, ECM96SA does not output a special
message. Because the system supports concurrent interrogation of the evaluation board o
the application code is running, a break can occur while you are displaying or modifying the
of the evaluation board. Special break messages interrupt command execution.
5-9

80296SA EVALUATION BOARD MANUAL

resses.
 com-

satarget.bk : sa_c05.fm5 Page 10 Wednesday, October 23, 1996 5:46 PM
5.6.2.2 Breakpoint Commands

Breakpoint commands can display breakpoints while the application code is running or stopped.
The commands can activate breakpoints only while the application code is stopped. Table 5-7
lists the breakpoint commands’ notations and descriptions.

NOTE

When possible, avoid using BR0 and BR1 with the breakpoint command.
The GO command with the TILL option can implicitly set BR0 and BR1 and
thereby overwrite the addresses entered with the breakpoint command.

5.6.3 Program Execution Commands

The GO command and its options allow you to start and stop execution at specified add
You can execute this command only if the application code is stopped. In addition, a HALT
mand allows you to stop execution (when the application code is running).

Table 5-7. Breakpoint Command Notations and Descriptions

Command Notations† Command Descriptions

br <Enter> Displays all active breakpoints (i.e., ≠ 0) or informs you
that no breakpoints are active.

br [bp_number = code_address] <Enter> Sets the breakpoint specified by bp_number to the
value code_address. For example, to set breakpoint 3
to the address FF21A0H, type “br3=0ff21a0 <Enter>”.

(The BR command echoes this address as “21a0”; you
can also enter the address FF21A0 as “21a0”.) In this
example, to clear the breakpoint, you would type
“br3 = 0 <Enter>”.

br [bp_number] <Enter> Displays a breakpoint value and optionally changes the
setting. ECM96SA displays the setting of the selected
breakpoint and waits for input. After typing (or not
typing) a new value, you can press <Enter> or <Esc>:

• <Enter> — Terminates the command.

• <Esc> — Displays the next sequential breakpoint.
Enter an address value to set the breakpoint or
press <Esc> again to display the next breakpoint;
the command wraps around from the last
breakpoint (15) to the first breakpoint (0).

† The square brackets [] indicate an optional argument.
5-10

ECM96SA COMMANDS

t
 (so the
 stops
nd you

satarget.bk : sa_c05.fm5 Page 11 Wednesday, October 23, 1996 5:46 PM
The GO commands that set breakpoints use BP0 and BP1. Any break value already in one of
these breakpoints is overwritten by the GO commands. As discussed in “Breakpoint Operation”
on page 5-9, program execution stops just before execution of the instruction at the breakpoin
address. ECM96SA then temporarily deactivates that breakpoint when execution resumes
instruction can be executed) and finally reactivates the breakpoint. However, if execution
at a breakpoint and no other breakpoint is set, the breakpoint is permanently deactivated, a
must use the HALT command to stop the application program.

Table 5-8 lists the GO and HALT commands’ notations and descriptions.

Table 5-8. Go and Halt Command Notations and Descriptions

Command
 Names Command Notations and Descriptions1,2

go Notation: go <Enter>

Description: Starts application code execution with the current value of the appli-
cation’s program counter (PC) and the current breakpoint array.

Notation: go [forever] <Enter>

Description: Clears the breakpoint array and starts execution at the current value of
the application’s PC.

Notation: go [from code_address] <Enter>

Description: Loads the application’s PC with code_address and starts program code
execution with the current breakpoint assignments.

Notation: go [from code_address forever] <Enter>

Description: Loads the application’s PC with code_address, clears the breakpoint
array, and begins program code execution.

Notation: go [from code_address1 till code_address2] <Enter>

Description: Loads the application’s PC with code_address1, sets the first default
breakpoint (BP0) to the value of code_address2, and then begins program code
execution.

Notation: go [from code_address1 till code_address2 or code_address3] <Enter>

Description: Functions like the previous command except that it also sets the second
default breakpoint (BP1) to the value of code_address3.

Notation: go [till code_address] <Enter>

Description: Sets the first default breakpoint (BP0) to code_address and then begins
the program code execution with the current setting of the application’s PC and the
breakpoint array.

Notation: go [till code_address1 or code_address2] <Enter>

Description: Functions like the previous command except that it also sets the second
default breakpoint (BP1) to the value of code_address2.

Notes:

1. Enter all hexadecimal addresses with a leading zero and no spaces (e.g., “0ff1209h”).

2. The square brackets [] indicate an optional argument.
5-11

80296SA EVALUATION BOARD MANUAL

satarget.bk : sa_c05.fm5 Page 12 Wednesday, October 23, 1996 5:46 PM
5.6.4 Program Sequence Control

The ECM96SA interface supports the instruction sequence commands necessary to single-step
your application code. These commands are useful for testing and debugging short sections of
code. This section defines the commands and certain limitations presented by this type of pro-
gram flow control.

5.6.4.1 STEP/SUPER-STEP Operation

ECM96SA provides STEP commands for executing code one instruction at a time. SUPER-
STEP commands are similar, except they treat subroutines and interrupt service routines (ISRs)
as single instructions. Between instructions, you can use ECM96SA commands to check the
states of the variables changed by the instruction to ensure that the program is operating properly.
STEP commands allow a far more detailed view of program behavior. The disadvantage is that
STEP commands do not occur in real time. This restriction makes it difficult or even impossible
to use STEP commands with code that is dependent upon real-time events.

