

特点

- ₩ 校表过程中高稳定性,输出频率波动小于 0.1%
- 輸入信号频率变化(45Hz⁻65Hz)引起的测量误差小于 0.1%
- 采用独创的 SLiM®低功耗设计技术。单电源工作(5V),静态功耗 35mW(典型值),(外部采用3.56MHz晶振)
- 慢速輸出脉冲(F1,F2)能直接驱动电机工作, 快速輸出脉冲(CF)可用于计算机数据处理。给出各相校验脉冲 CFA, CFB, CFC。
- 具有高频分相和合相脉冲输出模式,分相脉冲 CFA, CFB, CFC 的满载输出频率高达 5KHz。

(在 MCF=1, SCF=0, S0=0, S1=1 的工作模式下)

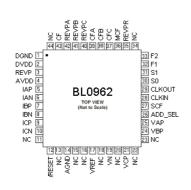
- 可以选择代数求和或绝对值求和两种方式来 计量三相平均功率和
- 防窃电功能,逻辑输出脚 REVP 用于显示三相中任一相存在反向用电。
- ☞ 逻辑输出脚 REVA, REVPB, REVPC 用于分别显示各相的反向用电或者错误用电状况。
- 三相代数和反向指示 REVPR, 在功率代数和相加值为负时给出反相指示。(此时 ADD_SEL=1)
- 芯片上有电压检测电路,检测掉电状况
- ₩ 具有防潜动功能
- ₩ 具有 16 种工作模式 (其中一个为高频模式)
- ₩ 采用 OFP44 封装形式
- 采用 0.35 um 数模混合 CMOS 工艺,可靠性好, 工作寿命大于 20 年

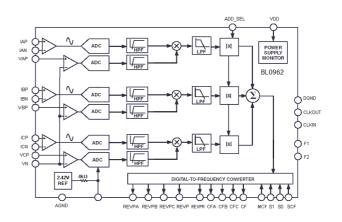
概述

BL0962 集成电路是三相电子电度表的核心计量 芯片, 采用低功耗设计, 外部采用(1.8MHz-3.56MHz的晶体振荡器), 芯片静态功耗35mW(典型值)。基于此芯片设计的三相电子电度表具有外围电路简单、精度高、稳定性好等特点,适用于三相三线和三相四线电力用户的电能计量。

BL0962 是基于数字信号处理的电能计量芯片, 有测量正向和负向有功功率的功能。它可以通过选 择采用绝对值或代数和相加之一的方式来计量有 功功率和。CF 输出以较高频率的脉冲,用于校验和 计算机数据处理,F1 和 F2 输出较低频率的脉冲用 于驱动脉冲电机,间接驱动机械字轮计度器计算功 率,记录用电量。BL0962 给出各相的校验频率输出 脚 CFA, CFB, CFC,可以用于各相工作显示。提供 各相反相用电指示 REVPA, REVPB, REVPC,可用于 防窃电。并具有 16 种可供选择的工作模式,用于 更广泛的电表方案的设计。

给出一个高速频率输出模式,该模式下分相频 率输出最高可达到 5KHz,可用于数字校表应用。


给出真实功率和的反向指示 REVPR, 当功率代数和为负时指示。


片内电路结构完全保证电压和电流通道的信号在乘法器前的相位匹配。这就保证了输入信号在 45Hz 65Hz 范围内的频率变化对增益基本没有影响。

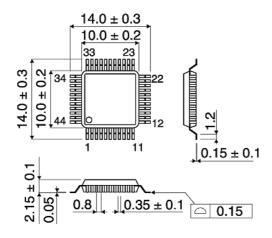
BL0962 着重考虑了校表过程中读数误差的稳定性的需求,成品测量数据表明输出校表脉冲信号有极强的稳定度(CF的波动小于0.1%)。

