TOSHIBA BiCMOS Integrated Circuit Silicon Monolithic

TB1305FG,TB1308FG

Component SW, Sync Separation and H/V Frequency Counter IC for TVs

The TB1305FG and TB1308FG include a component SW block, a prefilter for AD conversion, sync separation and H/V format detectors for TV component video signals.

The TB1305FG and TB1308FG contribute to reduction in the proportion of PCB occupied by LCR filters and to the simplification of designs on analog interfaces.

The TB1305FG and TB1308FG are equipped with an I^{2} CBUS interface through which various functions can be controlled.

Weight: 0.83 g (typ.)

Features

COMPONENT BLOCK

- Component video input: TB1305FG 2 channels, TB1308FG 3 channels; RGB available
- Component video output
- Gain switching: $0 \mathrm{~dB} /+6 \mathrm{~dB}$
- Bandwidth filter: prefilter for ADC; 4.2 to 31 MHz variable)

SYNC SEPARATION BLOCK

- Supports 525/60i/60p, 625/50i/50p, 750/50p/60p, 1125/50i/60i/50p/60p, 1250/50i, VGA @60, SVGA@60, XGA@60, SXGA@60, UXGA@60
- HD/VD input: 2 channels; positive and negative input acceptable
- HD/VD output: positive and negative output selectable
- Masking pseudo-sync for copyguard signal

OTHERS

- Line detector for D-pin (2 channels)
- Horizontal and vertical frequency counter
- Format detection circuit for input signal
- Automatic sync process switching mode

Lineup

Part No.	Number of component video inputs
TB1305FG	2
TB1308FG	3

Block Diagram

NOTE: Pins 38, 39, 41 and 43 are available for the TB1308FG only. The pins are NC for the TB1305FG.
The TB1305FG and TB1308FG do not support weak signals, ghost signals or other non-standard signals
Some functional blocks, circuits or constants may be omitted or simplified in the block diagram for explanatory purposes.

Pin Functions

The equivalent circuit diagrams may be simplified or some parts of them may be omitted for explanatory purposes.

Pin No.	Pin Name	Function	Interface Circuit	Input Signal/Output Signal
22	DIG V ${ }_{\text {cc }}$	$V_{C C}$ pin for the logical circuits. Supply power through a resistor from pin 31 like the Application Circuit. This pin voltage is clipped to 3.3 V (typ.) by the internal regulator.		3.3 V (typ.)
20	DIG GND	GND pin for the logical circuits.	-	-
31	H V cc	V_{CC} pin for the sync circuits. Connect 5.0 V (typ.)	-	5.0 V (typ.)
33	H GND	GND pin for the sync circuits.	-	-
46	C V cc	V_{cc} pin for the video circuits. Connect 5.0 V (typ.)	-	5.0 V (typ.)
44	C GND	GND pin for the video circuits.	-	-
5 14 39	$\begin{aligned} & \text { Y1/G1-IN } \\ & \text { Y2/G2-IN } \\ & \text { Y3/G3-IN } \end{aligned}$	Y or G input pin. Input the signal via a clamp capacitor. The clamp system is selectable by CLAMP register. NOTE: Pin 39 is not available for the TB1305FG. It is an NC pin.		Sync tip level: 2.1 V (typ.) Bias level: 2.7 V (typ.) RGB/YCbCr/YPbPr signal amplitude: $0.7 \mathrm{Vp}-\mathrm{p}$ (without sync)
47	Y-IN	Y or CVBS input pin. Input the Y or CVBS signal in NTSC, PAL or SECAM from an AV-SW via a clamp capacitor. The clamp system is selectable by CLAMP register.		Sync tip level: 2.1 V (typ.) Bias level: 2.7 V (typ.) Y/CVBS signal's amplitude: $1.0 \mathrm{Vp}-\mathrm{p}$ (with sync)
$\begin{gathered} 1 \\ 3 \\ 10 \\ 12 \\ 43 \\ 41 \end{gathered}$	Cr1/R1-IN Cb1/B1-IN Cr2/R2-IN Cb2/B2-IN Cr3/R3-IN Cb3/B3-IN	$\mathrm{Cb} / \mathrm{Cr}, \mathrm{Pb} / \mathrm{Pr}$ or B / R input pin. Input the signal via a capacitor. NOTE: Pins 41 and 43 are not available for the TB1305FG. They are NC pins.		2.7 V bias (typ.) RGB/YCbCr/YPbPr signal amplitude: $0.7 \mathrm{Vp}-\mathrm{p}$ (without sync)
45	C-IN	Chroma signal input pin. Input C signal from AV-SW via a capacitor. When this pin's voltage is High, TEST mode for shipping is active. The pin voltage must be less than 3.6 V during operating.		
$\begin{gathered} 8 \\ 16 \\ 38 \end{gathered}$	SYNC1-IN SYNC2-IN SYNC3-IN	Composite SYNC input pin to separate into H - and V-SYNC. Input the signal via a resister and a clamp capacitor. NOTE: Pin 38 is not available for the TB1305FG. It is an NC pin.		Sync tip level: 1.75 V (typ.) or