In some situations, STEP operations with enabled interrupt systems are confusing because inter-
rupt service routines are also sequenced one instruction at a time. To avoid this problem,
ECM96SA artificially locks out interrupts with the basic STEP command operation.

SUPER-STEP is similar to STEP; however, SUPER-STEP interrupts are not artificially sup-
pressed. An interrupt service routine or a subroutine call (and the body of the subroutine it calls)
is treated as one indivisible instruction by the SUPER-STEP command. This allows you to ignore
the details of subroutines and interrupt service routines while you view code operation. When an
instruction uses SUPER-STEP, all service routines associated with enabled pending interrupts are
executed. This allows limited stepping through code while operation continues in a concurrent
environment; however, the system does not operate in real time. A better approach is to use the
GO command to execute to a specified breakpoint and then STEP through the code.

halt Notation: halt <Enter>

Description: Stops program code execution by forcing the microcontroller to execute
a jump-to-self instruction in a reserved location.

Table 5-8. Go and Halt Command Notations and Descriptions

Command
 Names Command Notations and Descriptions1,2

Notes:

1. Enter all hexadecimal addresses with a leading zero and no spaces (e.g., “0ff1209h”).

2. The square brackets [] indicate an optional argument.
5-12

ECM96SA COMMANDS

PER-
es not
, DI,
s the
ula-

pera-
tions.

 Aside
 com-
ion uses

satarget.bk : sa_c05.fm5 Page 13 Wednesday, October 23, 1996 5:46 PM
ECM96SA implements the STEP operation by using the TRAP instruction. To STEP over a giv-
en instruction, ECM96SA determines the subsequent instruction (or all possible subsequent in-
structions for a conditional branch) and places a TRAP instruction at these locations. A TRAP is
also set at location FF2080H in case the evaluation board is reset during the STEP. ECM96SA
allows the application program to execute until the program encounters TRAP locations.
ECM96SA then restores all overwritten application code bytes.

A SUPER-STEP operation is similar to a STEP; however, ECM96SA treats the CALL instruction
as a special case. During a STEP, ECM96SA puts the TRAP at the evaluation board call address;
during a SUPER-STEP, ECM96SA places the TRAP at the instruction following the CALL.
When the application’s EI bit is saved, it suppresses interrupts during STEP (but not SU
STEP); then, ECM96SA restores the interrupt. To ensure that the executed instruction do
modify the EI bit, ECM96SA simulates several instructions (PUSHF, POPF, PUSHA, POPA
EI) as opposed to the microcontroller executing the instructions. ECM96SA also simulate
IDLPD instruction during a STEP to prevent the evaluation board from locking up. The sim
tion treats the IDLPD as a two-byte NOP. Instruction simulation occurs only with STEP o
tions. During a GO or a SUPER-STEP operation, the evaluation board executes all instruc

5.6.4.2 STEP and SUPER-STEP Commands

ECM96SA has four STEP commands and four corresponding SUPER-STEP commands.
from the interrupt operation differences discussed earlier, the STEP and SUPER-STEP
mands behave the same way, so they are described here together. The command definit
the phrase “single-step” instead of STEP or SUPER-STEP.

Table 5-9 lists the STEP and SUPER-STEP command notations and descriptions.

Table 5-9. STEP and SUPER-STEP Command Notation and Description

Command Notations† Command Descriptions

[step | super-step] [-option1, option2] <Enter> Single-steps your application code one
instruction at a time.

[step | super-step] [count] <Enter> Single-steps count times.

[step | super-step] [from code_address] <Enter> Loads the application’s PC with the
value of code_address and then single-
steps one time.

[step | super-step] [from code_address, count] <Enter> Loads the application’s PC with the
value of code_address and then single-
steps count times.

† The square brackets [] indicate an optional argument.
5-13

80296SA EVALUATION BOARD MANUAL

 and

satarget.bk : sa_c05.fm5 Page 14 Wednesday, October 23, 1996 5:46 PM
5.7 SUPPORTED DATA TYPES

ECM96SA provides commands to display and modify program variables, including the follow-
ing data types: BYTE, CHAR, WORD, DWORD, REAL, STACK, and STRING. ECM96SA
commands allow you to display variables or to initialize them either individually or as regions of
memory that contain variables of the given type. ECM96SA also supports microcontroller vari-
ables. You can examine the window select register (WSR); and you can examine and modify the
program counter (PC), the program status word (PSW), and the stack pointer (SP).

NOTE

Memory locations 0001E0H–0001FFH are reserved for use by RISMSA.
ECM96SA gives a warning if you attempt to modify these memory locations.

Table 5-10 contains definitions for supported data types.

5.7.1 BYTE, WORD, DWORD, and REAL Commands

ECM96SA has four basic commands to examine and modify BYTE, WORD, DWORD,
REAL variables. There is an additional command for WORD variables only.