注: 相关专利申请中。

框图

管脚描述

管脚号	符号	说明
1	DGND	内部数字电路接地点
2	DVDD	正电源(+5V),提供数字部分电源,正常工作时电源电压应该
		保持在+4.75V-5.25V 之间。
3	REVP	负向有功功率指示信号,在任何一相中,当电流通道和电压通
		道输入信号的相位差大于90°时,该脚输出高电平。
4	AVDD	正电源 (+5V), 提供模拟部分电源, 正常工作时电源电压应该
		保持在+4.75V-5.25V 之间。
5, 6;	IAP, IAN;	三相电流采样信号的正,负输入脚。最大差分输入电压为
7,8;	IBP, IBN;	±500mV。
9,10	ICP, ICN	
11, 13, 15, 16,	NC	空脚 (保留)
18, 20, 22, 23,		
34, 44		
12	/RESET	复位引脚,低电平有效。
14	AGND	内部模拟电路的接地点。
17	VREF	参考电压调整端,片内基准电压标称值 2. 42±8%, 温度系数典型
		值为 30ppm/℃。允许使用外部 2.5V 电压输入。
		外部接 100uF 电容,可有效抗高速脉冲群干扰。
19, 21, 24,	VN, VCP	VAP, VBP, VCP 与 VN 分别构成三相电压采样信号的正,负输入脚。
25	VBP, VAP	最大差分輸入电压为±500mV。
26	ADD_SEL	用于选择代数和或绝对值相加方式。当为 0 时,选择绝对值相
		加,为1时选择代数和相加。
27	SCF	高频校验脉冲选择端,与 S1, S0, MCF 组合起来选择 CF 和 HCF 的
		输出频率。
28	CLKIN	外部时钟引入或与 CLKOUT 之间接晶振
29	CLKOUT	时钟驱动脚或与 CLKIN 之间接晶振
30, 31	S0, S1	通过 S1, S0 的组合可以针对不同的电表常数选择不同的输出频
		率,为电表设计提供更大的选择范围。
32, 33	F1, F2	低速逻辑输出脚,其输出频率正比于平均有功功率的大小,
		F1, F2 为非交叠输出,可以驱动机电式计度器或两相步进电机。
		输出频率见 BL0962 计算公式。
35	REVPR	真实功率和反向指示。当各相功率和 PA+PB+PC>0 时,反向指示
		为1。注: 只有在代数和相加时有效。
36	MCF	通过与 S1, S0, SCF 的组合可以针对不同的电表常数选择不同的
		工作模式。
37	CFC	高速校验脉冲输出脚,输出频率正比与 C 相瞬时有功功率的大
		小,可以有多种选择。
38	CFB	高速校验脉冲输出脚,输出频率正比与 B 相瞬时有功功率的大
		小,可以有多种选择。



39	CFA	高速校验脉冲输出脚,输出频率正比与 A 相瞬时有功功率的大
		小,可以有多种选择。
40	REVPC	C 相负向功率指示信号, 当该相有负功时, 该脚输出高电平。
41	REVPB	B相负向功率指示信号,当该相有负功时,该脚输出高电平。
42	REVPA	A相负向功率指示信号,当该相有负功时,该脚输出高电平。
43	CF	高速校验脉冲输出脚,输出频率正比与瞬时有功功率的大小,
		可以有多种选择。

封装尺寸

44-Lead Plastic Quad Flatpack Package [QFP]

Dimensions shown in millimeters

极限参数

 $(T = 25 \ ^{\circ}C)$

项目	符号	极值	单位
模拟电源电压 AVDD	AVDD	$-0.3^{-}+5.3 \text{ (max)}$	V
数字电源电压 DVDD	DVDD	$-0.3^{-}+5.3 \text{ (max)}$	V
DVDD 相对 AVDD		-0.3 +0.3	V
输入电压(相对于 AGND)	Vv	$VSS+0. 5 \leq Vv \leq VDD-0. 5$	V
输入电压(相对于 AGND)	Vi	$VSS+0. 5 \leq Vi \leq VDD-0. 5$	V
工作温度	Topr	-40 +85	${\mathbb C}$
贮藏温度	Tstr	-55 ⁻ +150	${\mathbb C}$
功耗 (DIP24)		400	mW

常温电参数

常温电特性 (T=25℃, VDD=5V, CLKIN=3.58MHz)

