PRELIMINARY PRODUCT INFORMATION

mos integrated circuit μ PD784224Y, 784225Y

16/8-BIT SINGLE-CHIP MICROCONTROLLERS

The μ PD784225Y is based on the μ PD784225 with an I²C bus control function appended, and is ideal for applications in audio-visual.

Flash memory versions, such as μ PD78F4225Y, that can operate in the same voltage range as the mask ROM version, and various development tools are under development.

The functions are explained in detail in the following user's manuals. Be sure to read this manual when designing your system.

μPD784225, 784225Y Subseries User's Manual - Hardware : Planned 78K/IV Series User's Manual - Instruction : U10905E

FEATURES

- I²C bus
- · ROM correction
- Inherits peripheral functions of μPD780058 subseries
- Pin-compatible with μ PD784225 subseries
- Minimum instruction execution time
 160 ns (main system clock fxx = 12.5 MHz)
 61 μs (subsystem clock fxτ = 32.768 kHz)
- I/O port: 67 pins
- Timer/counter: 16-bit timer/counter × 1 unit 8-bit timer/counter × 4 units
- Serial interface: 3 channels
 UART/IOE (3-wire serial I/O): 2 channels
 CSI (3-wire serial I/O, multi-master supporting I²C bus): 1 channel

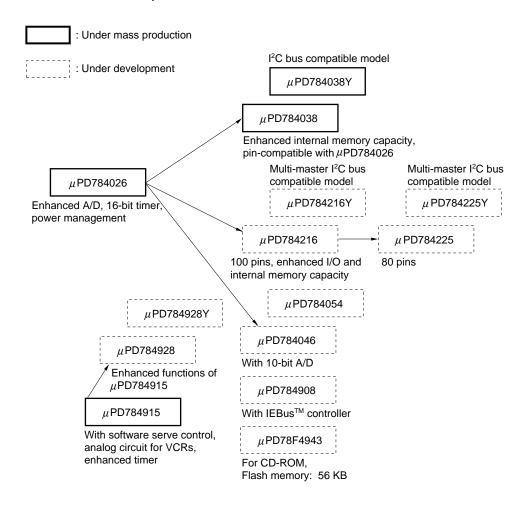
- Standby function
 - HALT/STOP/IDLE mode
 - In power-saving mode: HALT/IDLE mode (with subsystem clock)
- Clock division function
- Watch timer: 1 channel
- · Watchdog timer: 1 channel
- Clock output function fxx, fxx/2, fxx/2², fxx/2³, fxx/2⁴, fxx/2⁵, fxx/2⁶, fxx/2⁷, fxT selectable
- Buzzer output function
 - $fxx/2^{10}$, $fxx/2^{11}$, $fxx/2^{12}$, $fxx/2^{13}$ selectable
- A/D converter: 8-bit resolution × 8 channels
- D/A converter: 8-bit resolution × 2 channels
- Supply voltage: VDD = 1.8 to 5.5 V

APPLICATION FIELD

Car audio, portable audio, telephones, etc.

Unless contextually excluded, references in this document to μ PD784225Y mean μ PD784224Y and μ PD784225Y.

The information contained in this document is being issued in advance of the production cycle for the device. The parameters for the device may change before final production or NEC Corporation, at its own discretion, may withdraw the device prior to its production.



ORDERING INFORMATION

Part Number	Package	Internal ROM (Bytes)	Internal RAM (Bytes)
μPD784224YGC-×××-8BT	80-pin plastic QFP (14 \times 14 mm)	96 K	3584
μ PD784224YGK- \times \times -BE9	80-pin plastic TQFP (fine pitch) (12 \times 12 mm)	96 K	3584
μ PD784225YGC- $\times\times$ -8BT	80-pin plastic QFP (14 × 14 mm)	128 K	4352
μ PD784225YGK- $\times\times$ -BE9	80-pin plastic TQFP (fine pitch) (12 \times 12 mm)	128 K	4352

Remark xxx indicates a ROM code suffix.

78K/IV Series Product Development

FUNCTIONS

	Part Number	μPD784224Y		μPD784225Y		
Item						
Number of basic instructions (mnemonics)		113				
General-purpose	register	8 bits \times 16 registers \times 8 banks, or 16 bits	× 8 registers	× 8 banks (memory mapping)		
Minimum instructi time	on execution	 160 ns/320 ns/640 ns/1280 ns/2560 ns 61 μs (subsystem clock: fxτ = 32.768 K 		n clock: fxx = 12.5 MHz)		
Internal	ROM	96 KBytes	128 KBytes	<u> </u>		
memory	RAM	3584 Bytes	4352 Bytes			
Memory space		1 MB with program and data spaces comb	oined			
I/O port	Total	67				
	CMOS Input	8				
	CMOS I/O	59				
	Pins with pull-up resistor	57				
functions Note	LEDs direct drive output	16				
Real-time output		4 bits \times 2, or 8 bits \times 1				
Timer/counter		16-bit timer/counter : timer register × 1 Capture/compare	register × 2	Pulse output PWM/PPG output Square wave output One-shot pulse output		
		8-bit timer/counter 1: timer register × 1 Compare register × 1		Pulse output PWM output Square wave output		
		8-bit timer/counter 2 : timer register × 1 Compare register :	× 1	Pulse output • PWM output • Square wave output		
		8-bit timer/counter 5 : timer register × 1 Compare register × 1				
		8-bit timer/counter 6: timer register × 1 Compare register × 1				
Serial interface		 UART/IOE (3-wire serial I/O): 2 channels (on-chip baud rate generator) CSI (3-wire serial I/O, I²C bus supporting multi master): 1 channel 				
A/D converter		8-bit resolution × 8 channels				
D/A converter		8-bit resolution × 2 channels				
Clock output		Selectable from fxx, fxx/2, fxx/2 ² , fxx/2 ³ , fxx/2 ⁴ , fxx/2 ⁵ , fxx/2 ⁶ , fxx/2 ⁷ , fxt				
Buzzer output		Selectable from fxx/2 ¹⁰ , fxx/2 ¹¹ , fxx/2 ¹² , fxx/2 ¹³				
Watch timer		1 channel				
Watchdog timer		1 channel				
Standby		HALT/STOP/IDLE mode				
In power-saving mode (with subsystem clock): HAL			clock): HAL	T/IDLE mode		
· · ⊢	Hardware	25 (internal: 18, external: 7)				
<u> </u>	Software	BRK instruction, BRKCS instruction, opera	and error			
<u> </u>	Non-maskable	Internal: 1, external: 1				
	Maskable	Internal: 17, external: 6				
		 4 programmable priority levels 3 service modes: vectored interrupt/macro service/context switching 				
Supply voltage		V _{DD} = 1.8 to 5.5 V				
Package		80-pin plastic QFP(14 × 14 mm) 80-pin plastic TQFP (fine pitch) (12 × 12 mm)				

 $\textbf{Note} \hspace{0.3cm} \textbf{The pins with ancillary functions are included in the I/O pins.} \\$

CONTENTS

1.	DIFFERENCES AMONG MODELS IN μ PD784225Y SUBSERIES	6
2.	MAJOR DIFFERENCES BETWEEN μ PD784216Y SUBSERIES AND	
	μPD780058Y SUBSERIES	7
3.	PIN CONFIGURATION (Top View)	8
4.	BLOCK DIAGRAM	10
5.	PIN FUNCTION	11
	5.1 Port Pins	11
	5.2 Pins Other Than Port Pins	13
	5.3 I/O Circuit Type of Respective Pins and Recommended Connections of Unused Pins	15
6.	CPU ARCHITECTURE	18
	6.1 Memory Space	
	6.2 CPU Registers	21
	6.2.1 General-purpose registers	21
	6.2.2 Control registers	22
	6.2.3 Special function registers (SFRs)	23
7.	PERIPHERAL HARDWARE FUNCTIONS	28
••	7.1 Ports	
	7.2 Clock Generation Circuit	
	7.3 Real-Time Output Port	
	7.4 Timer/Counter	
	7.5 A/D Converter	
	7.6 D/A Converter	
	7.7 Serial Interface	
	7.7.1 Asynchronous serial interface/3-wire serial I/O (UART/IOE)	
	7.7.2 Clocked serial interface (CSI)	
	7.8 Clock Output Function	41
	7.9 Buzzer Output Function	
	7.10 Edge Detection Function	42
	7.11 Watch Timer	42
	7.12 Watchdog Timer	43
8.	INTERRUPT FUNCTION	44
	8.1 Interrupt Sources	44
	8.2 Vectored Interrupt	46
	8.3 Context Switching	47
	8.4 Macro Service	47
	8.5 Application Example of Macro Service	48

9.	LOC	AL BUS INTERFACE	49
	9.1	Memory Expansion Programmable Wait External Access Status Function	49
	9.2	Programmable Wait	49
	9.3	External Access Status Function	49
10.	STAI	NDBY FUNCTION	50
		ET FUNCTION	
12.	ROM	CORRECTION	53
13.	INST	RUCTION SET	54
14.	PAC	KAGE DRAWINGS	59
APF	PEND	IX A. DEVELOPMENT TOOLS	61
APF	PEND	IX B. RELATED DOCUMENTS	63

1. DIFFERENCES AMONG MODELS IN μ PD784225Y SUBSERIES

The only difference among the μ PD784224Y and 784225Y lies in the internal memory capacity.

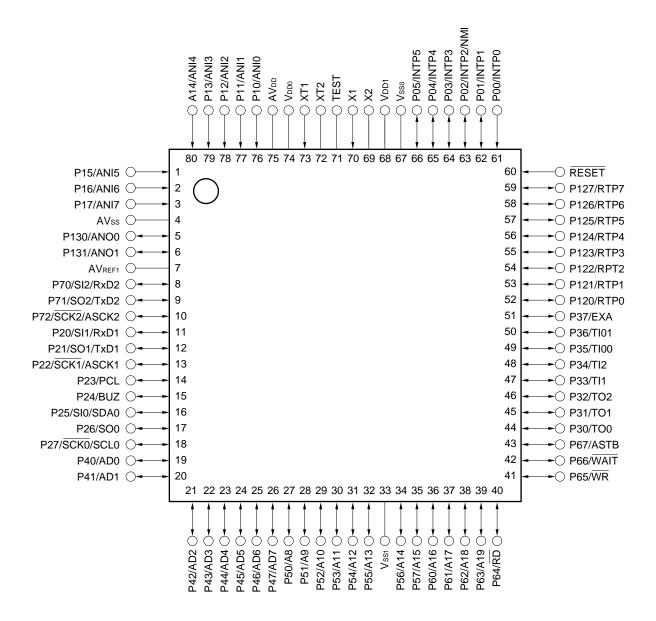
The μ PD78P4225Y is provided with a 128-KB flash memory instead of the mask ROM of the above models. These differences are summarized in Table 1-1.

Table 1-1. Differences among Models in μ PD784225Y Subseries

Part Number Item	μPD784224Y	μPD784225Y	μPD78F4225Y
Internal ROM	96 KBytes (mask ROM)	128 KBytes (mask ROM)	128 KBytes (Flash memory)
Internal RAM	3584 Bytes	4352 Bytes	
Internal memory size switching register (IMS)	None		Provided
V _{PP} pin	None		Provided

6

2. MAJOR DIFFERENCES BETWEEN μ PD784216Y SUBSERIES AND μ PD780058Y SUBSERIES


Series Name		μPD784225Y Subseries	μPD784216Y Subseries	μPD780058Y Subseries
CPU		16-bit CPU		8-bit-CPU
Minimum With main system instruction clock selected		160 ns (at 12.5 MHz)		400 ns (at 5.0 MHz)
execution time	With subsystem clock	61 μs (at 32.768 kHz)		122 μs (at 32.768 kHz)
Memory space		1M bytes		64K bytes
I/O port	Total	67 pins	86 pins	68 pins
	CMOS input	8 pins	8 pins	2 pins
	CMOS I/O	59 pins	72 pins	62 pins
	N-ch open-drain I/O	_	6 pins	4 pins
Pins with ancillary	Pins with pull-up resistor	57 pins	70 pins	66 pins (flash memory model: 62 pins)
function ^{Note}	LED direct drive output	16 pins	22 pins	12 pins
	Medium-voltage pin	- 6 pins		4 pins
Timer/counter		• 16-bit timer/counter × 1 unit • 8-bit timer/counter × 4 units • 8-bit timer/counter × 6 units		• 16-bit timer/counter × 1 unit • 8-bit timer/counter × 2 units
Serial interface		UART/IOE (3-wire serial I/O) × 2 channels CSI (3-wire serial I/O, multi-master supporting I ² C bus) × 1 channel		UART (time-division transfer function)/IOE (3-wire serial I/O) × 2 channels CSI (3-wire serial I/O, 2-wire serial I/O, I ² C bus) × 1 channel CSI (3-wire serial I/O with automatic transmission/reception function) × 1 channel
Interrupt	NMI pin	Provided		None
	Macro service	Provided		None
Context switching		Provided		None
Programmable priority		4 levels		2 levels
Standby function		HALT/STOP/IDLE mode Power-saving mode: HALT/IDLE Mode		HALT/STOP mode
ROM correction		Provided	None	Provided
Package		80-pin plastic QFP (14 × 14 mm) 80-pin plastic TQFP (fine pitch) (12 × 12 mm)	• 100-pin plastic QFP (fine pitch) (14 × 14 mm) • 100-pin plastic QFP (14 × 20 mm)	80-pin plastic QFP (14 × 14 mm) 80-pin plastic TQFP (fine pitch) (12 × 12 mm)

Note Pins with ancillary function are included in the I/O pins.