Pin No.	Pin Name	Function	Interface Circuit	Input Signal/Output Signal
24 26	$\begin{array}{\|l\|l\|l\|l\|} \text { HD1 } \end{array}$	HD input pin. Input a separated horizontal sync signal (1.0 to $2.0 \mathrm{Vp}-\mathrm{p}$) via a resister and a coupling capacitor. The polarity of the input signal is detected and its leading edge becomes a timing trigger.		$$
23 25	$\left\lvert\, \begin{aligned} & \text { VD1-IN } \\ & \text { VD2-IN } \end{aligned}\right.$	VD input pin. Input a separated vertical sync signal (1.0 to $2.0 \mathrm{Vp}-\mathrm{p}$) via a resister and a coupling capacitor. The polarity of the input signal is detected and its leading edge becomes a timing trigger.		$\pm\left[\frac{\text { or }}{\sqrt{1.0}} \text { to } 2.0 \mathrm{Vp-p}\right.$
$\begin{gathered} 6 \\ 15 \end{gathered}$	LINE1-1 LINE1-2	LINE1 (number of lines) detection pin. Connect LINE1 of D-pin.		DC
$\begin{gathered} 2 \\ 11 \end{gathered}$	$\begin{aligned} & \text { LINE3-1 } \\ & \text { LINE3-2 } \end{aligned}$	LINE3 (aspect ratio) detection pin. Connect LINE3 of D-pin.		DC
$\begin{gathered} 4 \\ 13 \end{gathered}$		LINE2 (i/p) detection pin. Connect LINE2 of D-pin.		DC
$\begin{gathered} 48 \\ 9 \end{gathered}$	SW LINE1 SW LINE2	SW LINE detection pin. Connect SW LINE of D-pin.		DC
32	Y-OUT	Y, G or CVBS signal output pin.		AC: 0 dB or +6 dB (typ.)
34	Cb-OUT	$\mathrm{Cb}, \mathrm{Pb}, \mathrm{B}$ or C signal output pin.		
36	Cr-OUT	Cr, Pr or R signal output pin.		
28	SYNC-OUT	Separated composite sync output pin.		$\square^{-3.4 \mathrm{~V} \text { (typ.) }}$
29 30	$\begin{aligned} & \text { VD-OUT } \\ & \text { HD-OUT } \end{aligned}$	HD or VD output pin. The polarity of the output is selectable by HV-POL register. The tailing edge of the VD-OUT has a jitter. Use the leading edge only.		$\square^{-3.4 \mathrm{~V}(\text { typ. })}$ or $\square_{-0.1 \mathrm{~V}(\mathrm{typ} .)}^{3.4 \mathrm{~V}(\mathrm{typ} .)}$
$\begin{aligned} & 17 \\ & 42 \end{aligned}$	$\begin{aligned} & \text { DAC1 } \\ & \text { DAC2 } \end{aligned}$	1-bit DAC output pin. Open-collector pin.		DC