Table 5-10. Supported Data Types

Data Types Data Type Definitions

byte A BYTE is an 8-bit variable. No alignment rules are enforced for BYTE variables.

char A CHAR is a special case of a BYTE. CHAR variables are displayed as ASCII
characters.

word A WORD is a 16-bit variable. The address of a WORD is the address of its least
significant byte. A WORD must start at an even byte address.

dword A DWORD is a 32-bit variable. The address of a DWORD is the address of its
least significant byte. A DWORD must start on an address that is evenly divisible
by four. This more restrictive alignment rule applies only to ECM96SA
commands when the single line assembler is used (see “Single Line Assembler
(SLA) Commands” on page 5-18).

real A REAL is a 32-bit binary floating-point number that conforms to the FPAL-96
definition. The 32 bits contain a sign bit, an 8-bit exponent field, and a 23-bit
fraction field. ECM96SA commands use standard scientific notation to represent
REAL numbers. Note that FPAL-96 has special representations for +infinity and
for NaNs (Not a Number, used to signal error conditions). If ECM96SA detects
one of these special values, it outputs an appropriate text string instead of trying
to display the value in scientific notation.

stack A STACK is a 16-bit variable that resides in the system stack. The address of a
stack variable (stack_address) is relative to the current stack pointer and must
be even word aligned.

string A STRING is a sequence of ASCII characters terminated by the NUL character,
which has the binary value of zero.
5-14

ECM96SA COMMANDS

ns.

satarget.bk : sa_c05.fm5 Page 15 Wednesday, October 23, 1996 5:46 PM
Table 5-11 lists the BYTE, WORD, DWORD, and REAL commands’ notations and descriptio

Table 5-11. BYTE, WORD, DWORD, and REAL Command Notations

Command Notations1,2 Descriptions

variable [variable_address] <Enter> Examine and possibly modify one or more
variables at sequential addresses.
ECM96SA displays the hexadecimal
address and the value of the variable in
the default base. You can then terminate
the command, modify the variable, or
examine the variable at the next address:

• <Enter> — Allows you to terminate
the command.

• variable_value — Assign this value
to the variable. Allows you to
terminate the command with
<Enter> or examine the next variable
by pressing <Esc>.

• <Esc> — Allows you to examine the
next variable. You can then
terminate the command (<Enter>),
assign a value (variable_value), or
examine the next variable (<Esc>).

variable [variable_address = variable_value] <Enter> Modify the value of a single variable.

variable [variable_address to variable_address]
<Enter>

Examine the values of the variables in a
range of addresses. In numerical form,
ECM96SA displays an address followed
by up to 16 bytes of memory as BYTE,
WORD, DWORD, or REAL values.

To stop the output, press <Space>. To
resume the output, press <Space> again.
To terminate the command press
<Enter>.

variable [variable_address1 to variable_address2 =
variable_value] <Enter>

Initialize a region of memory to a given
value. At 9600 baud, setting each value
takes a little over one millisecond. To
terminate the command press <Enter>;
this leaves only a part of the memory
region initialized.

word [word_address1 to word_address2 =
word_address3 to word_address4] <Enter>

Copy a block of memory from the second
address range to the first address range.
This command applies to WORD
variables only. To terminate the
command, press <Enter>; this leaves only
a part of the memory region copied.

1. Replace the variable with BYTE, WORD, DWORD, or REAL (e.g., “word 0ff0080h = 0 <Enter>”).

2. The square brackets [] indicate an optional argument.
5-15

80296SA EVALUATION BOARD MANUAL

 eval-
rogram
r (SP).

satarget.bk : sa_c05.fm5 Page 16 Wednesday, October 23, 1996 5:46 PM
5.7.2 STACK Commands

There are two commands for examining the stack. Both commands can be used whether the ap-
plication program is running or stopped.

Table 5-12 lists the STACK command’s notations and descriptions.

5.7.3 STRING Commands

There is only one form of the STRING command:

5.7.4 Register Command Variables

You can read microcontroller variables at any time, but you can modify them only while the
uation board program is stopped. With these commands you can display and load the p
counter (PC), program status word (PSW), window select register (WSR), and stack pointe
Display is in the default base.

Table 5-12. Stack Command Notations and Descriptions

Command Notations† Command Descriptions

stack stack_address <Enter> Examine the 16-bit variable at a given offset from the
stack pointer. ECM96SA executes a “word
word_address” command where word_address takes
the value of the system stack pointer stack_address.

stack [stack_address1 to stack_address2]
<Enter>

Examine a sequence of 16-bit variables at a fixed offset
in the system stack. ECM96SA executes a “word
word_address1 to word_address2” command where
both word_address fields are formed by adding the
corresponding stack_address to the current value of the
system stack pointer.

Press <Space> to stop the output for a long display.

Press <Space> again to resume output, or press
<Enter> to terminate the command.

† The square brackets [] indicate an optional argument.

string Notation: string byte_address

Description: The line begins with a hexadecimal display of byte_address followed
by the NUL-terminated ASCII string starting at that address. For long strings, only
the first 60 characters display. When trailing characters are stripped, decimal points
(.) are substituted for the first three characters stripped.
5-16

ECM96SA COMMANDS

satarget.bk : sa_c05.fm5 Page 17 Wednesday, October 23, 1996 5:46 PM
Use the commands in Table 5-13 to access register variables associated with the microcontroller
rather than with the program..

5.7.5 Displaying and Modifying the Stack Pointer (SP)

RISMSA stores two words in the stack pointer area to retain the program counter (PC) and the
program status word (PSW) during an ECM96SA host interface interrupt. For this reason, when
you display the stack pointer with the SP command or the STACK command, the displayed value
is always offset by a value that compensates for the host interrupt overhead. This makes storing
the host-interrupt related PC and PSW transparent at the evaluation board command level. How-
ever, you must allow for the extra stack space used when calculating total stack space require-
ments. This transparency is convenient but potentially confusing if you display the stack pointer
with the SP command and then either view or directly modify location 18H (the internal register
address of the stack pointer). It is recommended that you do not directly modify the stack pointer
with internal register address 18H.