测量项目	符号	测量条件	测量点	最小	典型	最大	单位
1 电源电流	I _{VDD}		Pin2		7		mA
2 逻辑输入脚			Pin27,				

	ı			1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		二相用具	
ADDSEL , SCF,			26, 30,				
S0, S1, MCF			31, 36				
输入高电平	V_{IH}	AVDD=5V		3			V
输入低电平	V_{IL}	DVDD=5V				1	V
输入电容	C_{IN}					10	pF
3 逻辑输出脚			Pin32, 3				
F1, F2			3				
输出高电平	V_{OH1}	$I_H=10mA$		4.4			V
输出低电平	V_{0L1}	$I_L=10mA$				0.5	V
输出电流	I_{01}				10		mA
4 逻辑输出脚			Pin3,				
REVP, REVPR,			35, 37,				
CFC, CFB, CFA,			38, 39,				
REVPC, REVPB,			40, 41,				
REVPA, CF			42, 43				
输出高电平	V_{OH2}	$I_H=10mA$		4.4			V
输出低电平	V_{0L2}	$I_L=10$ mA				0.5	V
输出电流	I_{02}				10		mA
6基准参考电压	Vref	AVDD=5V	Pin17	2.3	2.5	2. 7	V
温度系数				30	30	60	ppm/°C
7模拟输入脚			Pin5, 6,				
IAP, IAN, IBP,			7, 8, 9,				
IBN, ICP, ICN,			10, 19,				
VN, VCP, VBP,			21, 24,				
VAP			25				
最大输入电平	V _{AIN}				±500		mV
直流输入阻抗					330		Kohm
输入电容				6		10	pF
ADC offset	Voff				±15		mV
8 精度							
电流通道的非线性		电压通道输	Pin37,		0. 1	0. 3	%
测量误差。		入±500mV	38, 39,				
CFC, CFB, CFC, CF		动态范围	43				
, , , , , , , , , , , , , , , , , , , ,		500: 1					
两个通道相位误差		•					
电流超前 37℃			Pin37, 3		0. 1	0. 3	%
(PF=0.8 容性)			8, 39, 43		V. 1	0. 3	,,,
电流滞后 60°C			Pin37, 3		0. 1	0. 3	%
(PF=0.5 感性)			8, 39, 43		V. 1	0. 3	,,,
9启动电流	Istart	Ib=5A	Pin5, 6,	0. 2% I			A
2 712 :74 (3 4/10	₹ 91VII	C=100,	7, 8, 9,	b			11
		c 100, cosφ=1	20				
		σουψ τ	20				<u> </u>

		电压通道					
		±110mV					
10 正、负向有功功	ENP	Vv=±110mV, V	Pin43			0.3	%
率误差%		(I) = 2mV,					
		cosφ=Ĩ					
		Vv=±110mV, V					
		(I) = 2mV,					
		cosφ=-1					
11 增益误差	Gain		Pin43		±5	±7	%
	error						
12 电源监控电路检	$V_{\rm down}$	电源从		3. 9	4	4. 1	V
测电平(掉电检测		3.5V ⁻ 5V 变					
电平)		化, 电流电压					
		通道满幅输					
		入					

指标说明

1) 非线性误差%

BL0962 的三个电压通道输入固定,交流电压 V(V) 为±150mV, 功率因数 cosφ=1, 三相电流 通道輸入 (PIN5 和 PIN6, PIN7 和 PIN8, PIN9 和 PIN10) 之间电压 Vi 在对应与 5%Ib 500%Ib 范围内,任何一点输出频率相对于 Ib 点的测量非线性误差小于 0.1% eNL% = [(X点误差%-Ib点误差%)/(1+Ib点误差%)]*100%

2) 启动电流

在电表常数 C=100, 基本电流 Ib=5A、cos(p=1、V(V)=±110mV、5% Ib 点电度表误差为正 常范围的条件下,能使 Pin1 产生脉冲信号的电流回路中的最小交流电流。

3) 正、负向有功功率误差%

在相等的有功功率条件下, 电流输入为 Ib=5A 点, BL0962 测得的负向有功功率与正向 有功功率之间的相对误差:

eNP%=|[(eN%-eP%)/(1+eP%)]*100%|

eP%: 正向有功功率误差; eN%: 负向有功功率误差。

4)输入功率(正/负)

指各相电压采样信号 V(V)与各相的电流通道输入信号 V(I)乘积 V(V)*V(I)*cosφ的符号, 大于零为正功,小于零为负功。

5) 增益误差

由于工艺偏差造成的芯片与芯片的增益略有不同,这种偏离相对于标称值的百分比为增 益误差。

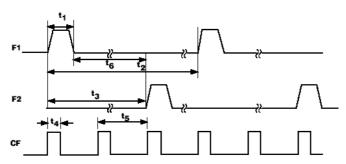
6) 电源监控电路检测电平(掉电检测电平)

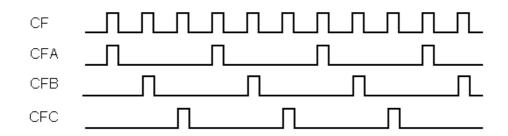
片内电源监测电路检测电源变化情况,当电源电压低于 4 伏左右时,内部电路被复位。

当电源电压超过该值时, 电路恢复工作在正常状态。

时序特性

(AVDD=DVDD=5V, AGND=DGND=0V, 使用片内基准电压源, CLKIN=3.58MHz, 温度-40⁻+85℃) 1) CF 与 F1, F2 的时序