3. PIN CONFIGURATION (Top View)

```
    80-pin plastic QFP (14 × 14 mm)
        μPD784224YGC-×××-8BT
        μPD784225YGC-×××-8BT
    80-pin plastic TQFP (fine pitch) (12 × 12 mm)
        μPD784224YGK-×××-BE9
        μPD784225YGK-×××-BE9
```


Caution Connect the AVss pin to Vsso.

Remark When using in applications where noise from inside the microcomputer has to be reduced, it is recommended to take countermeasures against noise such as supplying power to VDD0 and VDD1 independently, and connecting Vss0 and Vss1 to different ground lines.

A8-A19 : Address Bus P130, P131 : Port13

AD0-AD7 : Address/Data Bus PCL : Programmable Clock

ANI0-ANI7 : Analog Input RD : Read Strobe
ANO0, ANO1 : Analog Output RESET : Reset

ASCK1, ASCK2 : Asynchronous Serial Clock RTP0-RTP7 : Real-time Output Port

ASTB : Address Strobe RxD1, RxD2 : Receive Data

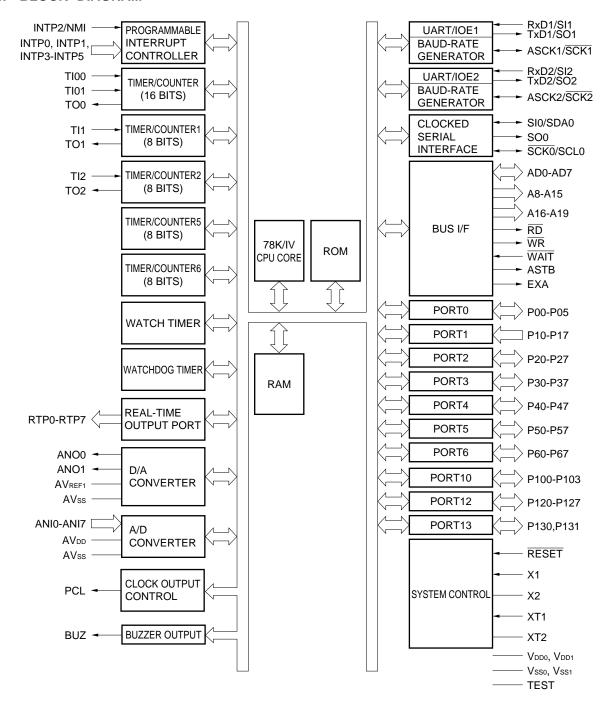
AVDD : Analog Power Supply SCK0-SCK2 : Serial Clock

AVREF1 : Analog Reference Voltage SCL0 : Serial Clock
AVss : Analog Ground SDA0 : Serial Data
BUZ : Buzzer Clock SI0-SI2 : Serial Input

EXA : External Access Status Output SO0-SO2 : Serial Output

INTP0-INTP5 : Interrupt from Peripherals TEST : Test

NMI : Non-maskable Interrupt TI00, TI01, TI1, TI2: Timer Input P00-P05 : Port0 TO0-TO2 : Timer Output P10-P17 : Port1 TxD1, TxD2 : Transmit Data P20-P27 : Port2 VDD0, VDD1 : Power Supply P30-P37 : Port3 Vsso, Vss1 : Ground WAIT : Wait P40-P47 : Port4


P50-P57 : Port5 \overline{WR} : Write Strobe

P60-P67 : Port6 X1, X2 : Crystal (Main System Clock)
P70-P72 : Port7 XT1, XT2 : Crystal (Subsystem Clock)

P120-P127 : Port12

4. BLOCK DIAGRAM

Remark The internal ROM and RAM capacities differ depending on the model.

5. PIN FUNCTION

5.1 Port Pins (1/2)

Pin Name	I/O	Alternate Function	Function
P00	I/O	INTP0	Port 0 (P0):
P01		INTP1	• 6-bit I/O port
P02		INTP2/NM1	Can be set in input or output mode bit-wise. Pins set in input mode can be connected to internal pull-up
P03		INTP3	resistors by software bit-wise.
P04		INTP4	
P05		INTP5	
P10-P17	Input	ANIO-ANI7	Port 1 (P1): • 8-bit input port
P20	I/O	RxD1/SI1	Port 2 (P2):
P21		TxD1/SO1	8-bit I/O port
P22		ASCK1/SCK1	Can be set in input or output mode bit-wise. Pins set in input mode can be connected to internal pull-up
P23		PCL	resistors by software bit-wise.
P24		BUZ	
P25		SI0/SDA0	
P26		SO0	
P27	1	SCK0/SCL0	
P30	I/O	TO0	Port 3 (P3):
P31		TO1	8-bit I/O port Can be set in input or output mode bit-wise.
P32		TO2	Pins set in input mode can be connected to internal pull-up
P33		TI1	resistors by software bit-wise.
P34		TI2	1
P35		T100	
P36		TI01	
P37		EXA	
P40-P47	I/O	AD0-AD7	Port 4 (P4): • 8-bit I/O port • Can be set in input or output mode bit-wise. • All pins set in input mode can be connected to internal pull-up resistors by software. • Can drive LEDs.
P50-P57	I/O	A8-A15	Port 5 (P5): • 8-bit I/O port • Can be set in input or output mode bit-wise. • All pins set in input mode can be connected to internal pull-up resistors by software. • Can drive LEDs.

5.1 Port Pins (2/2)

Pin Name	I/O	Alternate Function	Function
P60	I/O	A16	Port 6 (P6):
P61		A17	8-bit I/O port Con he set in input or output made hit wice.
P62		A18	Can be set in input or output mode bit-wise. All pins set in input mode can be connected to internal pull-up
P64		RD	resistors by software.
P65		WR	
P66		WAIT	
P67		ASTB	
P70	I/O	RxD2/SI2	Port 7 (P7): • 3-bit I/O port
P71		TxD2/SO2	Can be set in input or output mode bit-wise. Pins set in input mode can be connected to internal pull-up resistor
P72		ASCK2/SCK2	by software bit-wise.
P120-P127	I/O	RTP0-RTP7	Port 12 (P12): • 8-bit I/O port • Can be set in input or output mode bit-wise. • Pins set in input mode can be connected to internal pull-up resistor by software bit-wise.
P130, P131	I/O	ANO0, ANO1	Port 13 (P13): • 2-bit I/O port • Can be set in input or output mode bit-wise.

12

5.2 Pins Other Than Port Pins (1/2)

Pin Name	I/O	Alternate Function	Function
TI00	Input	P35	External count clock input to 16-bit timer register
TI01		P36	Capture trigger signal input to capture/compare register 00
TI1		P33	External count clock input to 8-bit timer register 1
TI2		P34	External count clock input to 8-bit timer register 2
TO0	Output	P30	16-bit timer output (shared by 14-bit PWM output)
TO1		P31	8-bit timer output (shared by 8-bit PWM output)
TO2		P32	
RxD1	Input	P20/SI1	Serial data input (UART1)
RxD2		P70/SI2	Serial data input (UART2)
TxD1	Output	P21/SO1	Serial data output (UART1)
TxD2		P71/SO2	Serial data output (UART2)
ASCK1	Intput	P22/SCK1	Baud rate clock input (UART1)
ASCK2		P72/SCK2	Baud rate clock input (UART2)
SI0	Input	P25/SDA0	Serial data input (3-wire serial clock I/O0)
SI1		P20/RxD1	Serial data input (3-wire serial clock I/O1)
SI2		P70/RxD2	Serial data input (3-wire serial clock I/O2)
SO0	Output	P26	Serial data output (3-wire serial I/O0)
SO1		P21/TxD1	Serial data output (3-wire serial I/O1)
SO2		P71/TxD2	Serial data output (3-wire serial I/O2)
SDA0	I/O	P25/SI0	Serial data input/output (I ² C bus)
SCK0	I/O	P27/SCL0	Serial clock input/output (3-wire serial I/O0)
SCK1		P22/ASCK1	Serial clock input/output (3-wire serial I/O1)
SCK2		P72/ASCK2	Serial clock input/output (3-wire serial I/O2)
SCL0		P27/SCK0	Serial clock input/output (I ² C bus)
NMI	Input	P02/INTP2	Non-maskable interrupt request input
INTP0		P00	External interrupt request input
INTP1		P01	
INTP2		P02/NMI	
INTP3		P03	
INTP4		P04	
INTP5		P05	
PCL	Output	P23	Clock output (for trimming main system clock and subsystem clock)
BUZ	Output	P24	Buzzer output
RTP0-RTP7	Output	P120-P127	Real-time output port that outputs data in synchronization with trigger
AD0-AD7	I/O	P40-P47	Low-order address/data bus when external memory is connected
A8-A15	Output	P50-P57	Middle-order address bus when external memory is connected
A16-A19		P60-P63	High-order address bus when external memory is connected

5.2 Pins Other Than Port Pins (2/2)

Pin Name	I/O	Alternate Function	Function
RD	Output	P64	Strobe signal output for read operation of external memory
WR		P65	Strobe signal output for write operation of external memory
WAIT	Input	P66	To insert wait state(s) when external memory is accessed
ASTB	Output	P67	Strobe output to externally latch address information output to ports 4 through 6 to access external memory
EXA	Output	P37	External access status output
RESET	Input	_	System reset input
X1	Input	_	To connect main system clock oscillation crystal
X2	_		
XT1	Input	_	To connect subsystem clock oscillation crystal
XT2	_		
ANI0-ANI7	Input	P10-P17	Analog voltage input for A/D converter
ANO0, ANO1	Output	P130, P131	Analog voltage output for D/A converter
AV _{REF1}	_	_	To apply reference voltage for D/A converter
AV _{DD}			Positive power supply for A/D converter. Connected to VDDO.
AVss			GND for A/D converter and D/A converter. Connected to Vsso.
V _{DD0}			Positive power supply for port block
Vsso			GND potential for port block
V _{DD1}			Positive power supply (except port block)
Vss1			GND potential (except port block)
TEST			Directly connect this pin to Vsso (this pin is for IC test).

5.3 I/O Circuit Type of Respective Pins and Recommended Connections of Unused Pins

Table 5-1 shows symbols indicating the I/O circuit types of the respective pins and the recommended connection of unused pins.

For the circuit diagram of each type of I/O circuit, refer to **Figure 5-1**.

Table 5-1. I/O Circuit Type of Respective Pins and Recommended Connections of Unused Pins (1/2)

Pin Name	I/O Circuit Type	I/O	Recommended Connections of Unused Pins
P00/INTP0	8-C	I/O	Input : Individually connected to V _{SS0} via resistor
P01/INTP1			Output: Open
P02/INTP2/NMI			
P03/INTP3-P05/INTP5			
P10/ANI0-P17/ANI7	9	Input	Connected to Vsso or VDD0
P20/RxD1/SI1	10-B	I/O	Input : Individually connected to Vsso via resistor
P21/TxD1/SO1			Output: Open
P22/ASCK1/SCK1			
P23/PCL			
P24/BUZ			
P25/SDA0/SI0			
P26/SO0			
P27/SCL0/SCK0			
P30/TO0-P32/TO2	8-C		
P33/TI1, P34/TI2			
P35/TI00, P36/TI01			
P37/EXA			
P40/AD0-P47/AD7	5-H		
P50/A8-P57/A15			
P60/A16-P63/A19			
P64/RD			
P65/WR			
P66/WAIT			
P67/ASTB			
P70/RxD2/SI2	8-C		
P71/TxD2/SO2			
P72/ASCK2/SCK2			
P120/RTP0-P127/RTP7			
P130/ANO0, P131/ANO1	12-C		
RESET	2	Input	_
XT1	16		Connected to Vsso
XT2		_	Open

Table 5-1. I/O Circuit Type of Respective Pins and Recommended Connections of Unused Pins (2/2)

Pin Name	I/O Circuit Type	I/O	Recommended Connections of Unused Pins
AV _{REF1}	_	_	Connected to VDD0
AVDD			
AVss			Connected to Vsso
TEST			Directly connected to Vsso

Remark Because the circuit type numbers are standardized among the 78K series products, they are not sequential in some models (i.e., some circuits are not provided).