CAUTION

To avoid conflict with the evaluation board’s stack operations, modify the
stack pointer only with the SP command or by executing application code. Do
not attempt to directly modify the stack pointer via register address 18H.
(Specific implementations of the RISMSA may prevent you from overwriting
register 18H and thereby force the use of the SP command.) Always use the SP
or STACK command to manipulate the stack pointer.

Table 5-13. Register Variable Notations and Descriptions

Register Names Register Command Notations †

program counter Notations:

• pc <Enter>

• pc [= byte_address] <Enter>

program status word Notations:

• psw <Enter>

• psw [= word_value] <Enter>

window select register Notations:

• wsr <Enter>

• wsr [= word_value] <Enter>

stack pointer Notations:

• sp <Enter>

• sp [= word_address] <Enter>

† The square brackets [] indicate an optional argument.
5-17

80296SA EVALUATION BOARD MANUAL

ric” in-
6 mi-
ions

 tested.
not in-
circuit
is not
n.

satarget.bk : sa_c05.fm5 Page 18 Wednesday, October 23, 1996 5:46 PM
5.8 ASSEMBLY AND DISASSEMBLY

ECM96SA supports examining and modifying code memory using the standard mnemonics for
the MCS® 96 assembler (ASM96). Although standard mnemonics are used, ECM96SA does not
build a symbol table of user symbols as assembly mnemonics are entered. This limits the software
to operate as a single line assembler (SLA). References are never made to information entered on
other lines. The SLA does not generate labels. The ECM96SA SLA accepts mnemonics for all
standard instructions that can be executed by the microcontroller. It does not accept “gene
structions, such as BE or CALL, processed by ASM96 into standard instructions for MCS 9
crocontrollers. Neither does it accept JE, SCALL, or LCALL, which are the specific instruct
understood by an MCS 96 microcontroller.

5.8.1 Single Line Assembler (SLA) Commands

The SLA is useful for assembling short code sequences to patch application code as it is
These on-line software routines are useful for testing or patching programs, but the tool is
tended as a replacement for a full-featured assembler (such as ASM96) working with an in-
emulator. You can invoke the SLA whether application code is being executed or not. It
recommended that you dynamically modify code executed during your modification sessio

Table 5-14 lists the SLA command’s notations and descriptions.

Table 5-14. SLA Command Notations and Descriptions

Command Notations† Command Descriptions

asm [code_address] <Enter> Causes ECM96SA to enter the SLA mode. The
assembly program counter (APC) is set to
code_address. Assembly language code, entered by
the user, is converted to object code and loaded into
the evaluation board’s memory. ECM96SA flags
erroneous inputs but remains in the SLA mode. To
terminate this mode, type “end <Enter>” (the only
directive understood by the SLA).

asm <Enter> Functions like the “asm code_address <Enter>”
command except that the APC is not initialized. The
first time the SLA is used, APC is set to FF2080H.
Otherwise, APC points to the byte following the last
instruction generated by the SLA.

† The square brackets [] indicate an optional argument.
5-18

ECM96SA COMMANDS

satarget.bk : sa_c05.fm5 Page 19 Wednesday, October 23, 1996 5:46 PM
5.8.2 Disassembly Commands

The disassembler converts binary object code in the evaluation board memory to ASM96 mne-
monics. Use these commands for checking program patches or examining a portion of a program
for which a listing is not available. You can use these commands whether application code is run-
ning or stopped.

Table 5-15 lists the disassembler command’s notations and descriptions.

Table 5-15. Disassembler Command Notations and Descriptions

Command Notation† Command Description

dasm <Enter> Disassembles the instruction currently pointed to by the
application’s program counter (APC).

dasm [count] <Enter> Reads the current value of the application’s program
counter (APC) and disassembles count instructions
beginning at that location. The parameter count must
be less than 256T (100H) so the command parser can
distinguish this command from the command “dasm
code_address <Enter>”. (This restriction does not apply
to the “dasm code_address, count <Enter>”
instruction.)

During lengthy displays, you can stop the output to the
console by pressing <Space> and resume output by
pressing <Space> again. Press <Enter> to terminate
the command.

dasm [code_address] <Enter> Disassembles the instruction at code_address. The
parameter code_address must be greater than or equal
to 256T (100H) so that the command parser can
distinguish it from the “dasm count <Enter>” instruction.

dasm [-code_address, count] <Enter> Disassembles count instructions starting with the
instruction at code_address.

During lengthy displays, you can stop the output to the
console by pressing <Space> and resume output by
pressing <Space> again. Press <Enter> to terminate
the command.

dasm [code_address to code_address]
<Enter>

Disassembles the region of memory specified. If an
instruction crosses the ending address of the region, it
is completely disassembled before the command
terminates.

During lengthy displays, you can stop the output to the
console by pressing <Space> and resume output by
pressing <Space> again. Press <Enter> to terminate
the command.