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Pin Name	Function	Interface Circuit	Input Signal/Output Signal
21	XTAL	Crystal connection pin. Connect a 3.579545 MHz crystal for NTSC demodulation to generate internal clocks.		-
35	Vf0ADJ	A filter pin to adjust bandwidth filter characteristics.		-
40	BIAS FIL	A filter pin for internal bias circuits.		-
18	SDA	SDA pin for ${ }^{2} \mathrm{CBUS}$.		$\begin{aligned} & \text { I- Th: } 2.25 \mathrm{~V} \text { (typ.) } \\ & \text { H to L: } 1.50 \mathrm{~V} \text { (typ.) } \\ & \text { L to H: } 2.25 \mathrm{~V} \text { (typ.) } \end{aligned}$
19	SCL	SCL pin for $I^{2} \mathrm{CBUS}$.		$\begin{aligned} & \text { F- Th: } 2.25 \mathrm{~V} \text { (typ.) } \\ & \text { Th: } 1.50 \mathrm{~V} \text { (typ.) } \end{aligned}$ H to L: 1.50 V (typ.) L to H: 2.25 V (typ.)
27	ADDRESS	Slave address switching pin. Connect to 5 V Vcc or GND. Or leave this pin open.		5 V Vcc: $\mathrm{DC}_{\mathrm{H}} / \mathrm{DD}_{\mathrm{H}}$ Open: $\mathrm{DA}_{\mathrm{H}} / \mathrm{DB}_{\mathrm{H}}$ GND: $\mathrm{DB}_{\mathrm{H}} / \mathrm{D9}_{\mathrm{H}}$
$\begin{gathered} 7 \\ 37 \end{gathered}$	NC	These pins are not used. Connect to GND. NOTE: Pins 38, 39, 41 and 43 of the TB1305FG are not used. Connect them to GND.	-	-

BUS Control Map

Write Mode Slave address: $\mathrm{DB}_{\mathrm{H}} / \mathrm{DA}_{\mathrm{H}} / \mathrm{DC}_{\mathrm{H}}$

SA	D7	D6	D5	D4	D3	D2	D1	D0	PRESET
00	MUTE	FILPASS	HD WIDTH	DAC2	DAC1	YCbCr SW		GAIN	00000000
01	f0 SW	BANDWIDTH							00000000
02	fc HALF	SYNC SW			HV FREQ				00000000
03	HV-SEP	VGA-SEP	1(PS MASK)	A SYNC	S MODE	CLAMP	HV-POL	VD PHS	00000000

NOTE: Set PS MASK = 1 (ON) for except "Sync on G" input.
Remark: SA = Sub-Address.

Read Mode \quad Slave address: $\mathrm{D9}_{\mathrm{H}} / \mathrm{DB}_{\mathrm{H}} / \mathrm{DD}_{\mathrm{H}}$

	D7	D6	D5	D4	D3	D2	D1	D0
0	LINE1		LINE2	LINE3		SW LINE1	SW LINE2	$*$
1	HD-POL	VD-POL		H FORMAT	V FORMAT			
2	H FM2	V FM2	H IN	V IN	V-SYNC-W	$*$	VERSION	
3	$*$	V FREQ DET						
4	H FREQ DET							