Figure 1. Timing Diagram for Frequency Outputs

VDD=5V, AGND=DGND=0V,使用片内基准电压源,CLKIN=3.58MHz,温度-40-+85°C

参数	数值	说明
t1	145ms	F1 和 F2 的高电平脉宽,在低功率时, F1,F2 输出定脉宽,为
		145ms。当计量大功率时, F1, F2 输出周期小于 290ms 时, F1 (F2)
		的脉宽为周期的 1/4。
t 2		F1, F2 输出低速脉冲周期,见 BL0962 计算公式
t 3	t2 周期的一半	F1 上升沿到 F2 上升沿之间的时间
t 4	90ms	高速输出脉冲 CF 的高电平脉宽,在计量小功率时, CF 定脉宽为
		90ms。当计量大功率时,CF 输出周期小于 180ms 时,CF 的脉宽
		为周期的一半。
t 5		CF 输出高速脉冲频率,见 CF 与 F1, F2 之间关系及 BL0962 计算
		公式
t 6	CLKIN/4	F1, F2 之间的最小时间间隔

注: 在高频工作模式下 (MCF=1, SCF=0, S0=0, S1=1), F1, F2 不推荐使用。

2) CF 与 CFA, CFB, CFC 的时序关系

正常情况下,由于合相功率是各单相的三倍,CF 的频率是 CFA, CFB, CFC 的三倍。 只有两相工作时,CF 频率为各工作相的两倍。 只有单相工作时,CF 与单相频率一样。

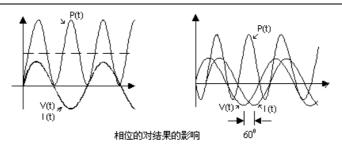
3) 高频输出模式

当 MCF=1, SCF=0, S0=0, S1=1 时, BL0962 处于高频输出模式。 CFA, CFB, CFC 分别输出代表各相功率的高速频率脉冲, CF 输出合相的高速频率脉冲。

注: 此工作模式下 BL0962 配合 MCU 实现数字校表, F1, F2 不使用。

工作原理

◆ 电能计量原理


电能计量主要把输入的电压和电流信号按照时间相乘,得到功率随着时间变化的信息,假设电流电压信号为余弦函数,Umax, Imax 为输入电压和电流信号峰值,并存在相位差 Φ , 功率为:

$$\begin{split} p(t) = &U_{\max} \cos(\omega t) \times I_{\max} \cos(\omega t + \Phi) \\ \Leftrightarrow \Phi = &0 \text{ Bt}: \\ p(t) = &\frac{U_{\max} I_{\max}}{2} [1 + \cos(2\omega t)] \\ \Leftrightarrow \Phi \neq &0 \text{ Bt}: \\ p(t) = &U_{\max} \cos(\omega t) \times I_{\max} \cos(\omega t + \Phi) \\ = &U_{\max} \cos(\omega t) \times [I_{\max} \cos(\omega t) \cos(\Phi) + I_{\max} \sin(\omega t) \sin(\Phi)] \\ = &\frac{U_{\max} I_{\max}}{2} [1 + \cos(2\omega t)] \cos(\Phi) + U_{\max} I_{\max} \cos(\omega t) \sin(\omega t) \sin(\Phi) \\ = &\frac{U_{\max} I_{\max}}{2} [1 + \cos(2\omega t)] \cos(\Phi) + \frac{U_{\max} I_{\max}}{2} \sin(2\omega t) \sin(\Phi) \\ = &\frac{U_{\max} I_{\max}}{2} \cos(\Phi) + \frac{U_{\max} I_{\max}}{2} [\cos(2\omega t) \cos(\Phi) + \sin(2\omega t) \sin(\Phi)] \\ = &\frac{U_{\max} I_{\max}}{2} \cos(\Phi) + \frac{U_{\max} I_{\max}}{2} \cos(2\omega t + \Phi) \end{split}$$

P(t)称为瞬态功率信号,理想的 P(t)只包括两部分: 直流部分和频率为 2ω 的交流部分。前者又称为平均功率信号。

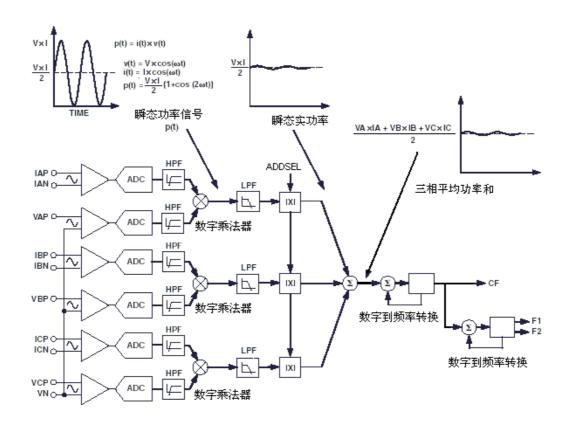
$$P = \frac{U_{max}I_{max}}{2}cos(\Phi)$$