† The square brackets [] indicate an optional argument.
5-19

satarget.bk : sa_c05.fm5 Page 20 Wednesday, October 23, 1996 5:46 PM

satarget.bk : sa_c06_d.fm5 Page 21 Wednesday, October 23, 1996 5:46 PM
6
RISM Registers and
Commands

satarget.bk : sa_c06_d.fm5 Page 22 Wednesday, October 23, 1996 5:46 PM

satarget.bk : sa_c06.fm5 Page 1 Wednesday, October 23, 1996 5:46 PM
CHAPTER 6
RISM REGISTERS AND COMMANDS

This chapter describes the reduced instruction set monitor (RISM). The full RISM command set
described in this chapter exists in the external flash on the 80296SA target board. The target board
runs this software under normal 80296SA operation.

6.1 RISM REGISTERS

Table 6-1 discusses RISM registers.

Table 6-1. RISM Registers

Registers Definitions

RISM_DATA A 32-bit register that acts as the primary data interface between software running in the
host (PC) and the RISM running in the target (80296SA).

RISM_ADDR A 24-bit register that contains the address to be used for reading and writing target
memory.

RISM_STAT An 8-bit register used to store RISM status and state information. This register
contains the following Boolean flags:

• DLE_FLAG: Indicates the next character received by the RISM should be treated
as a data byte even if its value corresponds to an implemented command.

• RUN_FLAG: Indicates that the target is running user code.

• TRAP_FLAG: Indicates a software TRAP has occurred while running user code
suspending its execution.

USER_PC Saves the user’s program counter while the user’s code is not executing. Note that
program execution must be stopped to use this command.

USER_PSW Saves the user’s program status word while the user’s code is not executing.
6-1

80296SA EVALUATION BOARD MANUAL

ISM

satarget.bk : sa_c06.fm5 Page 2 Wednesday, October 23, 1996 5:46 PM
6.2 RISM STRUCTURE
The RISM resides in the target system. It provides the interface between the target system and the
user interface that resides in the host system. It is also compact and simple. This serves two pur-
poses:

• The RISM can reside in a user’s system with minimal impact on available memory.

• The RISM is easy to port into the target’s environment.

The RISM internal state structure is simple: only three internal flags can change the way R
deals with a character sent by the host.

• DLE_FLAG: When this flag is set, the next received character is assumed to be a data byte
as opposed to a command byte.

• RUN_FLAG: This flag is set when the target is running user code. It can modify the
operation of some RISM commands.

• TRAP_FLAG: This flag is set when the user code has been halted because the 80296SA
executed a TRAP instruction. The TRAP_FLAG is cleared when the RISM starts the
execution of user code.

6.3 RISM COMMAND DESCRIPTIONS

Table 6-2 on page 6-3 details the operation of each command sent to the RISM.
6-2

RISM REGISTERS AND COMMANDS

satarget.bk : sa_c06.fm5 Page 3 Wednesday, October 23, 1996 5:46 PM
Table 6-2. RISM Command Descriptions

Value Command Description

00H SET_DLE_FLAG Sets the DLE flag in bit 0 of the MODE register to tell the RISM the next byte
on the serial port is data that should be loaded into the DATA register. The
flag is cleared as soon as the byte is read.

02H TRANSMIT Transmits the low byte of the DATA register to the serial port through the
CHAR register, shifts the DATA register right (long) by eight bits, and
increments ADDR by one.

ADDR DATA SBUF_TX

Before
command

FF 22 14 7A 2F 80 67

After
command

FF 22 15 00 7A 2F 80 67

04H READ_BYTE Puts the contents of the (byte) memory address pointed to by the ADDR
register into the low byte of the DATA register.

Memory
Addr.

ADDR DATA 2215 2214

Before
command

FF 22 14 80 67

After
command

FF 22 14 67 80 67

05H READ_WORD Puts the contents of the (word) memory address pointed to by the ADDR
register into the low byte of the DATA register.

Memory
Addr.

ADDR DATA 2215 2214

Before
command

22 14 80 67

After
command

22 14 80 67 80 67

06H READ_DOUBLE Reads the double-word of memory pointed to the address register and places
the results in the RISM_DATA register.
6-3

80296SA EVALUATION BOARD MANUAL

satarget.bk : sa_c06.fm5 Page 4 Wednesday, October 23, 1996 5:46 PM
07H WRITE_BYTE Puts the low byte of the DATA register into the memory address pointed to by
the ADDR register and increments ADDR by one.

Memory
Addr.

ADDR DATA 2217 2216

Before
command

FF 22 16 2E 11 80 09 FF FF

After
command

FF 22 17 2E 11 80 09 FF 09

NOTE: To write to an OTPROM location, VPP must be at +12.5 VDC. To
write to an internal RAM location, VPP can be at either +5.0 or +12.5
VDC.

08H WRITE_WORD Puts the low word of the DATA register into the memory address pointed to
by the ADDR register and increments ADDR by two.

Memory
Addr.

ADDR DATA 2217 2216

Before
command

FF 22 16 2E 11 80 09 FF FF

After
command

FF 22 18 2E 11 80 09 80 09

NOTE

To write to an OTPROM location, VPP must be at +12.5 VDC. To write to an
internal RAM location, VPP can be at either +5.0 or +12.5 VDC.

09H WRITE_DOUBLE Stores the RISM_DATA register in the double-word of memory pointed to by
the RISM_ADDR register and increments the RISM_ADDR register (by four)
to point at the next memory double-word.

0AH LOAD_ADDRESS Puts the low word of the DATA register into the ADDR register.