Type 2 Type 10-B V_{DD0} pullup enable V_{DD0} data P-ch OIN/OUT Schmitt trigger input with hysteresis characteristics open drain output disable Vsso /// V_{DD0} Type 5-H Type 12-C V_{DD0} pullup pullup enable enable V_{DD0} data P-ch -○ IN/OUT data **-** N-ch output → IN/OUT disable Vsso /// output N-ch disable P-ch ♀ input Vsso 7//7 enable Analog output voltage input N-ch # enable Vsso Type 8-C Type 16 V_{DD0} feedback cut-off pullup enable P-ch V_{DD0} data → IN/OUT output ■ N-ch ბ XT1 disable XT2 Vsso /// Type 9 Comparator (threshold voltage) input enable

Figure 5-1. Types of Pin I/O Circuits

6. CPU ARCHITECTURE

6.1 Memory Space

A memory space of 1 MByte can be accessed. Mapping of the internal data area (special function registers and internal RAM) can be specified the LOCATION instruction. The LOCATION instruction must be always executed after RESET cancellation, and must not be used more than once.

(1) When LOCATION 0 instruction is executed

Internal memory

The internal data area and internal ROM area are mapped as follows:

Part Number	Internal Data Area	Internal ROM Area
μPD784224Y	0F100H-0FFFFH	00000H-0F0FFH 10000H-17FFFH
μPD784225Y	0EE00H-0FFFFH	00000H-0EDFFH 10000H-1FFFFH

Caution The following areas that overlap the internal data area of the internal ROM cannot be used when the LOCATION 0 instruction is executed.

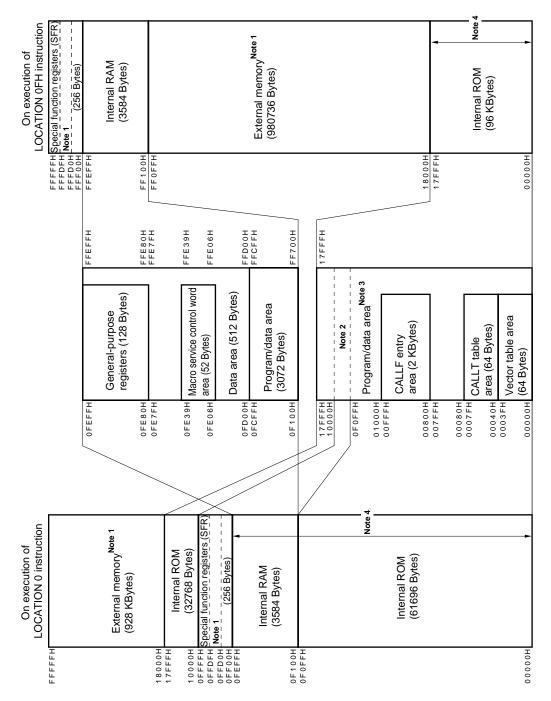
Part Number	Unusable Area
μΡD784224Υ	0F100H-0FFFFH (3840 Bytes)
μPD784225Y	0EE00H-0FFFFH (4608 Bytes)

External memory

The external memory is accessed in external memory expansion mode.

(2) When LOCATION 0FH instruction is executed

• Internal memory

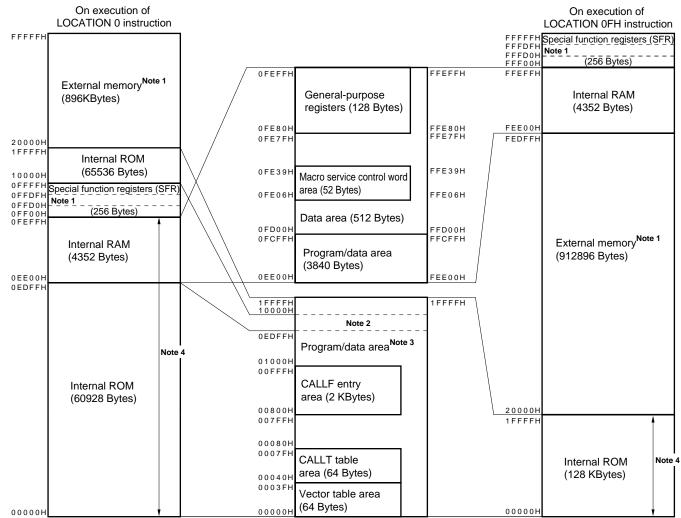

The internal data area and internal ROM area are mapped as follows:

Part Number	Internal Data Area	Internal ROM Area
μPD784224Y	FF100H-FFFFFH	00000H-17FFFH
μPD784225Y	FEE00H-FFFFFH	00000H-1FFFFH

External memory

The external memory is accessed in external memory expansion mode.

Figure 6-1. Memory Map of μ PD784224Y



Notes 1. Accessed in external memory expansion mode.

This 3840-Byte area can be used as an internal ROM only when the LOCATION 0FH instruction is executed.

On execution of LOCATION 0 instruction: 94464 Bytes, on execution of LOCATION 0FH instruction: 98304 Bytes რ

Figure 6-2. Memory Map of μ PD78225Y

- $\textbf{Notes} \quad \textbf{1.} \quad \text{Accessed in external memory expansion mode}.$
 - 2. This 5376-Byte area can be used as an internal ROM only when the LOCATION 0FH instruction is executed.
 - 3. On execution of LOCATION 0 instruction: 125696 Bytes, on execution of LOCATION 0FH instruction: 131072 Bytes
 - 4. Base area and entry area for reset or interrupt. However, the internal RAM area is not used as a reset entry area.

6.2 CPU Registers

6.2.1 General-purpose registers

Sixteen 8-bit general-purpose registers are available. Two 8-bit registers can be also used in pairs as a 16-bit register. Of the 16-bit registers, four can be used in combination with an 8-bit register for address expansion as 24-bit address specification registers.

Eight banks of these registers are available which can be selected by using software or the context switching function.

The general-purpose registers except V, U, T, and W registers for address expansion are mapped to the internal RAM.

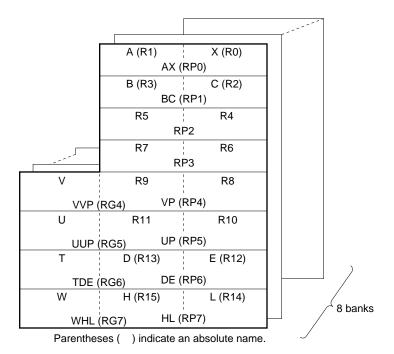
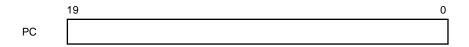


Figure 6-3. General-Purpose Register Format

Caution Registers R4, R5, R6, R7, RP2, and RP3 can be used as X, A, C, B, AX, and BC registers, respectively, by setting the RSS bit of the PSW to 1. However, use this function only for recycling the program of the 78K/III Series.

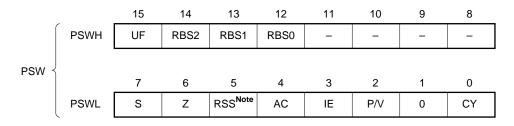
21



6.2.2 Control registers

(1) Program counter (PC)

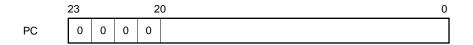
The program counter is a 20-bit register whose contents are automatically updated when the program is executed.


Figure 6-4. Program Counter (PC) Format

(2) Program status word (PSW)

This register holds the statuses of the CPU. Its contents are automatically updated when the program is executed.

Figure 6-5. Program Status Word (PSW) Format



Note This flag is provided to maintain compatibility with the 78K/III Series. Be sure to clear this flag to 0, except when the software for the 78K/III Series is used.

(3) Stack pointer (SP)

This is a 24-bit pointer that holds the first address of the stack. Be sure to write 0 to the higher 4 bits of this pointer.

Figure 6-6. Stack Pointer (SP) Format

6.2.3 Special function registers (SFRs)

The special function registers, such as the mode registers and control registers of the internal peripheral hardware, are registers to which special functions are allocated. These registers are mapped to a 256-Byte space of addresses 0FF00H through 0FFFFH^{Note}.

Note On execution of the LOCATION 0 instruction. FFF00H through FFFFH on execution of the LOCATION 0FH instruction.

Caution Do not access an address in this area to which no SFR is allocated. If such an address is accessed by mistake, the μ PD784225Y may be in the deadlock status. This deadlock status can be cleared only by inputting the RESET signal.

Table 6-1 lists the special function registers (SFRs). The meanings of the symbols in this table are as follows:

R/W : Read/writeR : Read-onlyW : Write-only

• Bit units for manipulation.. Bit units in which the value of the SFR can be manipulated.

SFRs that can be manipulated in 16-bit units can be described as the operand sfrp of an instruction. To specify the address of this SFR, describe

an even address.

SFRs that can be manipulated in 1-bit units can be described as the operand

of a bit manipulation instruction.

Table 6-1. Special Function Register (SFR) List (1/4)

AddressNote 1	Special Function Register (SFR) Name	Symbol	R/W	Bit Unit	s for Man	ipulation	At Reset
				1 bit 8 bits 16		16 bits	
0FF00H	Port 0	P0	R/W	0	0	_	00HNote 2
0FF01H	Port 1	P1	R	0	0	_	
0FF02H	Port 2	P2	R/W	0	0	_	
0FF03H	Port 3	P3		0	0	_	
0FF04H	Port 4	P4		0	0	_	
0FF05H	Port 5	P5		0	0	_	
0FF06H	Port 6	P6		0	0	_	
0FF07H	Port 7	P7		0	0	_	
0FF0CH	Port 12	P12		0	0	_	
0FF0DH	Port 13	P13		0	0	_	
0FF10H	16-bit timer register	TM0	R	_	_	0	0000H
0FF11H							
0FF12H	Capture/compare register 00	CR00	R/W	_	_	0	
0FF13H	(16-bit timer/counter)						
0FF14H	Capture/compare register 01	CR01		_	_	0	
0FF15H	(16-bit timer/counter)						
0FF16H	Capture/compare control register 0	CRC0		0	0	_	00H
0FF18H	16-bit timer mode control register	TMC0		0	0	_	
0FF1AH	16-bit timer output control register	TOC0		0	0	_	
0FF1CH	Prescaler mode register 0	PRM0		0	0	_	
0FF20H	Port 0 mode register	PM0		0	0	_	FFH
0FF22H	Port 2 mode register	PM2		0	0	_	
0FF23H	Port 3 mode register	PM3		0	0	_	
0FF24H	Port 4 mode register	PM4		0	0	_	
0FF25H	Port 5 mode register	PM5		0	0	_	
0FF26H	Port 6 mode register	PM6		0	0	_	
0FF27H	Port 7 mode register	PM7		0	0	_	
0FF2CH	Port 12 mode register	PM12		0	0	_	
0FF2DH	Port 13 mode register	PM13		0	0	_	
0FF30H	Pull-up resistor option register 0	PU0		0	0	_	00H
0FF32H	Pull-up resistor option register 2	PU2		0	0		
0FF33H	Pull-up resistor option register 3	PU3		0	0		
0FF37H	Pull-up resistor option register 7	PU7		0	0	_	
0FF3CH	Pull-up resistor option register 12	PU12		0	0	_	
0FF40H	Clock output control register	CKS		0	0	_	

- **Notes 1.** When the LOCATION 0 instruction is executed. Add "F0000H" to this value when the LOCATION 0FH instruction is executed.
 - **2.** Because each port is initialized to input mode at reset, "00H" is not actually read. The output latch is initialized to "0".