可以看出平均功率与电压和电流信号的相位差的余弦值 $\cos(\Phi)$ 的有关,该余弦值被称为这两路信号的功率因数 PF(Power Factor)。

当电流电压的相位差超过90度时,P为负,表明反向用电。

三相计量芯片的主要功能是计量三相平均功率的和(绝对值和或代数和),并输出与功 率成正比的频率信号。

当采用代数相加时,三相功率和为:


$$P_{TOTAL} = P_A + P_B + P_C$$

如果三相中有一相为负时, 其值会与其它为正项互相抵消。

当采用绝对值相加时,三相功率和为:

$$P_{TOTAL} = |P_A| + |P_B| + |P_C|$$

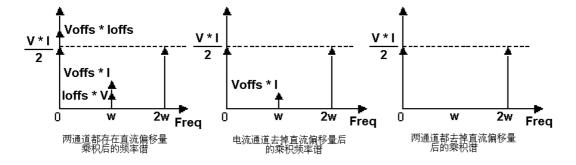
电能计量信号流 (局部)

BL0962 内置六通道高精度模数转换器,三相的电流电压信号通过采样及模数转换后,

通过数字乘法器得到各相的瞬态功率信号 P(t)。让 P(t)通过一个截至频率很低(如 1Hz)的低通滤波器(LPF),把平均功率信号取出来。然后对每相功率做代数相加或绝对值相加(可选),获得三相功率和。

三相功率和的输出会被送到一个数字-频率转换的模块,在这里,平均功率会根据要求作长时或短时的积分(即累加计数),转换成与功率大小成正比的周期性的脉冲信号,这就是电子电能表的快速校验输出信号 CF。

通过对快速脉冲 CF 的不同分频,可以按照 8 种不同模式获得驱动步进马达的二拍驱动信号 F1 和 F2。输出脉冲送到片外的计数马达,并最终得到能量消耗的大小的计数值。


 輸入的直流成分对测量结果的影响 直流偏移成分来源于输入信号和前端模拟电路本身。
 假设电压和电流输入直流成分分别是 Uoffset 和 Ioffset.且功率因子等于1(Φ=0度)

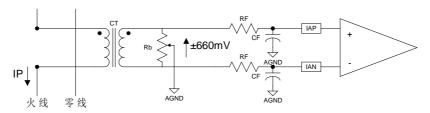
$$p(t) = [U\cos(\omega t) + U_{offset}] \times [I\cos(\omega t + \Phi) + I_{offset}]$$

$$= \frac{UI}{2} + I_{offset}V\cos(\omega t) + U_{offset}I\cos(\omega t) + \frac{UI}{2}\cos(2\omega t)$$

从上面的计算看到:对于每相输入,如果电流电压信号同时具有直流成分,会给平均功率,即乘积的直流部分带来 Uoffset*Ioffset 的误差,还有在 ω 频率处出现 Uoffst*I+Ioffset*V的分量,前者必然引起测量误差,而后者也会当后续的低通滤波器的对 ω 抑制不够时影响平均功率的输出,带来大的波动。

而当电压或电流中的一路经过数字高通滤波器后,如去掉电流采样信号的直流偏移项。 这时仅有一路输入有直流成分时,乘法的结果有了很大的改善:没有了直流误差,w频率处 的分量也减少了。

如果在电流电压两路都经过数字高通滤波器,会进一步抑制乘法器后的 50Hz 输出分量,提高输出信号的稳定性。同时完全匹配电流和电压通道,提高 PF=0.5C 和 PF=0.5L 时的性能。0962 就是采用该种结构,虽然,系统规范给出输出信号波动小于 0.1%,实际测量中,校验输出具有很强的稳定性,典型输出信号波动小于 0.05%。


另外,该结构保证了 0962 的频率特性,在输入信号从 45Hz~65Hz 的频率范围内,其由于输入频率变化所造成的整机误差在 0.1%内。这样,针对 50Hz 频率设计的表,可以用在 60Hz 的电网上而不需要校正。

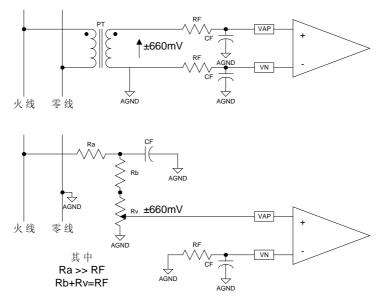
◆ 电流通道输入

从电流互感器输出的电压作为满刻度差分电压,直接连接到BL0962的电流通道上。相对于IAN、IBN和ICN,IAP、IBP及ICP为正输入。电流通道中差分信号满刻度为±500mV(对于正弦信号,有效值为353mV)。

下图显示了电流通道 IA 的典型连接方法,需要注意的是,通道中的差分信号由电流互感器经负载电阻得到。通过调节电流互感器的变比和采样电阻 Rb,可以在最大负载下得到峰值为±500mV 的差分电压。