ADDR DATA

Before
command

FF F1 05 22 16

After
command

FF 22 16 F1 05 22 16

Value Command Description
6-4

RISM REGISTERS AND COMMANDS

satarget.bk : sa_c06.fm5 Page 5 Wednesday, October 23, 1996 5:46 PM
0BH INDIRECT
_ADDRESS

Puts the word from the memory address pointed to by the ADDR register into
the ADDR register.

Memory
Addr.

ADDR 2217 2216

Before
command

FF 22 16 80 09

After
command

FF 80 09 80 09

0CH READ_PSW Loads the RISM_DATA register with the PSW (Program Status Word)
associated with the user’s code. Most RISM implementations must check
RUN_FLAG to determine how to access the user’s PSW.

0DH WRITE_PSW Loads the PSW (Program Status Word) associated with the user’s code from
the RISM_DATA register. The host software will only invoke this command
while user code is not running.

0EH READ_SP Loads the RISM_DATA register with the SP (Stack Pointer) associated with
the user’s code.

0FH WRITE_SP Loads the SP (Stack Pointer) from the RISM_DATA register. This command
also pushes two values into the newly created stack area. These values are
the PC (first) and PSW (second) associated with the idle loop which executes
while user code is not running. The host software will only invoke this
command while user code is not running.

10H READ_PC Loads the RISM_DATA register with the PC (Program Counter) associated
with the user’s code. Most RISM implementations will have to check
RUN_FLAG to determine how to access the user’s PC.

11H WRITE_PC Loads the PC (Program Counter) associated with the user’s code from the
RISM_DATA register. The host software will only invoke this command while
user code is not running.

12H START_USER PUSHes the user PC, PSW, and WSR onto the stack and starts the
application program from the location contained in the user PC. The RISM
PC, PSW, and WSR will also be in the stack, so allow enough room on the
stack for all six words.

You can interrogate memory locations while your program is running. The
RISM interrupts your program to process the command and then returns
execution to your program.

13H STOP_USER Halts execution of the application program, POPs the user PC, PSW, and
WSR from the stack, and PUSHes the RISM PC, PSW, and WSR back onto
the stack. The RISM PC contains the location of the Monitor_Pause routine,
so the RISM returns to Monitor_Pause.

TRAP_ISR A pseudo command that cannot be issued directly by the host software. It is
executed when a TRAP instruction is executed. The TRAP instruction is used
by ECM to implement software breakpoints and single stepping. On the
80296SA target board, these functions are supported for code execution from
on-chip code RAM or the external RAM (cannot insert TRAP into flash).

Value Command Description
6-5

80296SA EVALUATION BOARD MANUAL

satarget.bk : sa_c06.fm5 Page 6 Wednesday, October 23, 1996 5:46 PM
14H REPORT
_STATUS

Loads a value into the DATA register. This value indicates the status of the
application program:

Value Status

00 halted
01 running
02 trapped

15H MONITOR
_ESCAPE

Provides for the addition of RISM commands for special purposes; it uses the
RISM_DATA register to extend the command set of the RISM. If the value of
the lower 16 bits of the RISM_DATA register is one (RISM_DATA =
0XXXX0001H) then the evaluation board microcontroller should execute
either a reset (RST) instruction or a software initialization routine. The basic
RISM requires only one of these “extended” commands.

Value Command Description
6-6

satarget.bk : sa_apxad.fm5 Page 7 Wednesday, October 23, 1996 5:46 PM
A
Components,
Jumpers, and
Connectors

satarget.bk : sa_apxad.fm5 Page 8 Wednesday, October 23, 1996 5:46 PM

satarget.bk : sa_apxa.fm5 Page 1 Wednesday, October 23, 1996 5:46 PM
APPENDIX A
COMPONENTS, JUMPERS, AND CONNECTORS

This appendix contains physical diagrams showing component and jumper locations. It defines
all physical user settings.

Figure A-1 on page A-2 labels the major board components and connectors.

Table A-2 on page A-4 lists the 80296SA evaluation board jumpers.

Figure A-2 on page A-5 shows power supply connector JP5. The flag is oriented toward the outer
edge of the board.

Figure A-3 on page A-6 describes LED bank DP2 on the evaluation board.

Table A-3 on page A-7 describes the serial port connector and necessary cable for connecting the
evaluation board to the host PC. If your PC has a 25-pin serial port, the wiring for an interface
cable is shown in Figure A-4 on page A-8.
A-1

80296SA EVALUATION BOARD MANUAL

satarget.bk : sa_apxa.fm5 Page 2 Wednesday, October 23, 1996 5:46 PM
Figure A-1. 80296SA Evaluation Board Diagram

C B A

A5183-01

P2 P3

JP
5

S
1

1

U6

D
E3

U9

U3
P4

U10

F9

U5

U7U1

D
E2

C B A
C

B

A

RP1

0

U2
U8

DP1
RP6

DP2R
P

7

TP1

E6

A B C

E5

C B A

D E4

A B
E8

A B C
E7 RP8

E10

A
 B

 C
E

1

1

P1

RP4

RP5

RP6

U
4

R
P

2

E
11

C
1

JP71

JP12

1
1

JP14

1
JP11

80
29

6S
A

 E
V

A
L

B
O

A
R

D

D
1

A-2

REGISTERS

satarget.bk : sa_apxa.fm5 Page 3 Wednesday, October 23, 1996 5:46 PM
A.1 COMPONENT LIST

Table A-1 lists all 80296SA components.