Table 6-1. Special Function Register (SFR) List (2/4)

Address ^{Note}	Special Function Register (SFR) Name	Syr	mbol	R/W	Bit Unit	s for Man	ipulation	At Reset
					1 bit	8 bits	16 bits	
0FF42H	Port function control register	PF2		R/W	0	0	_	00H
0FF4EH	Pull-up resistor option register	PUO			0	0	_	
0FF50H	8-bit timer register 1	TM1	TM1W	R	_	0	0	0000H
0FF51H	8-bit timer register 2	TM2			_	0		
0FF52H	Compare register 10 (8-bit timer/counter 1)	CR10	CR1W	R/W	_	0	0	
0FF53H	Compare register 20 (8-bit timer/counter 2)	CR20			_	0		
0FF54H	8-bit timer mode control register 1	TMC1	TMC1W		0	0	0	
0FF55H	8-bit timer mode control register 2	TMC2]		0	0		
0FF56H	Prescaler mode register 1	PRM1	PRM1W		_	0	0	
0FF57H	Prescaler mode register 2	PRM2]		_	0		
0FF60H	8-bit timer register 5	TM5	TM5W	R	_	0	0	
0FF61H	8-bit timer register 6	TM6			_	0		
0FF64H	Compare register 50 (8-bit timer/counter 5)	CR50	CR5W	R/W	_	0	0	
0FF65H	Compare register 60 (8-bit timer/counter 6)	CR60			_	0		
0FF68H	8-bit timer mode control register 5	TMC5	TMC5W		0	0	0	
0FF69H	8-bit timer mode control register 6	TMC6	1		0	0		
0FF6CH	Prescaler mode register 5	PRM5	PRM5W		_	0	0	
0FF6DH	Prescaler mode register 6	PRM6			_	0		
0FF70H	Asynchronous serial interface mode register 1	ASIN	/11		0	0	_	00H
0FF71H	Asynchronous serial interface mode register 2	ASIM2			0	0	_	
0FF72H	Asynchronous serial interface status register 1	ASIS	S1	R	0	0	_	
0FF73H	Asynchronous serial interface status register 2	ASIS	S2		0	0	_	
0FF74H	Transmit shift register 1	TXS1	1	W	_	0	_	FFH
	Receive buffer register 1	RXB ²	1	R	_	0	_	
0FF75H	Transmit shift register 2	TXS2	2	W	_	0	_	
	Receive buffer register 2	RXB	2	R	_	0	_	
0FF76H	Baud rate generator control register 1	BRG	C1	R/W	0	0	_	00H
0FF77H	Baud rate generator control register 2	BRG	C2		0	0	_	
0FF7AH	Oscillation mode select register	СС			0	0	_	
0FF80H	A/D converter mode register	ADM			0	0	_	
0FF81H	A/D converter input select register	ADIS			0	0	_]
0FF83H	A/D conversion result register	ADC	R	R	_	0	_	Undefined
0FF84H	D/A conversion value setting register 0	DAC	S0	R/W	0	0	_	00H
0FF85H	D/A conversion value setting register 1	DACS1			0	0	_	
0FF86H	D/A converter mode register 0	DAM	0		0	0	_	
0FF87H	D/A converter mode register 1	DAM	1		0	0	_	1

Note When the LOCATION 0 instruction is executed. Add "F0000H" to this value when the LOCATION 0FH instruction is executed.

Table 6-1. Special Function Register (SFR) List (3/4)

Address ^{Note}	Special Function Register (SFR) Name	Symbol	R/W	Bit Units for Manipulation			At Reset
				1 bit	8 bits	16 bits	
0FF88H	ROM correction control register	CORC	R/W	0	0	_	00H
0FF89H	ROM correction address pointer H	CORAH		_	0		-
0FF8AH	ROM correction address pointer L	CORAL		_	_	0	0000H
0FF8BH							
0FF8DH	External access status enable register	EXAE		0	0	_	00H
0FF90H	Serial operation mode register 0	CSIM0		0	0	_	
0FF91H	Serial operation mode register 1	CSIM1		0	0	_	
0FF92H	Serial operation mode register 2	CSIM2		0	0	_	
0FF94H	Serial I/O shift register 0	SIO0		_	0	_	
0FF95H	Serial I/O shift register 1	SIO1		_	0	T —	
0FF96H	Serial I/O shift register 2	SIO2		_	0	_	
0FF98H	Real-time output buffer register L	RTBL		_	0	_	
0FF99H	Real-time output buffer register H	RTBH		_	0	_	
0FF9AH	Real-time output port mode register	RTPM		0	0	_	1
0FF9BH	Real-time output port control register	RTPC		0	0	_	
0FF9CH	Watch timer mode control register	WTM		0	0	T —	1
0FFA0H	External interrupt rising edge enable register	EGP0		0	0	_	1
0FFA2H	External interrupt falling edge enable register	EGN0		0	0	_	
0FFA8H	In-service priority register	ISPR	R	0	0	_	1
0FFA9H	Interrupt select control register	SNMI	R/W	0	0	_]
0FFAAH	Interrupt mode control register	IMC		0	0	_	80H
0FFACH	Interrupt mask flag register 0L	MK0L MK0		0	0	0	FFFFH
0FFADH	Interrupt mask flag register 0H	МКОН		0	0		
0FFAEH	Interrupt mask flag register 1L	MK1L MK1		0	0	0	
0FFAFH	Interrupt mask flag register 1H	MK1H		0	0		
0FFB0H	I ² C bus control register	IICCL0		0	0	_	00H
0FFB2H	Prescaler mode register for serial clock	SPRM0		0	0	_	
0FFB4H	Slave address register	SVA0		0	0	_	
0FFB6H	I ² C bus status register	IICS0	R	0	0	_	
0FFB8H	Serial shift register	IIC0	R/W	0	0	_	
0FFC0H	Standby control register	STBC		_	0	_	30H
0FFC2H	Watchdog timer mode register	WDM		_	0	_	00H
0FFC4H	Memory expansion mode register	MM		0	0	<u> </u>	20H
0FFC7H	Programmable wait control register 1	PWC1		0	0	_	AAH
00FFCEH	Clock status register	PCS	R	0	0	_	32H
0FFCFH	Oscillation stabilization time specification register	OSTS	R/W	0	0	_	00H
0FFD0H-	External SFR area	_	1	0	0	<u> </u>	_
0FFDFH							

Note When the LOCATION 0 instruction is executed. Add "F0000H" to this value when the LOCATION 0FH instruction is executed.

Table 6-1. Special Function Register (SFR) List (4/4)

Address ^{Note}	Special Function Register (SFR) Name	Symbol	R/W	Bit Units for Manipulation		At Reset	
				1 bit	8 bits	16 bits	
0FFE0H	Interrupt control register (INTWDTM)	WDTIC	R/W	0	0	_	43H
0FFE1H	Interrupt control register (INTP0)	PIC0		0	0	_	
0FFE2H	Interrupt control register (INTP1)	PIC1		0	0	_	
0FFE3H	Interrupt control register (INTP2)	PIC2		0	0	_	
0FFE4H	Interrupt control register (INTP3)	PIC3		0	0	_	
0FFE5H	Interrupt control register (INTP4)	PIC4		0	0	_	
0FFE6H	Interrupt control register (INTP5)	PIC5		0	0	_	
0FFE8H	Interrupt control register (INTIIC0/INTCSI0)	CSIIC0		0	0	_	
0FFE9H	Interrupt control register (INTSER1)	SERIC1		0	0	_	
0FFEAH	Interrupt control register (INTSR1/INTCSI1)	SRIC1		0	0	_	
0FFEBH	Interrupt control register (INTST1)	STIC1		0	0	_	
0FFECH	Interrupt control register (INTSER2)	SERIC2		0	0	_	
0FFEDH	Interrupt control register (INTSR2/INTCSI2)	SRIC2		0	0	_	
0FFEEH	Interrupt control register (INTST2)	STIC2		0	0	_	
0FFEFH	Interrupt control register (INTTM3)	TMIC3		0	0	_	
0FFF0H	Interrupt control register (INTTM00)	TMIC00		0	0	_	
0FFF1H	Interrupt control register (INTTM01)	TMIC01		0	0	_	
0FFF2H	Interrupt control register (INTTM1)	TMIC1		0	0	_	
0FFF3H	Interrupt control register (INTTM2)	TMIC2		0	0	_	
0FFF4H	Interrupt control register (INTAD)	ADIC		0	0	_	
0FFF5H	Interrupt control register (INTTM5)	TMIC5		0	0	_	
0FFF6H	Interrupt control register (INTTM6)	TMIC6		0	0	_	
0FFF9H	Interrupt control register (INTWT)	WTIC		0	0	_	

Note When the LOCATION 0 instruction is executed. Add "F0000H" to this value when the LOCATION 0FH instruction is executed.

7. PERIPHERAL HARDWARE FUNCTIONS

7.1 Ports

The ports shown in Figure 7-1 are provided to make various control operations possible. Table 7-1 shows the function of each port. Ports 0, 2 through 7, 12 can be connected to internal pull-up resistors by software when inputting.

P50 P00 PORT 0 PORT 5 P05 P57 P60 P10-P17 PORT 1 PORT 6 P67 P20 P70 PORT 7 PORT 2 P72 P120 P27 P30 PORT 12 PORT 3 P127 P130 P37 PORT 13 P40 P131 PORT 4 P47

Figure 7-1. Port Configuration

Table 7-1. Port Functions

Port Name	Pin Name	Function	Specification of Pull-up Resistor Connection by Software
Port 0	P00-P05	Can be set in input or output mode bit-wise	Can be specified bit-wise
Port 1	P10-P17	Input port	_
Port 2	P20-P27	Can be set in input or output mode bit-wise	Can be specified bit-wise
Port 3	P30-P37	Can be set in input or output mode bit-wise	Can be specified bit-wise
Port 4	P40-P47	Can be set in input or output mode bit-wise Can directly drive LEDs	Can be specified in 1-port units
Port 5	P50-P57	Can be set in input or output mode bit-wise Can directly drive LEDs	Can be specified in 1-port units
Port 6	P60-P67	Can be set in input or output mode bit-wise	Can be specified in 1-port units
Port 7	P70-P72	Can be set in input or output mode bit-wise	Can be specified bit-wise
Port 12	P120-P127	Can be set in input or output mode bit-wise	Can be specified bit-wise
Port 13	P130, P131	Can be set in input or output mode bit-wise	_

7.2 Clock Generation Circuit

An on-chip clock generation circuit necessary for operation is provided. This clock generation circuit has a divider circuit. If high-speed operation is not necessary, the internal operating frequency can be lowered by the divider circuit to reduce the current consumption.

Subsystem XT1 O fхт Watch timer, clock oscillation clock output function XT2 O circuit Prescaler Main system Selector clock Prescaler Clock to oscillation peripheral hardware X2 ○ circuit Divider circuit $\frac{f_{XX}}{2}$ $\frac{f_{XX}}{2^2}$ $\frac{fxx}{2^3}$ STOP Standby Wait Selector CPU control control clock circuit circuit (fcpu)

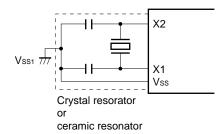

Figure 7-2. Block Diagram of Clock Generation Circuit

Figure 7-3. Example of Using Main System Clock Oscillation Circuit

(1) Crystal/ceramic oscillation

(2) External clock

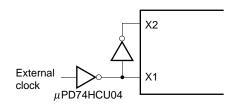
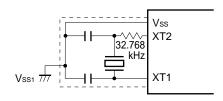



Figure 7-4. Example of Using Subsystem Clock Oscillation Circuit

(1) Crystal oscillation

(2) External clock

Caution When using the main system clock and subsystem clock oscillation circuit, wire the dotted portions in Figures 7-3 and 7-4 as follows to avoid adverse influence from wiring capacitance.

- Keep the wiring length as short as possible.
- · Do not cross the wiring with other signal lines.
- · Do not route the wiring in the vicinity of lines through which a high alternating current flows.
- Always keep the potential at the ground point of the capacitor in the oscillation circuit the same as Vss1. Do not ground to a ground pattern through which a high current flows.
- · Do not extract signals from the oscillation circuit.

Note that the subsystem clock oscillation circuit has a low amplification factor to reduce the current consumption.

7.3 Real-Time Output Port

The real-time output function is to transfer data set in advance to the real-time output buffer register to the output latch as soon as the timer interrupt or external interrupt has occurred in order to output the data to an external device. The pins that output the data to the external device constitute a port called a real-time output port.

Because the real-time output port can output signals without jitter, it is ideal for controlling a stepping motor.