[^0]
Bus Control Functions

Write Mode

Register Name	Function	Preset Value
MUTE	Swtches mute mode. 0: NORMAL 1: Video mute	NORMAL (0)
FILPASS	Switches the bandwidth limit filter. 0: ON (by-pass) 1: OFF	ON (0)
HD WIDTH	Switches the width of HD-OUT. 0 : WIDE 1: NARROW Remark: HD WIDTH = 1 (NARROW) is recommended for the $1125 / 50$ p/60p format owing to crosstalk from HD-OUT to video signals so that spike noises on video signals will occur.	WIDE (0)
DAC1,2	1-bit DAC switching Output voltages of DAC1 (pin 17) and DAC2 (pin 42) are controlled. DAC1/2 are open-collector pins. 0: LOW (ON) 1: HIGH (OPEN)	LOW (0)
YCbCr SW	Switches the component video input and line input 00: Y1 / Cb1 / Cr1 / LINE1, 2, 3-1 (pins 1, 2, 3, 4, 5, 6) 01: Y2 / Cb2 / Cr2 / LINE1, 2, 3-2 (pins 10, 11, 12, 13, 14, 15) 10: Y / C (pins 45, 47. Cr-out is muted.) 11: Y3 / Cb3 / Cr3 (pins 39, 41, 43) NOTE: The data (11) is not available for the TB1305FG.	Y1 / Cb1 / Cr1 (00)
GAIN	Switches the output gain. Gain of YCbCr output (pins 32, 34, 36) is controlled. $0: 0 \mathrm{~dB}$ $1:+6 \mathrm{~dB}$ Remark: GAIN $=0(0 \mathrm{~dB})$ is recommended for the $1125 / 50 \mathrm{p} / 60 \mathrm{p}$ format since this offers superior frequency characteristics to those of +6 dB mode.	0 dB (0)
f0 SW	Switches the f0 of bandwidth limit filter $0: \mathrm{HIGH}$ 1: LOW	HIGH (0)
BANDWIDTH	Switches the f0 of bandwidth limit filter $\begin{aligned} & \text { 0000000: MIN (low) } \\ & \text { 1111111: MAX (high) } \end{aligned}$	$\begin{gathered} \text { MIN } \\ (0000000) \end{gathered}$
fc HALF	Switches the frequency of bandwidth limit filters for $\mathrm{Cb} / \mathrm{Cr}$ The cutoff frequency of bandwidth limit filters for $\mathrm{Cb} / \mathrm{Cr}$ is $1 / 2$ to Y . 0 : OFF (same for 3 outputs) 1: ON ($1 / 2 \mathrm{fc}$ for $\mathrm{Cb} / \mathrm{Cr}$)	OFF (0)

Register Name	Function	Preset Value
A-SYNC	Automatic sync processing mode. Sync processing mode is changed in accordance with the results obtained by the internal format detection circuits. Format detection is performed for a SYNC or HD/VD signal selected by SYNC SW. The result of detection is returned to H, V FORMAT and H, V FM2. The HV FREQ setting is invalid when this mode is active. 0 : OFF (manual switching mode by HV FREQ setting) 1: ON	OFF (0)
S MODE	Switches sync output mode. This function sets the dummy HD/VD output mode when there is no input. The frequency of the dummy HD/VD output depends on the HV FREQ setting (when A-SYNC = OFF) or H, V FORMAT (when A-SYNC = ON). H, V IN shows whether there is no input or not. 0: OFF (No HD and free-run VD output (approx. 44 Hz), when there is no input. However, in 1250i mode, no HD and no VD output, when there is no input.) 1: ON (Dummy HD/VD output when there is no input)	$\begin{aligned} & \text { OFF } \\ & (00) \end{aligned}$
CLAMP	Switches Y clamping mode. This function sets the clamping mode for pins $5,14,39$. 0: SYNC TIP CLAMP 1: BIAS	SYNC TIP (0)
HV-POL	Switches the polarity of the HD/VD output. This function sets the polarity of HD/VD OUT (pins 29, 30). 0 : Positive 1: Negative	Positive (0)
VD PHS	Switches the phase of dummy VD output. VD PHS compensates for delay time so that the dummy VD-OUT phase is the same as that form the separated V-sync. 0 : No delay 1: 0.2 H delay (0.15 H delay for $1125 / 50 \mathrm{p}$)	No-delay (0)