例:对于 1000:1 的互感器,如果 Ib=5A,那经过互感器后为 5mA,选取 Rb=10 欧姆,对应输入有效值 50mV,如果输入为 30A 时。相应输入有效值为 300mV。

注意:电流通道实际可输入最大差分信号为±840mV 左右,为了有一定的过载保护,其60%(~±500mV)为规范保证的差分输入信号范围。


◆ 电压通道

线电压经互感器输出或电阻分压网络连接到 BL0962 的模拟输入,电压通道为一种伪差分输入,相对于 VN 接地, VAP、VBP 和 VCP 为正端。

电压通道中的最大输入差分信号为±500mV (对于正弦信号,有效值为 353mV)。

下图是电压通道的两种典型连接方法。第一种是使用电压互感器 PT 使输入部分与供电线路隔离开来。

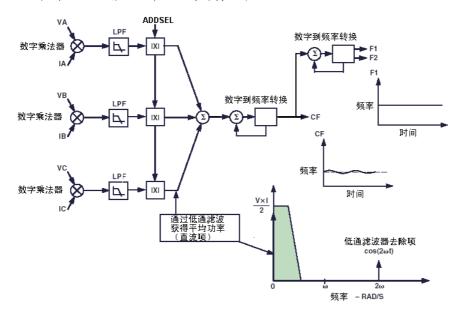
第二种方法通过电阻分压来提供与线电压成正比的通道输入信号。调节 Ra, Rb 和 VR 的比值,可以方便地进行电表增益校准。在实际中,通过电阻分压网络对电表增益做一次调校。

注意: 电流, 电压通道由于外部器件不同, 会造成相位的匹配误差 (主要由于 RC 常数

不同,相移不同),通过调整电压通道的外部电容 Cf 可以调整相位误差,相位误差会影响 PF=0.5 时的系统增益,造成误差。

BL0962 的制造工艺可以保证片与片的补偿值一致。

◆ 电源监视


BL0962 有片上电源监视电路,可以一直监视电压源(VDD)。当电压源小于 4V±5%, BL0962 的输出被关闭。这样可以保证设备在上电和掉电下不发生异常。电源监视电路有迟滞和滤波作用,这就能够消除噪声引起的误动作,增加抗噪性。

启动电平一般定在 4V,容限为 $\pm 5\%$ 。正常情况下,VDD上的波纹不应超过 $5V\pm 5\%$ 。

◆ 数字到频率转换

如前所述,通过乘法器后的低通滤波器,可以得到瞬时功率中的直流量,即平均有功功率。然而,由于此低通滤波器不可能做成理想滤波器,因而低通后的输出信号依然会包含线电压频率的谐波。

下图显示了输出频率 CF 的计算过程:

经过低通后,将三相功率信号进行叠加,然后通过数字到频率转换电路部分,在时间上对功率信号累加得到输出频率信号。这种对功率信号的累加能够将平均功率中的非直流量进一步消去(平均掉)。由于正弦信号的平均值为零,所以得到的频率信号是和平均实功率是成正比的,上图也显示了在稳定负载(电流电压不变的情况下)下数字到频率转换的情况。

如上图所示,即使是在稳定负载条件下,输出频率 CF 也是随时间变化的。这主要是由于瞬时平均实功率中 cos(2wt)的正弦分量。CF 上的输出频率可以达到 F1、F2 的 160 倍。如果在更短的时间周期内累加功率,可以得到更高的输出频率。累加的时间越短,平均正弦分量的效果就越差,这样,反映到输出 CF 就是 CF 存在大的波动。但这并不会在应用中造成问题,若 CF 用在校验上,可以通过频率计数器来进行平均,这就会消除波纹。若 CF 用在能量计量上,CF 输出也应该经平均来计算功率。CF 的波动对长期的计量准确性没有影响。长期的计量相当于对输出信号的波动做了平均。

合理设计低通滤波器可以有效的抑制 CF的波动。

BL0962 带分相输出的三相计量芯片

选择三相有功电能的叠加模式

BL0962 可以将三相有功电能直接以代数方式相加,即 $Wh = Wh_{\phi A} + Wh_{\phi B} + Wh_{\phi C}$: 也.