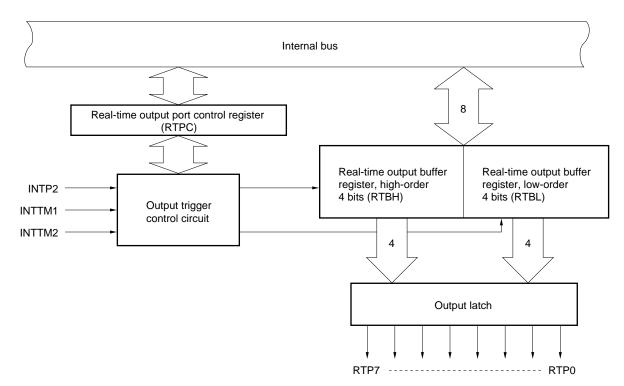


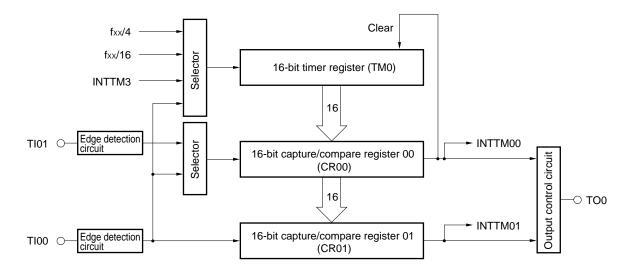
Figure 7-5. Block Diagram of Real-Time Output Port

7.4 Timer/Counter

One unit of 16-bit timers/counters and four units of timers/counters are provided.

Because a total of six interrupt requests are supported, these timers/counters and timer can be used as six units of timers/counters.

Table 7-2. Operations of Timers/Counters


Item		Name	16-Bit Timer/ Counter	8-Bit Timer/ Counter 1	8-Bit Timer/ Counter 2	8-Bit Timer/ Counter 5	8-Bit Timer/ Counter 6
Count width	8	bits	_	0	0	0	0
	10	6 bits	0	(0)
Operation mode	In	terval timer	1ch	1ch	1ch	1ch	1ch
	Е	xternal event counter	0	0	0	_	_
Function	Т	imer output	1ch	1ch	1ch	_	_
		PPG output	0	_	_	_	_
		PWM output	0	0	0	_	_
		Square wave output	0	0	0	_	_
		One-shot pulse output	0	_	_	_	_
	Р	ulse width measurement	2 inputs	_	_	_	_
	N	umber of interrupt requests	2	1	1	1	1

32

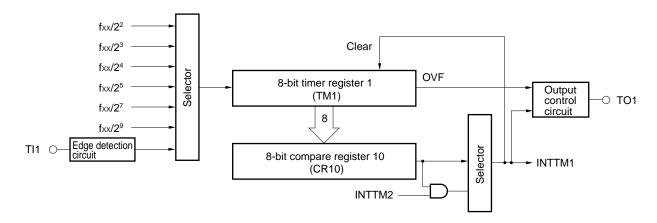
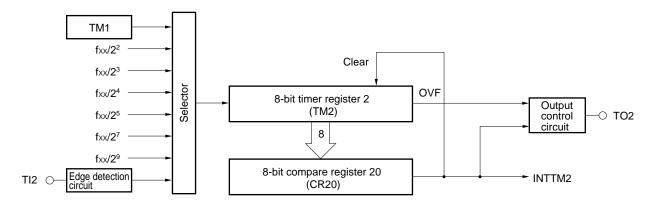
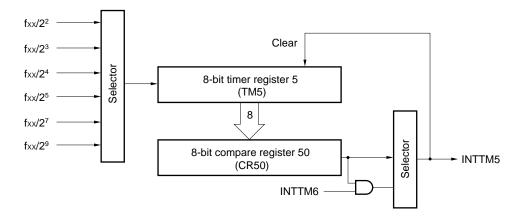


Figure 7-6. Block Diagram of Timers/Counters (1/2)


16-bit timer/counter

8-bit timer/counter 1

8-bit timer/counter 2



Remark OVF: overflow flag

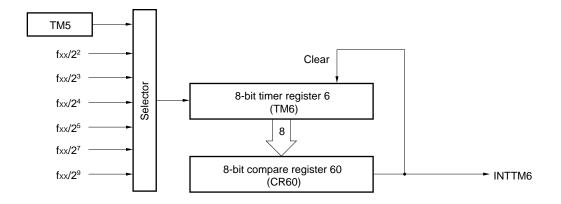


Figure 7-6. Block Diagram of Timers/Counters (2/2)

8-bit timer/counter 5

8-bit timer/counter 6

7.5 A/D Converter

An A/D converter converts an analog input variable into a digital signal. This microcontroller is provided with an A/D converter with a resolution of 8 bits and 8 channels (ANI0 through ANI7).

This A/D converter is of successive approximation type and the result of conversion is stored to an 8-bit A/D conversion result register (ADCR).

The A/D converter can be started in the following two ways:

- Hardware start
 Conversion is started by trigger input (P03).
- Software start
 Conversion is started by setting the A/D converter mode register.

One analog input channel is selected from ANI0 through ANI7 for A/D conversion. When A/D conversion is started by means of hardware start, conversion is stopped after it has been completed. When conversion is started by means of software start, A/D conversion is repeatedly executed, and each time conversion has been completed, an interrupt request (INTAD) is generated.

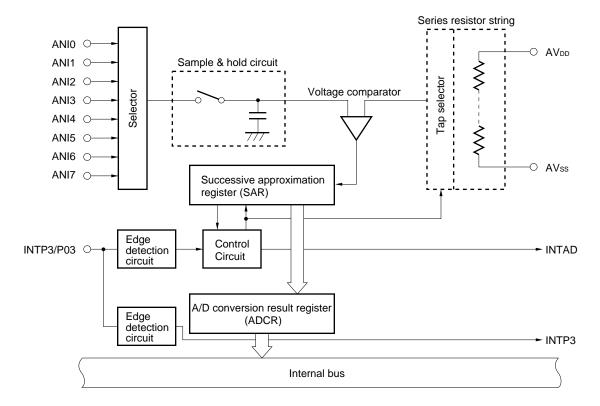


Figure 7-7. Block Diagram of A/D Converter

7.6 D/A Converter

A D/A converter converts an input digital signal into an analog voltage. This microcontroller is provided with a voltage output type D/A converter with a resolution of 8 bits and two channels.

The conversion method is of R-2R resistor ladder type.

D/A conversion is started by setting DACE0 of the D/A converter mode register 0 (DAM0) and DACE1 of the D/A converter mode register 1 (DAM1).

The D/A converter operates in the following two modes:

• Normal mode

The converter outputs an analog voltage immediately after it has completed D/A conversion.

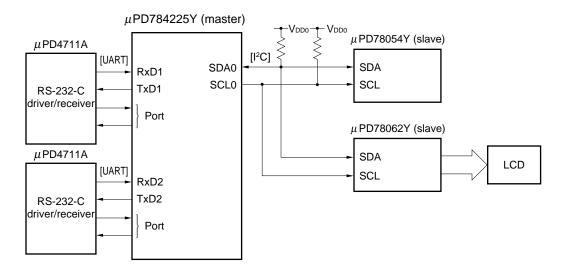
• Real-time output mode

The converter outputs an analog voltage in synchronization with an output trigger after it has completed D/A conversion.

DACS0 8 2R O ANO0 AVREF1 O R 2R Selector R 2R DACS1 2R 8 2R ANO1 R 2R Selector 2R AVss O-2R

Figure 7-8. Block Diagram of D/A Converter

7.7 Serial Interface


Three independent serial interface channels are provided.

- Asynchronous serial interface (UART)/3-wire serial I/O (IOE) × 2
- Clocked serial interface (CSI) × 1
- 3-wire serial I/O (IOE)
- I²C bus interface (I²C)

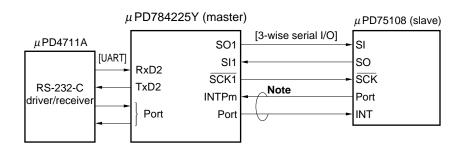

Therefore, communication with an external system and local communication within the system can be simultaneously executed (refer to **Figure 7-9**).

Figure 7-9. Example of Serial Interface

(a) $UART + I^2C$

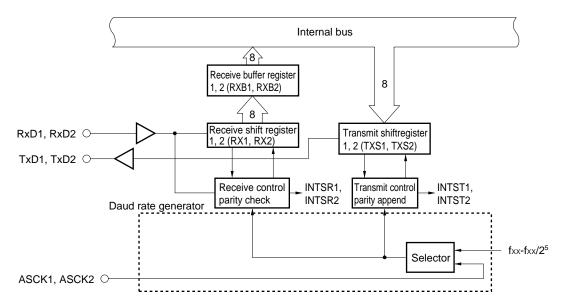
(b) UART + 3-wire serial I/O

Note Handshake line

7.7.1 Asynchronous serial interface/3-wire serial I/O (UART/IOE)

Two channels of serial interfaces that can select an asynchronous serial interface mode and 3-wire serial I/O mode are provided.

(1) Asynchronous serial interface mode


In this mode, data of 1 byte following the start bit is transferred or received.

Because an on-chip baud rate generator is provided, a wide range of baud rates can be set.

Moreover, the clock input to the ASCK pin can be divided to define a baud rate.

When the baud rate generator is used, a baud rate conforming to the MIDI standard (31.25 kbps) can be also obtained.

Figure 7-10. Block Diagram in Asynchronous Serial Interface Mode

(2) 3-wire serial I/O mode

In this mode, the master device starts transfer by making the serial clock active and transfers 1-byte data in synchronization with this clock.

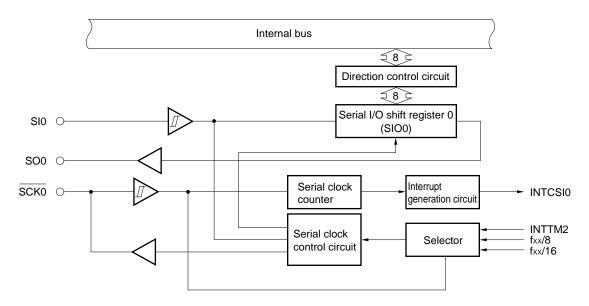
This mode is used to communicate with a device having the conventional clocked serial interface. Basically, communication is established by using three lines: serial clocks ($\overline{SCK1}$ and $\overline{SCK2}$), serial data inputs (SI1 and SI2), and serial data outputs (SO1 and SO2). To connect two or more devices, a handshake line is necessary.

Internal bus ₹8 🗦 Direction control circuit ₹8 € Serial I/O shift register SI1, SI2 O 1, 2 (SIO1, SIO2) SO1, SO2 O Serial clock Interrupt INTCSI1, SCK1, SCK2 O INTCSI2 generation circuit counter INTTM2 Serial clock fxx/8 Selector control circuit fxx/16

Figure 7-11. Block Diagram in 3-wire Serial I/O Mode

7.7.2 Clocked serial interface (CSI)

In this mode, the master device starts transfer by making the serial clock active and communicates 1-byte data in synchronization with this clock.


(1) 3-wire serial I/O mode

This mode is to communicate with devices having the conventional clocked serial interface.

Basically, communication is established in this mode with three lines: one serial clock (SCKO) and two serial data (SIO and SOO) lines.

Generally, a handshake line is necessary to check the reception status.

Figure 7-12. Block Diagram in 3-Wise Serial I/O Mode

(2) I²C (Inter IC) bus mode (supporting multi-master)

This mode is to communicate with devices conforming to the I²C bus format.

This mode is to transfer 8-bit data with two or more devices by using two lines: serial clock (SCL0) and serial data bus (SDA0).

During transfer, a "start condition", "data", and "stop condition" can be output onto the serial data bus. During reception, these data can be automatically detected by hardware.

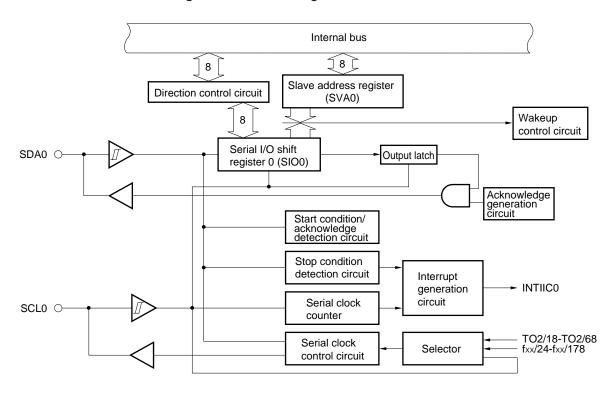


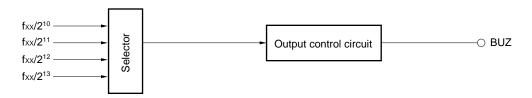
Figure 7-13. Block Diagram in I²C Bus Mode

7.8 Clock Output Function

Clocks of the following frequencies can be output.