Read Mode

Register Name	Function
LINE1	LINE1 detection for D-pin (for the number of lines) $00: 525(480) \quad 01: 750(720) \quad 10:---\quad 11: 1125(1080)$ Detects the voltage of LINE1 selected by YCbCr SW. 11 is returned when the pin is not connected.
LINE2	LINE2 detection for D-pin (for i/p) 0 : Interlace 1: Progressive Detects the voltage of LINE2 selected by YCbCr SW. 1 is returned when the pin is not connected.
LINE3	LINE3 detection for D-pin (for aspect ratio) $\text { 00: } 4: 3 \quad \text { 01: } 4: 3 \text { letter box } \quad \text { 10: ---- } \quad 11: 16: 9$ Detects the voltage of LINE3 selected by YCbCr SW. 11 is returned when the pin is not connected.
SW LINE1	SW LINE1 (pin 48) detection for D-pin 0 : Connected 1: Not connected
SW LINE2	SW LINE1 (pin 9) detection for D-pin 0 : Connected 1: Not connected
HD-POL	Polarity detection to HD-IN 0 : Positive 1: Negative Detects the width from the HD-IN pin to determine whether it is negative or not. When the High level of the input HD-IN is wider than approx $14 \mu \mathrm{~s}, \mathrm{HD}-\mathrm{POL}$ shows 1.

Register Name	Function
VD-POL	Polarity detection to VD-IN 0 : Positive 1: Negative Detects the width from the VD-IN pin to determine whether it is negative or not. When the High level of the input VD-IN is wider than approx $4.5 \mathrm{~ms}, \mathrm{VD}-\mathrm{POL}$ shows 1.
H FORMAT	Horizontal format detection Detects a horizontal format (horizontal frequency). NOTE1: Format detection errors such as the following can occur when suppressed syncs are input. See NOTE3 in the function description on Automatic sync processing mode, too. 525 i input $\rightarrow 525$ p detected, 625 i input $\rightarrow 625$ p detected, 1125 input $\rightarrow 1125$ p detected 525p/625p input \rightarrow No V-sync detected NOTE2: When 525i, 625i, 1125/50i or $1125 / 60$ i signal is input, H FORMAT data can be incorrect caused by the pseudo-syncs for copy guard or the equalizing pulses.
V FORMAT	Vertical format detection $00: 50 \mathrm{~Hz} \quad 01: 60 \mathrm{~Hz} \quad 10 \sim 11: \text { Undefined }$ Detects a vertical format (horizontal frequency) according to V FREQ DET data.
H FM2	Horizontal format detection 2 0: Known 1: Unknown Detects whether an input is in one of the defined formats or not. This is based on H FORMAT data. NOTE: H FM2 may indicate Unknown, when 525 p input with pseudo sync signal for copy guard is input.
V FM2	Vertical format detection 2 0: Known 1: Unknown Detects whether an input is in one of the defined formats or not. This is based on V FORMAT data.
H IN	Input detection to horizontal syncs 0 : No signal 1: Signal
V IN	Input detection to vertical syncs 0 : No signal 1: Signal
V-SYNC-W	V-SYNC width detection 0 : Wide 1: Narrow Detects V-SYNC width for detecting 1250i format. Under A-SYNC = $1(\mathrm{ON}), \mathrm{V}-\mathrm{SYNC}-\mathrm{W}$ shows 1 , when the VD width from the VD-IN pin is narrower than approx $69 \mu \mathrm{~s}$, or when the V-SYNC width from the SYNC-IN pin is narrower than approx $27 \mu \mathrm{~s}$.
VERSION	IC version identification 00: TB1305FG 01: TB1308FG 10: ---- 11: ----
V FREQ DET	Counts the vertical frequency of an input selected by SYNC SW. 0000000: Over $3.5 \mathrm{kHz} \quad$ 1001111: 44 Hz or less 1010000~1111111: No signal How to calculate a vertical frequency (Y) : Convert data read from V FREQ DET into decimal value and call it X. Vertical frequency $(Y)=1 \div\left(X \times 2.8607 \times 10^{-4}\right) \quad[\mathrm{Hz}]$ The error range of X is -1 to +1 .
H FREQ DET	Counts the horizontal frequency of an input selected by SYNC SW. 00000000: No signal 11111111: Over 85kHz How to calculate a horizontal frequency (Y) : Convert data read from H FREQ DET into decimal value and call it X. Horizontal frequency $(Y)=1 \div(0.003 \div X) \quad[\mathrm{Hz}]$ The error range of X is -1 to +1 .