Table A-1. Components List

Item # Qty. Description Designators

1 1 Jumper E11

2 1 0.1µF C12

3 1 0.2µF C24

4 13 0.1µF C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C13 C14
C15

5 1 0.1µF C16

6 4 0.1µF C17 C18 C19 C20

7 1 0.1µF C21

8 2 0.1µF C22 C23

9 1 1.8432 MHz U5

10 1 1N4148 D1

11 1 1µF C1

12 2 2.2K R1 R2

13 2 2.7KΩ SIP RP6 RP7

14 2 5K R3 R10

15 5 10K R5 R7 R8 R9 R8

16 2 15K R4 R6

17 1 16C550 U8

18 1 50 MHz Canned Osc U4

19 5 50Ω RP1 RP2 RP3 RP4 RP5

20 1 74LS04 U3

21 1 80C296SA-QFP U6

22 4 CON 34 JP7 JP11 JP12 JP14

23 1 CONN 40POS P1

24 1 CONN 50POS P2

25 2 DB9 Female P3 P4

26 2 HLCP-J100 DP1 DP2

27 2 JUMPER 2PIN E6 E10

28 5 JUMPER 3PIN E1 E5 E7 E8 E9

29 3 JUMPER 4PIN E2 E3 E4

30 1 LH521007CK-20 U7
A-3

80296SA EVALUATION BOARD MANUAL

satarget.bk : sa_apxa.fm5 Page 4 Wednesday, October 23, 1996 5:46 PM
A.2 JUMPER DEFINITIONS

Table A-2 contains the vital 80296SA jumper information.

31 2 MAX233 U9 U10

32 1 PA28F400BV-B U2

33 1 PWR CONN JP5

34 1 RESET S1

35 1 TC55164J U1

36 1 TEST POINT TP1

Table A-2. Jumper Definitions

Jumper Label Pin Number Signal Name Jumper Options

E1 U6:VCC 3.3V/VCC’/VCC1 A-B = 3.3V

B-C = VCC1

E2 U2:Pin1 GND/VPP/+12V/VCC A-B = GND

B-C = +12V

B-D = Vcc

E3 U2:Pin 2 VCC/WP#/GND/A19 A-B = Vcc (Cutable Trace)

B-C = GND

B-D = A19

E4 U2:Pin 44 GND/RP#/+12/Vcc A-B = GND

B-C = +12V

B-D = Vcc

E5 U2:Pin 43 WR#/WE#/Vcc A-B = WR#

B-C = Vcc

E6 U2:Pin 12 CS0#/CE# A-B = CS0#

E7 JP7:Pin 30 CS4#/JP7/CS0# A-B = CS4#

B-C = CS0#

E8 U6:Pin 5 GND/EA#/Vcc’ A-B = Vcc’

B-C = GND

E9 U6:Pin 43 U9.T2/P4.3/U10.T2 A-B = T2 OF U9

B-C = T2 OF U10

E10 Emulator
POWER

Vcc1/Vcc A-B = Vcc1

E11 U6:Pin 71 RPD/C24 A-B = RPD

Table A-1. Components List (Continued)

Item # Qty. Description Designators
A-4

REGISTERS

satarget.bk : sa_apxa.fm5 Page 5 Wednesday, October 23, 1996 5:46 PM
A.3 POWER SUPPLY CONNECTOR

Figure A-2 depicts the orientation of the terminals with respect to the evaluation board. The flag
on the JP5 connector is oriented to the inside of the board.

Figure A-2. Power Supply Connector JP5

+3.3VDC

VCC = +5VDC

Flag

+12VDC

VSS = Ground

A5172-01

4 3 2 1
A-5

80296SA EVALUATION BOARD MANUAL

satarget.bk : sa_apxa.fm5 Page 6 Wednesday, October 23, 1996 5:46 PM
A.4 LED BANK DESCRIPTIONS

Figure A-3 shows the LED banks DP1 and DP2. At power-on and whenever the board is reset,
LEDs 1 through 8 turn on then off together. Then they blink on in sequence continuously until
the host PC sends a command to the board, power is turned off, or the board is reset. LED 9 re-
mains off during the entire power-up sequence. In the default configuration, LED 10 stays on con-
tinuously to indicate the board has +5 VDC applied. LEDs 1 through 8 can be programmed to
display port 1.7:0.

Figure A-3. LED Banks DP1 and DP2

A5173-01

P2.0 / TxD

P2.1 / RxD

P2.2 / EXINT0

P2.3 / BREQ#

P2.4 / EXINT1

P2.5 / HOLD#

P2.6 / HOLDA#

P2.7 / CLKOUT

UARTOUT

VCC

1

2

3

4

5

6

7

8

9

10

DP2

P1.7 / T2DIR

P1.1 / EPA1

P1.2 / EPA2

P1.3 / EPA3

P1.4 / T1CLK

P1.5 / T1DIR

P1.6 / T2CLK

P1.0 / EPA0

NC�

VCC

1

2

3

4

5

6

7

8

9

10

DP1
A-6

REGISTERS

satarget.bk : sa_apxa.fm5 Page 7 Wednesday, October 23, 1996 5:46 PM
A.5 HOST SERIAL CONNECTOR DESCRIPTION

Table A-3 shows a 9-pin serial connector and the connection of the signals to the 80296SA eval-
uation board. This connector is a DB-9S RS-232 (DB9); it is included as part of the 80296SA
evaluation board kit. The cable must connect all nine signal lines, without loopbacks or crossed
wires. The 80296SA evaluation board port P1 is pinned out for a standard IBM-PC/AT* type se-
rial port.