- 97.7 kHz/195 kHz/391 kHz/781 kHz/1.56 MHz/3.13 MHz/6.25 MHz/12.5 MHz (main system clock: 12.5 MHz)
- 32.768 kHz (subsystem clock: 32.768 kHz)

Figure 7-14. Block Diagram of Clock Output Function



7.9 Buzzer Output Function

Clocks of the following frequencies can be output as buzzer output.

• 1.5 kHz/3.1 kHz/6.1 kHz/12.2 kHz (main system clock: 12.5 MHz)

Figure 7-15. Block Diagram of Buzzer Output Function

7.10 Edge Detection Function

The interrupt input pins (INTP0, INTP1, NMI/INTP2, INTP3 through INTP5) are used not only to input interrupt requests but also to input trigger signals to the internal hardware units. Because these pins operate at an edge of the input signal, they have a function to detect an edge. Moreover, a noise reduction circuit is also provided to prevent erroneous detection due to noise.

Pin Name	Detectable Edge	Noise Reduction
NMI	Either or both of rising and falling edges	By analog delay
INTP0 through INTP5		

7.11 Watch Timer

The watch timer has the following functions:

- Watch timer
- Interval timer

The watch timer and interval timer functions can be used at the same time.

(1) Watch timer

The watch timer sets the WTIF flag of the interrupt control register (WTIC) at time intervals of 0.5 seconds by using the 32.768-kHz subsystem clock.

(2) Interval timer

The interval timer generates an interrupt request (INTTM3) at predetermined time intervals.

 $\frac{f_W}{2^{14}}$ Selector 5-bit counter Selector $fxx/2^7$ Selector Prescaler - INTWT $\frac{\text{fw}}{2^5}$ $\frac{f_W}{2^6}$ $\frac{\text{fw}}{2^9}$ $\frac{\text{fw}}{2^7}$ $\frac{\text{fw}}{2^8}$ Selector INTTM3 To 16-bit timer/counter

Figure 7-16. Block Diagram of Watch Timer

7.12 Watchdog Timer

A watchdog timer is provided to detect a hang up of the CPU. This watchdog timer generates a non-maskable or maskable interrupt unless it is cleared by software within a specified interval time. Once enabled to operate, the watchdog timer cannot be stopped by software. Whether the interrupt by the watchdog timer or the interrupt input from the NMI pin takes precedence can be specified.

fclk Timer $f_{\text{CLK}/2^{21}}$ $f_{\text{CLK}/2^{19}}$ $f_{\text{CLK}/2^{17}}$ $f_{\text{CLK}/2^{17}}$ Clear signal

Figure 7-17. Block Diagram of Watchdog Timer

Remark fclk: Internal system clock (fxx to fxx/8)

8. INTERRUPT FUNCTION

As the servicing in response to an interrupt request, the three types shown in Table 8-1 can be selected by program.

Table 8-1. Servicing of Interrupt Request

Servicing Mode	Entity of Servicing	Servicing	Contents of PC and PSW
Vectored interrupt	Software	Branches and executes servicing routine (servicing is arbitrary).	Saves to and restores from stack.
Context switching		Automatically switches register bank, branches and executes servicing routine (servicing is arbitrary).	Saves to or restores from fixed area in register bank
Macro service	Firmware	Executes data transfer between memory and I/O (servicing is fixed)	Retained

8.1 Interrupt Sources

Table 8-2 shows the interrupt sources available. As shown, interrupts are generated by 25 types of sources, execution of the BRK instruction, BRKCS instruction, or an operand error.

The priority of interrupt servicing can be set to four levels, so that nesting can be controlled during interrupt servicing and that which of the two or more interrupts that simultaneously occur should be serviced first. When the macro service function is used, however, nesting always proceeds.

The default priority is the priority (fixed) of the service that is performed if two or more interrupt requests, having the same request, simultaneously generate (refer to **Table 8-2**).

Table 8-2. Interrupt Sources

Туре	Default		Source	Internal/	Macro
	Priority	Name	Trigger	External	Service
Software	_	BRK instruction	Instruction execution	_	
		BRKCS instruction	Instruction execution		
		Operand error	If result of exclusive OR between operands byte and byte is not FFH when MOV STBC, #byte instruction or MOV WDM, #byte instruction, LOCATION instruction is executed		
Non-maskable	_	NMI	Pin input edge detection	External	_
		INTWDT	Overflow of watchdog timer	Internal	
Maskable	0 (highest)	INTWDTM	Overflow of watchdog timer	Internal	0
	1	INTP0	Pin input edge detection	External	
	2	INTP1			
	3	INTP2			
	4	INTP3			
	5	INTP4			
	6	INTP5			
	7	INTIIC0	End of I ² C bus transfer by CSI0	Internal	
		INTCSI0	End of 3-wire transfer by CSI0		
	8	INTSER1	Occurrence of UART reception error in ASI1		
	9	INTSR1	End of UART reception by ASI1		
		INTCSI1	End of 3-wire transfer by CSI1		
	10	INTST1	End of UART transfer by ASI1		
	11	INTSER2	Occurrence of UART reception error in ASI2		
	12	INTSR2	End of UART reception by ASI2		
		INTCSI2	End of 3-wire transfer by CSI2		
	13	INTST2	End of UART transfer by ASI2		
	14	INTTM3	Reference time interval signal from watch timer		
	15	INTTM00	Signal indicating coincidence between 16-bit timer register and capture/compare register (CR00)		
	16	INTTM01	Signal indicating coincidence between 16-bit timer register and capture/compare register (CR01)		
	17	INTTM1	Occurrence of coincidence signal of 8-bit timer/counter 1		
	18	INTTM2	Occurrence of coincidence signal of 8-bit timer/counter 2		
	19	INTAD	End of conversion by A/D converter		
	20	INTTM5	Occurrence of coincidence signal of 8-bit timer/counter 5		
	21	INTTM6	Occurrence of coincidence signal of 8-bit timer/counter 6		
	22 (lowest)	INTWT	Overflow of watch timer		

Remark ASI: Asynchronous Serial Interface

CSI: Clocked Serial Interface

8.2 Vectored Interrupt

Execution branches to a servicing routing by using the memory contents of a vector table address corresponding to the interrupt source as the address of the branch destination.

So that the CPU performs interrupt servicing, the following operations are performed:

• On branching: Saves the status of the CPU (contents of PC and PSW) to stack

• On returning: Restores the status of the CPU (contents of PC and PSW) from stack

To return to the main routine from an interrupt service routine, the RETI instruction is used. The branch destination address is in a range of 0 to FFFFH.

Table 8-3. Vector Table Address

Interrupt Source	Vector Table Address	Interrupt Source	Vector Table Address
BRK instruction	003EH	INTST1	001CH
Operand error	003CH	INTSER2	001EH
NMI	0002H	INSR2	0020H
INTWDT (non-maskable)	0004H	INTCSI2	
INTWDTM (maskable)	0006H	INTST2	0022H
INTP0	0008H	INTTM3	0024H
INTP1	000AH	INTTM00	0026H
INTP2	000CH	INTTM01	0028H
INTP3	000EH	INTTM1	002AH
INTP4	0010H	INTTM2	002CH
INTP5	0012H	INTAD	002EH
INTIIC0	0016H	INTTM5	00030H
INTCSI0		INTTM6	0032H
INTSER1	0018H	INTWT	0038H
INTSR1	001AH		
INTCSI1			

8.3 Context Switching

When an interrupt request is generated or when the BRKCS instruction is executed, a predetermined register bank is selected by hardware. Context switching is a function that branches execution to a vector address stored in advance in the register bank, and to stack the current contents of the program counter (PC) and program status word (PSW) to the register bank.

The branch address is in a range of 0 to FFFFH.

Register bank n 0000B (0 to 7)<7> Transfer Register bank n (n = 0 to 7) PC19-16 PC15-0 Α Χ В С <6> Exchange R5 R4 <2> Save (bits 8 through 11 R7 R6 of temporary register) <5> Save VP ٧ UP U <3> Switching of register bank Temporary register (RBS0 to RBS2 \leftarrow n) Τ Ε D <4> / RSS ← 0 \ Н L W <1> Save /IE ← 0 **PSW**

Figure 8-1. Context Switching Operation When Interrupt Request Is Generated

8.4 Macro Service

This function is to transfer data between memory and a special function register (SFR) without intervention by the CPU. A macro service controller accesses the memory and SFR in the same transfer cycle and directly transfers data without loading it.

Because this function does not save or restore the status of the CPU, or load data, data can be transferred at high speeds.

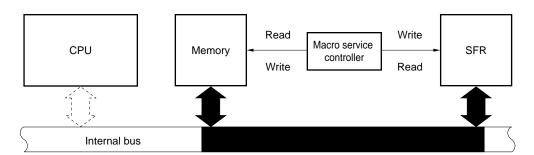
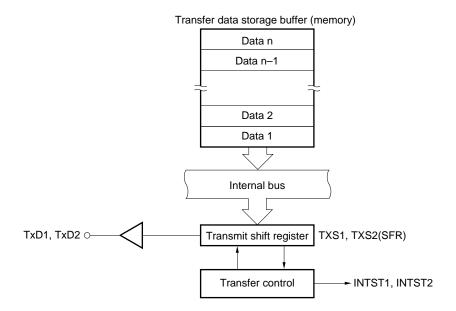
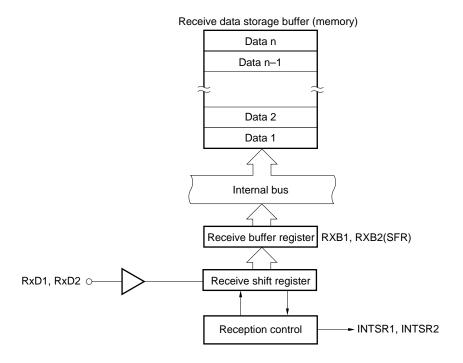



Figure 8-2. Macro Service


8.5 Application Example of Macro Service

(1) Transmission of serial interface

Each time macro service request INTST1 and INTST2 are generated, the next transmit data is transferred from memory to TXS1 and TXS2. When data n (last byte) has been transferred to TXS1 and TXS2 (when the transmit data storage buffer has become empty), vectored interrupt request INTST1 and INTST2 are generated.

(2) Reception of serial interface

Each time macro service request INTSR1 and INTSR2 are generated, the receive data is transferred from RXB1 and RXB2 to memory. When data n (last byte) has been transferred to memory (when the receive data storage buffer has become full), vectored interrupt request INTSR1 and INTSR2 are generated.

9. LOCAL BUS INTERFACE

The local bus interface can connect an external memory or I/O (memory mapped I/O) and support a memory space of 1 MByte (refer to **Figure 9-1**).

μPD784225Y **SRAM** $\overline{\mathsf{cs}}$ Data bus $\overline{\mathsf{RD}}$ ŌE WE WR I/O1-I/O8 Address bus A8-A19 A0-A19 Address latch **ASTB** LE Q0-Q7 AD0-AD7 D0-D7 ŌE 7//

Figure 9-1. Example of Local Bus Interface (Multiplexed bus)

9.1 Memory Expansion

External program and data memory can be connected in two stages: 256K bytes and 1 Mbytes.

To connect the external memory, ports 4 through 6 are used.

The external memory is connected by using a time-division address/data bus. The number of ports used when the external memory is connected can be reduced in this mode.

9.2 Programmable Wait

Wait state(s) can be inserted to the memory space (00000H through FFFFH) while the \overline{RD} and \overline{WR} signals are active.

In addition, there is an address wait function that extends the active period of the ASTB signal to gain the address decode time.

9.3 External Access Status Function

An active low external access status signal is output from the P37/EXA pin. This signal notifies other devices connected to the external bus of the external access status, to disable data output to the external bus from other devices, or enables reception.

The external access status signal is output during external access.

10. STANDBY FUNCTION

This function is to reduce the power consumption of the chip, and can be used in the following modes:

• HALT mode : Stops supply of the operating clock to the CPU. This mode is used in combination

with the normal operation mode for intermittent operation to reduce the average

power consumption.

• IDLE mode : Stops the entire system with the oscillation circuit continuing operation. The

power consumption in this mode is close to that in the STOP mode. However, the time required to restore the normal program operation from this mode is almost

the same as that from the HALT mode.

• STOP mode : Stops the main system clock and thereby to stop all the internal operations of the

chip. Consequently, the power consumption is minimized with only leakage

current flowing.