Note 1: In determining the decision algorithms (detection range, detection times and so on) for H / V frequency detection, it is necessary to take into account both previously mentioned cautions and other factors such as signal conditions and I^{2} CBUS data transmission in the course of prototype TV set evaluation.

Note 2: The READ BUS flags indicate that a certain signal is detected at a given moment. However, the detection result will not be very reliable if only one flag is checked. To obtain accuracy, it is recommended that a judgment will be made on the basis of confirming several times and verifying agreement among the majority of flags read in a sequence and/or at the same time.

Function Descriptions

Vertical sync separation for 1250i/50

When HV FREQ = 1000, the vertical sync separation for 1250i/50 is accomplished through the use of a special circuit. The phase of the VD-out (pin 29) depends on the H-SYNC timing shown in the figure below. There is no VD-out when there is no H-SYNC input.
In the manual sync processing mode (A-SYNC = OFF), use READ BUS functions, V-SYNC-W and H, V FORMAT (or H, V FREQ DET) to detect $1250 \mathrm{i} / 50$.

NOTE: The VD-OUT's tailing edge has a jitter. Use the leading edge only.

HD width

HD-OUT width is selectable by HD WIDTH, as below. HD WIDTH = 1 (NARROW) is recommended for the 1125/50p/60p format owing to crosstalk from HD-OUT to video signals so that spike noises on video signals will occur.

Automatic sync processing mode (A-SYNC)

Counted horizontal and vertical frequency data to input signal are returned to READ BUS functions, H, V FREQ DET. Also, the detected format is returned to H, V FORMAT and $\mathrm{H}, \mathrm{FM} 2$ when the H / V frequencies are in internal defined ranges. Input detection results, which indicate whether there is an input or not, for H, V-SYNC or HD, VD are returned to H, V IN. In automatic sync processing mode (when A-SYNC = ON), the TB1305FG and TB1308FG operate as indicated in the following table according to these READ data.

INPUT CONDITION	H, V FORMAT status	H, V FM2 status	H, V IN status	HD, VD outputs
Standard format	The format as input	Known	Signal	The separated sync as input
Non-standard format	The status indicates not the current condition but the last detected format.	Unknown	Signal	The separated sync as input
No input	The status indicates not the current condition but the last detected format.	Known: The status indicates not the current condition but the last detected format.	No signal	Dummy HD and VD, of which the frequency depends on the H, V FORMAT status

NOTE 3: The following format detection errors can occur when suppressed syncs are input.
525 i input $\rightarrow 525$ p detected, 625 i input $\rightarrow 625$ p detected, 1125 i input $\rightarrow 1125$ p detected
$525 p / 625$ p inputs \rightarrow In case of the 525 p/625p sync amplitude become bigger from zero to its standard gradually, V-sync of the input is not detected even though the sync amplitude is got back to its standard amplitude.
The V-sync separation performance to the suppressed sync input may be improved when VGA-SEP is set to 1 (VGA), though the H and V separation level are also changed.
NOTE 4: We recommend recognizing a format by H/V FREQ DET rather than one by H/V FORMAT because H FORMAT and H FM2 can indicate an incorrect data for 525i, 625i, 525p, 1125/50i and 1125/60i caused by the pseudo-syncs for copy guard or the equalizing pulses.
NOTE 5: Dummy HD and VD may become unstable while the mode is changing from one format to another.
By the way, in A-SYNC = OFF and S-MODE = ON mode, dummy HD and VD are output according to HV FREQ setting when there is no input.

Manual sync processing mode (A-SYNC = OFF ${ }^{* N O T E 6}$)

HV FREQ $=625$ p is required to separate H-SYNC and V-SYNC properly. Set HV FREQ $=625$ p to count H/V-SYNC for Manual sync processing mode.
The following is an example of how to detect H / V frequency when A-SYNC=OFF.