可以按绝对值相加方式来进行,即 $Wh = \left|Wh_{\phi A}\right| + \left|Wh_{\phi B}\right| + \left|Wh_{\phi C}\right|$ 。方式的选择通过设置 ADDSEL 管脚来完成,该管脚的高电平和低电平分别对应于代数相加模式和绝对值相加模 式。

选择绝对值相加的模式时,在计算总的有功电能中,每相的有功能量都被认为为正。这 种模式在三相四线连接方式下尤其有用,因为此情况下,有功功率的符号总是不变的。若电 表连接错误, 如一相上电流互感器的方向接错, 则总的有功能量就会变成正常状况下的三分 之一,因为其中两相互相抵消了。当然,在这种模式下,反相检测输出会指示接线的错误。

◆ 反相指示 REVP, REVPA, REVPB, REVPC, REVPR

REVPA, REVPB, REVPC 分别指示各相的反相用电情况。

REVP 为合相反相指示,只要有一相反相就指示。

REVPR 为真正的功率和反相指示,在代数和相加的模式下(ADD SEL=1),当 PA+PB+PC<0 时指示。例: 三相同相同幅度输入, REVPR=0; 其中一相反相, 但功率和为 正, REVPR=0; 两相反相, 功率和为负, REVPR=1。

◆ 启动电流 实际测量中, Ib 的 0.2%可以启动。

◆ 防潜动阈值

BL0962 的防潜动值设定为, 当电流电压输入都为 500mV 有效值时(内部满载), 低通 输出功率的 0.0020%, 每相都有防潜动逻辑。

工作方式

◆ 芯片工作计算公式

BL0962 对分别对三相输入电压和电流信号求乘积, 并通过信号处理, 把获取的三相有功 功率相加, 并把功率信息转换成频率。以高电平有效的方式从 F1,F2 脚输出与功率相关的频 率信号。

实际功率的输出脉冲(F1,F2)计算公式(采用 3.56 MHz 晶振)

$$Freq = \frac{13.25 \times \left(U_{AP} \times I_A + U_{BP} \times I_B + U_{CP} \times I_C\right) \times F_{1-9}}{V_{REF}^2}$$

Freq----引脚 F1,F2 输出脉冲频率 UAP.BP.CP----电压通道的输入电压的有效值 IA,B,C----电流通道的输入电压有效值

Vref---- 基准电压(2.42±8%)

F1-9----查工作模式选择表

◆ BL0962 外部晶体选择对工作的影响

由于 BL0962 内部采用并行算法处理功率的计算,其工作频率在 1.8MHz~3.58MHz, 这 就大大降低了其静态功耗,在外部采用3.58MHz晶体振荡器时,其输出F1和F2脉宽为145ms. CF 脉宽为 90ms。

如果采用小于 3.58MHz 外部晶体振荡器,如 2.5MHz, 2MHz, 1.8MHz 等时,输入时 许序会相应发生变化。如时钟放慢一倍,采用 1.8MHz 晶振时,输出 F1,F2 的脉宽会变宽一 倍,达到 290ms 左右, CF 脉宽为 180ms。而相应的 F1F2 计算公式为:

$$Freq = \frac{6.625 \times \left(U_{AP} \times I_A + U_{BP} \times I_B + U_{CP} \times I_C\right) \times F_{1-9}}{V_{REF}^2}$$

系统增益变小一倍 (时钟变慢的缘故)。

外部时钟从 1.8MHz~3.58MHz 范围内线性变化, 可以使输出脉宽线性变化, 系统增益 变化。这样通过调整外部晶体振荡器的频率可以调节输出信号脉宽。

工作频率越低,相应在数字滤波器中 LPF 截止频率就越低,能更好的滤除 100Hz 的谐 波,输出信号的稳定度就越高。

工作频率降低可以减小静态功耗,但输出 F1,F2 脉宽的增加,使得驱动功耗增加,所以 不能盲目的通过降低时钟来减小整体功耗, 需要折中考虑。

◆ 工作模式选择

MCF,SCF,S0,S1 是 BL0962 芯片模式选择管脚,可以通过接不同的电压(+5V,0V)来调 整芯片的工作模式, CEHCEF1.F2 的输出频率与 MCESCES0.S1 输入脚关系如下表所示 (CLKIN=3.58MHz):

MCF	SCF	S0	S 1	F ₁₋₉	Max Freq	CF	Max Freq On	Max Freq
					On F1/F2	÷	CFA,CFB,CFC	On CF For
					For AC input	F1,F2	For AC input	AC input [Hz]
								1
1	1	1	1	0.596	0.48	16	2.6	7.68
1	0	0	0	1.19	0.96	160	52	153.6
1	1	0	0			8	2.6	7.68
1	0	0	1	1223	F1/F2 不推荐	16	~5K	~15K
1	1	0	1	19.65	15.625	8	42	125
1	0	1	0	19.07	3.125	160	208	500
1	1	1	0	4.77	3.9	16	20.8	62.5
1	0	1	1	76.3	62.5	8	166	500
0	1	1	0	2.385	1.95	4	2.6	7.8
0	0	0	0	0.057	0.048	160	2.6	7.8
0	1	1	1	0.283	0.24	16	1.3	3.9
0	1	0	0	0.596	0.48	8	1.3	3.9
0	1	0	1	4.77	3.9	4	5.2	15.6
0	0	0	1	0.119	0.096	8	5.2	15.6
0	0	1	0	1.19	0.975	160	5.2	15.6
0	0	1	1	2.385	1.95	8	5.2	15.6