If your computer has a 25-pin serial port connector, we recommend you buy a standard RS-232
25-pin to 9-pin conversion adapter or cable. Figure A-4 on page A-8 shows you how to assemble
a 25-pin to 9-pin serial port interface adapter cable for the correct connection to the 80296SA
evaluation board.

Table A-3. P1 Host Serial Connector

P1 Connector Pin
Nos.

Host RS-232
Signal Name/Function

Connection on
Evaluation Board

5 SG – Signal Ground VSS

4 DTR – Data Terminal Ready INIT

3 TXD – Transmit Data RXD

2 RXD – Receive Data TXD

1 DCD – Data Carrier Detect INIT

6 DSR – Data Set Ready INIT

7 RTS – Request To Send CTS (pin 8)

8 CTS – Clear To Send RTS (pin 7)

9 RI – Ring Indicator Run Indicator
A2819-01

5 4 3 2 1

9 8 7 6
A-7

80296SA EVALUATION BOARD MANUAL

satarget.bk : sa_apxa.fm5 Page 8 Wednesday, October 23, 1996 5:46 PM
Figure A-4. Serial Interface

To Evaluation Board

P1

To Host PC

DCD

DSR

RXD

RTS

TXD

CTS

DTR

RI

GND

A2343-02

1

6

2

7

3

8

4

9

5	

1

14

2

15

3

16

4

17

5

18

6

19

7

20

8

21

9

22

10

23

11

24

12

25

13

Shield Ground

TXD

RXD

RTS

CTS

DSR

GND

DTR

DCD

RI

Note :

Signal mnemonics are referenced to the host.
A-8

80296SA EVALUATION BOARD MANUAL

satarget.bk : sa_apxa.fm5 Page 9 Wednesday, October 23, 1996 5:46 PM
A-9

satarget.bk : index_d.fm5 Page 10 Wednesday, October 23, 1996 5:46 PM
Index

satarget.bk : index_d.fm5 Page 11 Wednesday, October 23, 1996 5:46 PM

satarget.bk : satarget.IX Page 1 Wednesday, October 23, 1996 5:46 PM
80296SA
description, 3-3

A
ASM see ECM96SA commands
ASM96, 5-18, 5-19

B
Bulletin board service (BBS), 1-5, 1-6

C
Command variables, 5-16

D
d stack point, 5-16
DASM see ECM96SA commands
Demo board

LED diagram, A-6
serial connector pin definition, A-7

documents
ordering, 1-5

DOS Command Rules, 5-1

E
ECM

description, 4-1
ECM Defined, 5-1
ECM96SA command notation, 5-1
ECM96SA commands, 5-1–??, 5-1

ASM, 5-18
breakpoint, 5-9
BYTE, 5-14
CHAR, 5-14
DWORD, 5-14
go, 5-11
halt, 5-12
notation, 5-1
REAL, 5-14
reset chip, 5-8
STACK, 5-14
stack, 5-16
step/super step, 5-12
STRING, 5-14

string, 5-16
WORD, 5-14

ECM96SA, general commands, 5-4
ecm96sa.exe, initializing, 5-3
ecm96sa.exe, terminating, 5-3
Evaluation board

applying power, 2-3
block diagram, 3-1
diagram, A-2
jumper definitions, A-4
kit contents, 2-1
LED diagram, A-6
parts list, A-3
power supply connector diagram, A-5
serial connector diagram, A-8
serial connector pin definition, A-7

External address space, 3-4

F
FaxBack service, 1-5, 1-6
file operations, 5-5

H
Help desk, 1-5
Host serial port interface, 3-3

I
iECM

restrictions, 4-2
Include files, 5-6
Internal address space, 3-4
Internet see World Wide Web

J
Jumper information

definitions, A-4

L
LED bank diagram, A-6
List files, 5-6
Log files, 5-6
Index-1

80296SA EVALUATION BOARD MANUAL

satarget.bk : satarget.IX Page 2 Wednesday, October 23, 1996 5:46 PM
M
Memory configurations

external memory, 3-4
internal memory, 3-4
memory map, 3-5
memory modes, 3-6
memory system description, 3-4

N
notation conventions, 1-2

O
object code

loading, 5-5
saving, 5-5

P
Power supply connector, A-5
program counter, 5-16
program execution commands, 5-10
program status word, 5-16

R
Reset, 5-8
RISMNU commands, 6-2–??

GO, 6-5
INDIRECT, 6-5
READ_BYTE, 6-3
READ_PC, 6-5
READ_PSW, 6-5
READ_SP, 6-5
READ_WORD, 6-3
SET_DLE_FLAG, 6-3
TRANSMIT, 6-3
WRITE_BYTE, 6-4
WRITE_DOUBLE, 6-4
WRITE_PC, 6-5
WRITE_PSW, 6-5
WRITE_SP, 6-5
WRITE_WORD, 6-4

S
Serial connector, host pin definition, A-7
Single Line Assembler (SLA) commands, 5-18
Stack see EMC96SA commands
string, 5-16

T
Tech support, 1-5

W
window select register, 5-16
World Wide Web, 1-5

Intel home page, 1-6
Index-2