Power-saving mode
 The main system clock is stopped with the subsystem clock used as the system

clock. The CPU can operate on the subsystem clock to reduce the current

consumption.

• Power-saving HALT mode: This is a standby function in the power-saving mode and stops the operation clock

of the CPU, to reduce the power consumption of the entire system.

• Power-saving IDLE mode : This is a standby function in the power-saving mode and stops the entire system

except the oscillation circuit, to reduce the power consumption of the entire

system.

These modes are programmable.

The macro service can be started from the HALT mode and power-saving HALT mode.

After executing macro service processing, it returns to the HALT mode.

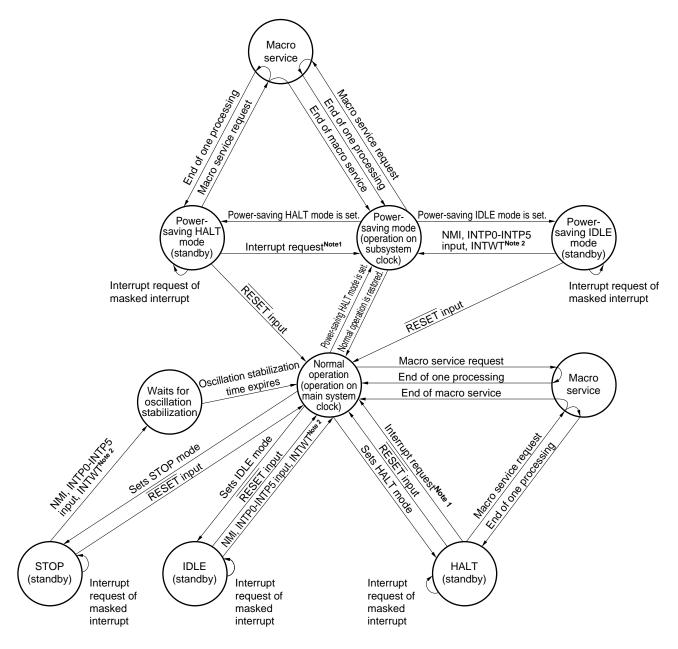


Figure 10-1. Transition of Standby Status

Notes 1. Only interrupt requests that are not masked

2. INTP0-INTP5 and INTWT are not masked.

11. RESET FUNCTION

When a low-level signal is input to the RESET pin, the system is reset, and each hardware unit is initialized (reset). During the reset period, oscillation of the main system clock is unconditionally stopped. Consequently, the current consumption of the entire system can be reduced.

When the RESET signal goes high, the reset status is cleared, oscillation stabilization time (41.9 ms at 12.5 MHz) elapses, the contents of the reset vector table are set to the program counter (PC), execution branches to an address set to the PC, and program execution is started from that branch address. Therefore, the program can be reset and started from any address.

Main system clock oscillation circuit

Oscillation is unconditionally stopped during reset period.

FCLK

RESET input

Oscillation stabilization time

Figure 11-1. Oscillation of Main System Clock during Reset Period

The RESET input pin has an analog delay noise rejection circuit to prevent malfunctioning due to noise.

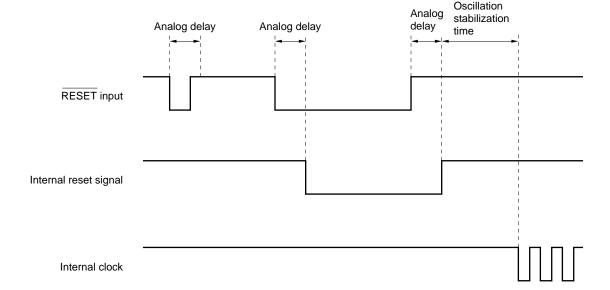


Figure 11-2. Accepting Reset Signal

12. ROM CORRECTION

ROM correction is a function to replace part of the program in the internal ROM with a program in the internal RAM.

By using the ROM correction function, instruction bugs found in the internal ROM can be avoided or the flow of the program can be changed.

ROM correction can be used at up to four places in the internal ROM (program).

Correction branch processing request signal (CALLT instruction)

Correction address pointer n

Correction address registers (CORAH, CORAL)

ROM correction control register (CORC)

FikHe 12-1. Block Diagram of ROM Correction

Remark n = 0 to 3, m = 0 or 1

13. INSTRUCTION SET

(1) 8-bit instructions (The instructions in parentheses are combinations realized by describing A as r) MOV, XCH, ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC, ROLC, SHR, SHL, ROR4, DBNZ, PUSH, POP, MOVM, XCHM, CMPME, CMPMNE, CMPMNC, CMPMC, MOVBK, XCHBK, CMPBKE, CMPBKNE, CMPBKNC, CMPBKC, CHIKL, CHKLA

Table 13-1. Instruction List by 8-Bit Addressing

N				1			1				
Second Operand First Operand	#byte	A	r r'	saddr saddr'	sfr	!addr16 !!addr24	mem [saddrp] [%saddrg]	r3 PSWL PSWH	[WHL+]	n	None ^{Note 2}
A	(MOV) ADD ^{Note 1}	(MOV) (XCH) (ADD) ^{Note 1}	MOV XCH (ADD) ^{Note 1}	(MOV)Note 6 (XCH)Note 6 (ADD)Note 1,6	MOV (XCH) (ADD) ^{Note 1}	(MOV) (XCH) ADD ^{Note 1}	MOV XCH ADDNote 1	MOV	(MOV) (XCH) (ADD)Note 1		
r	MOV ADD ^{Note 1}	(MOV) (XCH) (ADD) ^{Note 1}	MOV XCH ADD ^{Note 1}	MOV XCH ADD ^{Note 1}	MOV XCH ADD ^{Note 1}	MOV XCH				RORNote 3	MULU DIVUW INC DEC
saddr	MOV ADD ^{Note 1}	(MOV) ^{Note 6} (ADD) ^{Note 1}	MOV ADD ^{Note 1}	MOV XCH ADD ^{Note 1}							INC DEC DBNZ
sfr	MOV ADD ^{Note 1}	MOV (ADD) ^{Note 1}	MOV ADD ^{Note 1}								PUSH POP CHKL CHKLA
!addr16 !!addr24	MOV	(MOV) ADD ^{Note 1}	MOV								
mem [saddrp] [%saddrg]		MOV ADD ^{Note 1}									
mem3											ROR4 ROL4
r3 PSWL PSWH	MOV	MOV									
B, C											DBNZ
STBC, WDM	MOV										
[TDE+] [TDE-]		(MOV) (ADD) ^{Note 1} MOVM ^{Note 4}							MOVBK ^{Note 5}		

Notes 1. The operands of ADDC, SUB, SUBC, AND, OR, XOR, and CMP are the same as that of ADD.

- 2. Either the second operand is not used, or the second operand is not an operand address.
- 3. The operands of ROL, RORC, ROLC, SHR, and SHL are the same as that of ROR.
- **4.** The operands of XCHM, CMPME, CMPMNE, CMPMNC, and CMPMC are the same as that of MOVM.
- **5.** The operands of XCHBK, CMPBKE, CMPBKNE, CMPBKNC, and CMPBKC are the same as that of MOVBK.
- 6. The code length of some instructions having saddr2 as saddr in this combination is short.

(2) 16-bit instructions (The instructions in parentheses are combinations realized by describing AX as rp)

MOVW, XCHW, ADDW, SUBW, CMPW, MULUW, MULW, DIVUX, INCW, DECW, SHRW, SHLW, PUSH, POP, ADDWG, SUBWG, PUSHU, POPU, MOVTBLW, MACW, MACSW, SACW

Table 13-2. Instruction List by 16-Bit Addressing

Second Operand	#word	AX	rp	saddrp	sfrp	!addr16	mem	[WHL+]	byte	n	None ^{Note 2}
			rp'	saddrp'		!!addr24	[saddrp]				
First Operand							[%saddrg]				
AX	(MOVW)	(MOVW)	(MOVW)	(MOVW)Note 3	MOVW	(MOVW)	MOVW	(MOVW)			
	ADDWNote 1	(XCHW)	(XCHW)	(XCHW)Note 3	(XCHW)	XCHW	XCHW	(XCHW)			
		(ADD)Note 1	(ADDW)Note 1	(ADDW)Note 1,3	(ADDW)Note 1						
rp	MOVW	(MOVW)	MOVW	MOVW	MOVW	MOVW				SHRW	MULWNote 4
	ADDWNote 1	(XCHW)	XCHW	XCHW	XCHW					SHLW	INCW
		(ADDW)Note 1	ADDW ^{Note 1}	ADDWNote 1	ADDWNote 1						DECW
saddrp	MOVW	(MOVW)Note 3	MOVW	MOVW							INCW
	ADDW ^{Note 1}	(ADDW)Note 1	ADDW ^{Note 1}	XCHW							DECW
				ADDWNote 1							
sfrp	MOVW	MOVW	MOVW								PUSH
	ADDW ^{Note 1}	(ADDW)Note 1	ADDW ^{Note 1}								POP
!addr16	MOVW	(MOVW)	MOVW						MOVTBLW		
!!addr24											
mem		MOVW									
[saddrp]											
[%saddrg]											
PSW											PUSH
											POP
SP	ADDWG										
	SUBWG										
post											PUSH
											POP
											PUSHU
											POPU
[TDE+]		(MOVW)						SACW			
byte											MACW
											MACSW

Notes 1. The operands of SUBW and CMPW are the same as that of ADDW.

- 2. Either the second operand is not used, or the second operand is not an operand address.
- 3. The code length of some instructions having saddrp2 as saddrp in this combination is short.
- 4. The operands of MULUW and DIVUX are the same as that of MULW.

(3) 24-bit instructions (The instructions in parentheses are combinations realized by describing WHL as rg)

MOVG, ADDG, SUBG, INCG, DECG, PUSH, POP

Table 13-3. Instruction List by 24-Bit Addressing

Second Operand	#imm24	WHL	rg	saddrg	!!addr24	mem1	[%saddrg]	SP	None ^{Note}
			rg'						
First Operand									
WHL	(MOVG)	(MOVG)	(MOVG)	(MOVG)	(MOVG)	MOVG	MOVG	MOVG	
	(ADDG)	(ADDG)	(ADDG)	ADDG					
	(SUBG)	(SUBG)	(SUBG)	SUBG					
rg	MOVG	(MOVG)	MOVG	MOVG	MOVG				INCG
	ADDG	(ADDG)	ADDG						DECG
	SUBG	(SUBG)	SUBG						PUSH
									POP
saddrg		(MOVG)	MOVG						
!!addr24		(MOVG)	MOVG						
mem1		MOVG							
[%saddrg]		MOVG							
SP	MOVG	MOVG							INCG
									DECG

Note Either the second operand is not used, or the second operand is not an operand address.

(4) Bit manipulation instructions

MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR, BFSET

Table 13-4. Bit Manipulation Instructions

Second Operand	CY	saddr.bit sfr.bit	/saddr.bit /sfr.bit	None ^{Note}
Second Operand	Ci			None
		A.bit X.bit	/A.bit /X.bit	
		PSWL.bit PSWH.bit	/PSWL.bit /PSWH.bit	
		mem2.bit	/mem2.bit	
First Operand		!addr16.bit !!addr24.bit	/!addr16.bit /!!addr24.bit	
CY		MOV1	AND1	NOT1
		AND1	OR1	SET1
		OR1		CLR1
		XOR1		
saddr.bit	MOV1			NOT1
sfr.bit				SET1
A.bit				CLR1
X.bit				BF
PSWL.bit				вт
PSWH.bit				BTCLR
mem2.bit				BFSET
!addr16.bit				
!!addr24.bit				

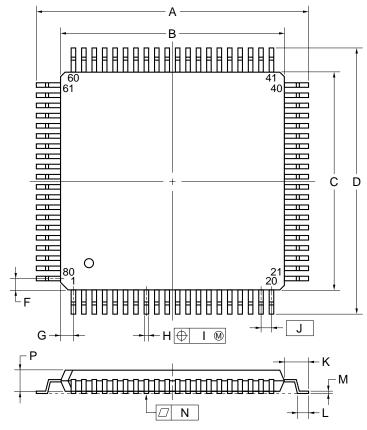
Note Either the second operand is not used, or the second operand is not an operand address.