①注: 电流, 电压输入为 ± 500mV AC 信号时 CF 输出。

计算实例

例 1

如果 UA、UB、UC、IA、IB、IC上,输入均为满刻度直流差分电压±500mV,理想输出频 率计算如下:

$$F_{1-5} = 0.596Hz$$
, $SCF = S0 = S1 = 1$

$$V_{AN} = V_{BN} = V_{CN} = IA = IB = IC$$

= 500mV dc = 0.5V

 $V_{REF}=2.5V$ (典型值,使用片内基准源,由于基准 $\pm 8\%$ 的容限,实际的输出频率可能会因 设备的改变而改变。)

$$Freq = 3 \times \frac{13.25 \times 0.5 \times 0.5 \times 0.596}{2.5^2} = 0.95 Hz$$

电流电压通道输入峰值为 500mV 的交流电压, 理想的频率输出计算如下:

$$F_{1-5} = 0.596Hz$$
, $SCF = S0 = S1 = 1$

$$U_{AN} = U_{RN} = U_{CN} = IA = IB = IC = 0.5 / \sqrt{2} V$$

$$Freq = 3 \times \frac{13.25 \times 0.5 \times 0.5 \times 0.596}{\sqrt{2} \times \sqrt{2} \times 2.5^2} = 0.47 Hz$$

由上面两例可以看到, 当输入电压为满刻度交流信号时, 输出频率为输入满刻度直流信号时 输出频率的二分之一。而且最大输出频率与所计算的相数有关。在三相三线制中,最大输出 频率与三相四线制时的最大输出频率不一样,这是因为,在三相三线Δ接法中,只有两相接 到模拟输入,在正常情况下,电流通道和电压通道中的信号相位不一致。

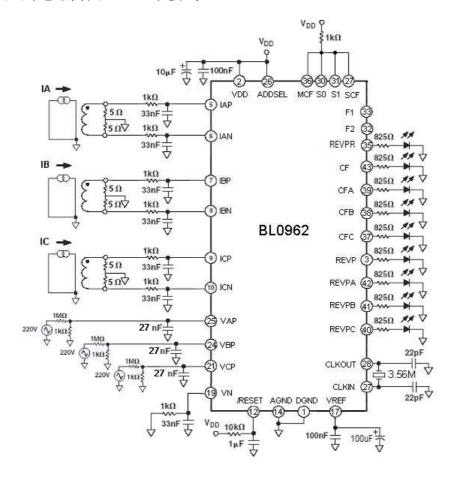
◆ 例 3

在高频输入模式下(MCF=1, SCF=0, S0=0, S1=1), 电流电压通道输入峰值为 500mV 的交流电压, CF和CFA, CFB, CFC的频率输出计算如下:

$$F_{1-5} = 1223Hz$$
, $MCF = 1$, $SCF = S0 = 0$, $S1 = 1$

$$U_{AN} = U_{BN} = U_{CN} = IA = IB = IC = 0.5 / \sqrt{2} V$$

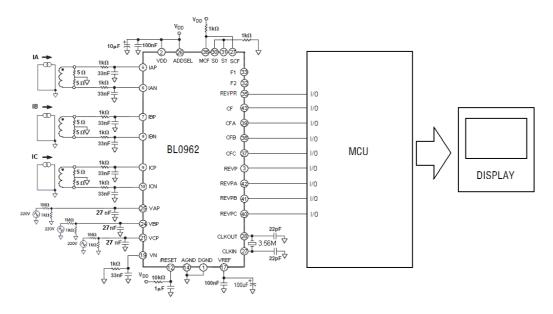
$$Freq(F1orF2) = 3 \times \frac{13.25 \times 0.5 \times 0.5 \times 1223}{\sqrt{2} \times \sqrt{2} \times 2.5^2} = 973Hz$$



CF和 F1/F2 存在 16 倍关系

$Freq(CF) = 973Hz \times 16 = 15568Hz$

CFA, CFB, CFC 的频率为 CF的 1/3 即 5KHz 左右。


应用电路简图 1(正常模式)

特点: 1) 电阻网络校表 2) 带各相反相指示 3) 代数和反向指示 3) 外围线路简单

应用电路简图 2 (高频模式)

特点: 1) 可数字校表 2) 可指示各相工作和反相情况 3) 可指示三相功率代数和的 反向情况

注:由于工艺和设计变化等原因所引起的以上规范的变化,不另行通知。请随时索取最新版 本的产品规范。