(5) Call and return/branch instructions

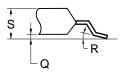
CALL, CALLF, CALLT, BRK, RET, RETI, RETB, RETCS, RETCSB, BRKCS, BR, BNZ, BNE, BZ, BE, BNC, BNL, BC, BL, BNV, BPO, BV, BPE, BP, BN, BLT, BGE, BLE, BGT, BNH, BH, BF, BT, BTCLR, BFSET, DBNZ

Table 13-5. Call and Return/Branch Instructions

Operand of Instruction	\$addr20	\$!addr20	!addr16	!!addr20	rp	rg	[rp]	[rg]	!addr11	[addr5]	RBn	None
Address												
Basic instruction	BC ^{Note}	CALL	CALL	CALL	CALL	CALL	CALL	CALL	CALLF	CALLF	BRKCS	BRK
	BR	BR	BR	BR	BR	BR	BR	BR				RET
			RETCS									RETI
			RETCSB									RETB
Compound instruction	BF											
	ВТ											
	BTCLR											
	BFSET											
	DBNZ											


Note The operands of BNZ, BNE, BZ, BE, BNC, BNL, BL, BNV, BPO, BV, BPE, BP, BN, BLT, BGE, BLE, BGT, BNH, and BH are the same as BC.

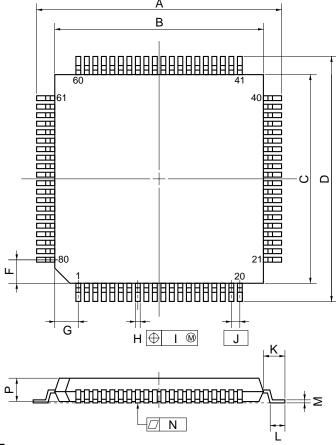
(6) Other instructions


ADJBA, ADJBS, CVTBW, LOCATION, SEL, NOT, EI, DI, SWRS

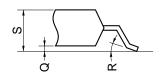
14. PACKAGE DRAWINGS

80 PIN PLASTIC QFP (14×14)

detail of lead end


NOTE

Each lead centerline is located within 0.13 mm (0.005 inch) of its true position (T.P.) at maximum material condition.


ITEM	MILLIMETERS	INCHES
Α	17.20±0.20	0.677±0.008
В	14.00±0.20	$0.551^{+0.009}_{-0.008}$
С	14.00±0.20	$0.551^{+0.009}_{-0.008}$
D	17.20±0.20	0.677±0.008
F	0.825	0.032
G	0.825	0.032
Н	0.32±0.06	0.013+0.002
I	0.13	0.005
J	0.65 (T.P.)	0.026 (T.P.)
K	1.60±0.20	0.063±0.008
L	0.80±0.20	$0.031^{+0.009}_{-0.008}$
М	0.17+0.03	0.007+0.001
N	0.10	0.004
P	1.40±0.10	0.055±0.004
Q	0.125±0.075	0.005±0.003
R	3°+7° -3°	3°+7° -3°
S	1.70 MAX.	0.067 MAX.

P80GC-65-8BT

80 PIN PLASTIC TQFP (FINE PITCH) (\Box 12)

detail of lead end

NOTE

Each lead centerline is located within 0.10 mm (0.004 inch) of its true position (T.P.) at maximum material condition.

ITEM MILLIMETERS INCHES A 14.0±0.2 0.551±0.009 B 12.0±0.2 0.472±0.009 C 12.0±0.2 0.472±0.009 D 14.0±0.2 0.551±0.009 F 1.25 0.049 G 1.25 0.049 H 0.22±0.05 0.009±0.002 I 0.10 0.004 J 0.5 (T.P.) 0.020 (T.P.) K 1.0±0.2 0.039±0.009 L 0.5±0.2 0.020±0.009 M 0.145±0.055 0.006±0.002 N 0.10 0.004 P 1.05 0.041 Q 0.05±0.05 0.002±0.002 R 5°±5° 5°±5°			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ITEM	MILLIMETERS	INCHES
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Α	14.0±0.2	$0.551^{+0.009}_{-0.008}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	В	12.0±0.2	$0.472^{+0.009}_{-0.008}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	С	12.0±0.2	0.472+0.009
G 1.25 0.049 H 0.22 ^{+0.05} 0.009±0.002 I 0.10 0.004 J 0.5 (T.P.) 0.020 (T.P.) K 1.0±0.2 0.039 ^{+0.009} 0.008 L 0.5±0.2 0.020 ^{+0.008} M 0.145 ^{+0.055} 0.006±0.002 N 0.10 0.004 P 1.05 0.041 Q 0.05±0.05 0.002±0.002	D	14.0±0.2	0.551+0.009
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F	1.25	0.049
1	G	1.25	0.049
J 0.5 (T.P.) 0.020 (T.P.) K 1.0±0.2 0.039+0.008 (0.0	Н	$0.22^{+0.05}_{-0.04}$	0.009±0.002
K 1.0±0.2 0.039+0.009 +0.008 +0.009 L 0.5±0.2 0.020+0.008 +0.009 M 0.145+0.055 -0.045 +0.002 0.006±0.002 N 0.10 +0.004 +0.004 +0.002 +0.002 +0.002 Q 0.05±0.05 +0.005 +0.002±0.002	I	0.10	0.004
L 0.5±0.2 0.020+0.008 -0.009 M 0.145+0.055 -0.045 0.006±0.002 N 0.10 0.004 P 1.05 0.041 Q 0.05±0.05 0.002±0.002	J	0.5 (T.P.)	0.020 (T.P.)
M 0.145 ^{+0.055} 0.006±0.002 N 0.10 0.004 P 1.05 0.041 Q 0.05±0.05 0.002±0.002	K	1.0±0.2	$0.039^{+0.009}_{-0.008}$
N 0.10 0.004 P 1.05 0.041 Q 0.05±0.05 0.002±0.002	L	0.5±0.2	0.020+0.008
P 1.05 0.041 Q 0.05±0.05 0.002±0.002	М	0.145 ^{+0.055} _{-0.045}	0.006±0.002
Q 0.05±0.05 0.002±0.002	N	0.10	0.004
	P	1.05	0.041
R 5°±5° 5°±5°	Q	0.05±0.05	0.002±0.002
	R	5°±5°	5°±5°
S 1.27 MAX. 0.050 MAX.	S	1.27 MAX.	0.050 MAX.

P80GK-50-BE9-4

APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for supporting development of a system using the μ PD784225Y.

Language processor software

RA78K4Note 1	Assembler package common to 78K/IV series
CC78K4Note 1	C compiler package common to 78K/IV series
CC78K4-LNote 1	C compiler library source file common to 78K/IV series

Flash memory writing tool

Flashpro II	Dedicated flash writer. Manufactured by Naito Densei Machida Mfg. Co., Ltd.	
Pending	Flash memory writing adapter	

Debugging tool

IE-784000-R	In-circuit emulator common to 78K/IV series
IE-784000-R-BK	Break board common to 78K/IV series
IE-784218-R-EM1 IE-784000-R-EM	Emulation board for evaluation of μ PD784225Y subseries
IE-70000-98-IF-B	Interface adapter when PC-9800 series (except notebook type) is used as host machine
IE-70000-98N-IF	Interface adapter and cable when notebook type PC-9800 series is used as host machine
IE-70000-PC-IF-B	Interface adapter when IBM PC/AT™ is used as host machine
IE-78000-R-SV3	Interface adapter and cable when EWS is used as host machine
Pending	Emulation probe common to μ PD784225Y subseries
SM78K4Note 2	System simulator common to 78K/IV series
ID78K4Note 2	Integrated debugger for IE-784000-R
DF784225 (Pending)Note 3	Device file for μ PD784225Y subseries

Real-time OS

RX78K/IVNote 3	Real-time OS for 78K/IV series
MX78K4Note 4	OS for 78K/IV series

Remark RA78K4, CC78K4, SM78K4, and ID78K4 are used in combination with DF784225.

- Notes 1. PC-9800 series (MS-DOS™) base
 - $\bullet \quad \mathsf{IBM} \; \mathsf{PC/AT} \; \mathsf{and} \; \mathsf{compatible} \; \mathsf{machine} \; (\mathsf{PC} \; \mathsf{DOS}^\mathsf{TM}, \; \mathsf{Windows}^\mathsf{TM}, \; \mathsf{MS-DOS}, \; \mathsf{IBM} \; \mathsf{DOS}^\mathsf{TM}) \; \mathsf{base} \\$
 - HP9000 series 700™ (HP-UX™) base
 - SPARCstation[™] (SunOS[™]) base
 - NEWS™ (NEWS-OS™) base
 - 2. PC-9800 series (MS-DOS+Windows) base
 - IBM PC/AT and compatible machine (PC DOS, Windows, MS-DOS, IBM DOS) base
 - HP9000 series 700 (HP-UX) base
 - SPARCstation (SunOS) base
 - 3. PC-9800 series (MS-DOS) base
 - IBM PC/AT and compatible machine (PC DOS, Windows, MS-DOS, IBM DOS) base
 - HP9000 series 700 (HP-UX) base
 - SPARCstation (SunOS) base
 - 4. PC-9800 series (MS-DOS) base
 - IMB PC/AT and compatible machine (PC DOS, Windows, MS-DOS, IBM DOS) base

APPENDIX B. RELATED DOCUMENTS

Documents related to device

Document Name	Document No.	
	Japanese	English
μPD784224Y, 784225Y Preliminary Product Information	U11725J	This document
μPD78F4225Y Preliminary Product Information	U12377J	Planned
μPD784225, 784225Y Subseries User's Manual - Hardware	Planned	Planned
μPD784225Y Subseries Special Function Register Table	Planned	_
78K/IV Series User's Manual - Instruction	U10905J	U10905E
78K/IV Series Instruction Table	U10594J	_
78K/IV Series Instruction Set	U10595J	_
78K/IV Series Application Note - Software Basics	U10095J	U10095E

Documents related to development tools (User's Manuals)

Document Name		Document No.	
		Japanese	English
RA78K4 Assembler Package	Operation	U11334J	U11334E
	Language	U11162J	_
RA78K Series Structured Assembler Preprocessor		EEU-817	EEU-1402
CC78K4 Series	Operation	EEU-960	_
	Language	EEU-961	-
CC78K Series Library Source File		U12322J	-
IE-784000-R		EEU-5004	EEU-1534
IE-784218-R-EM1		U12155J	U12155E
SM78K4 System Simulator - Windows Base	Reference	U10093J	U10093E
SM78K Series System Simulator	External component user open interface specification	U10092J	U10092E
ID78K4 Integrated Debugger - Windows Base	Reference	U10440J	U10440E

Caution The contents of the above related documents are subject to change without notice. Be sure to use the latest edition of a document for designing.

Documents related to embedded software (User's Manual)

Document Name		Document No.	
		Japanese	English
78K/IV Series Real-Time OS	Basics	U10603J	-
	Installation	U10604J	-
	Debugger	U10364J	-
78K/IV Series OS MX78K4	Basics	U11779J	_

Other documents

Document Name	Document No.	
	Japanese	English
IC Semiconductor Device Package Manual	C10943X	
Semiconductor Device Mounting Technology Manual	C10535J	C10535E
Quality Grades on NEC Semiconductor Devices	C11531J	C11531E
NEC Semiconductor Device Reliability/Quality Control System	C10983J	C10983E
Electrostatic Discharge (ESD) Test	MEM-539	_
Guide to Quality Assurance for Semiconductor Devices	C11893J	MEI-1202
Guide to Microcomputer-Related Products by Third Parties	U11416J	_

Caution The contents of the above related documents are subject to change without notice. Be sure to use the latest edition of a document for designing.

NOTES FOR CMOS DEVICES -

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- Ordering information
- · Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- · Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California Tel: 800-366-9782 Fax: 800-729-9288

NEC Electronics (Germany) GmbH

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.1.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH

Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A.

Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

NEC Electronics (France) S.A.

Spain Office Madrid, Spain Tel: 01-504-2787 Fax: 01-504-2860

NEC Electronics (Germany) GmbH

Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.

Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.

Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.

United Square, Singapore 1130

Tel: 253-8311 Fax: 250-3583

NEC Electronics Taiwan Ltd.

Taipei, Taiwan Tel: 02-719-2377 Fax: 02-719-5951

NEC do Brasil S.A.

Sao Paulo-SP, Brasil Tel: 011-889-1680 Fax: 011-889-1689

J96. 8

Caution Purchase of NEC I²C components conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.

IEBus is a trademark of NEC Corp.

MS-DOS and Windows are trademarks of Microsoft Corp.

IBM DOS, PC/AT, and PC DOS are trademarks of IBM Corp.

HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Co.

SPARCstation is a trademark of SPARC International, Inc.

SunOS is a trademark of Sun Microsystems, Inc.

NEWS and NEWS-OS are trademarks of Sony Corp.

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.

M4 96.5