1. Set HV FREQ $=625 p(0010)$ and read data such as H, V FREQ DET.
2. Detect the H/V frequencies by microprocessor or similar means, depending on the data obtained.
3. Set HV FREQ and so on to the detected mode.
4. Continue to monitor the obtained data such as H, V FREQ DET. When any alteration is recognized, set HV FREQ $=625 p(0010)$ and detect again.
Decision algorithms (for detection range, detection times and so on) for H/V frequency detection should be determined taking into account the above-mentioned errors in measuring H / V frequencies and the other factors such as signal conditions and I^{2} CBUS data transmission in the course of prototype TV set evaluation.

NOTE 6: We recommend recognizing formats for $525 i$ and $625 i$ signals by another device such as a color-decoder, not by this product, because $525 i$ and $625 i$ signals include non-standard signals.
However, if you use this product to recognize formats including the standard $525 i$ and $625 i$, set "A-SYNC $=$ ON". Otherwise, H/V FREQ DET and H/V FORMAT may indicate incorrect value and VD-OUT may lock irregularly for $525 i$ and $625 i$ signals. Refer to the "Application circuit 3 (system configuration)", too.

Sync separation level

The sync separation level is changed according to the ratio of H -sync width to one line and the connected resistance.
Typical sync separation levels for each format are as follows. Then, VGA-SEP=1 for VGA to UXGA.

Format	$\mathrm{HV}-\mathrm{SEP}=0(\mathrm{LOW})$			$\mathrm{HV}-\mathrm{SEP}=1(\mathrm{HIGH})$		
	$\mathrm{R}=1.2 \mathrm{k} \Omega$	$\mathrm{R}=1.5 \mathrm{k} \Omega$	$\mathrm{R}=1.8 \mathrm{k} \Omega$	$\mathrm{R}=1.2 \mathrm{k} \Omega$	$\mathrm{R}=1.5 \mathrm{k} \Omega$	$\mathrm{R}=1.8 \mathrm{k} \Omega$
$625 / 50 \mathrm{i}$	22	28	33	24	32	37
$525 / 60 \mathrm{i}$	22	28	34	24	31	37
$625 / 50 \mathrm{p}$	22	28	34	25	31	38
$525 / 60 \mathrm{p}$	21	27	32	24	30	36
$1125 / 50 \mathrm{i}$	31	39	45	40	49	54
$1125 / 60 \mathrm{i}$	26	33	39	34	43	50
$750 / 50 \mathrm{p}$	29	37	43	37	46	52
$750 / 60 \mathrm{p}$	24	31	37	32	40	47
$1250 / 50 \mathrm{i}$	25	32	37	32	41	47
$1125 / 50 \mathrm{p}$	36	45	51	45	54	58
$1125 / 60 \mathrm{p}$	31	39	45	39	49	55
VGA/60	15	19	23	16	21	25
SVGA/60	15	18	22	16	20	24
XGA/60	17	22	26	19	24	28
SXGA/60	27	33	39	30	37	43

Unit [\%] ; where 286 mVp -p sync for 525/60i and 300 mVp -p sync for others
For "Sync on G" signal, HD-OUT is not output during V-sync period because there is no H-sync during V-sync period. Furthermore, for Sync on G of XGA input, HD-OUT disappears during active video period caused by unexpected lock of the internal V-BLK.

The format detection and sync separation performances are changed due to the separation level set by HV-SEP, VGA-SEP setting and/or the connected resistance with SYNC-IN pin. The careful evaluations are required to set the separation level under consideration of expected input conditions such as a suppressed sync input, an input with V-sag and APL (Average Picture Level) fluctuations.

Note on Sync input pin

If the AC-coupling circuit is put before the SYNC-IN pin, the picture on the screen may be not stable. This is because the sync separation circuit is unable to follow the DC level fluctuation caused by APL (Average Picture Level) change in the input signal, and the HD and/or VD output is unable to synchronize the input.

It is recommended to input signals via the DC-coupling buffer if necessary.

For the DC level fluctuation caused by APL change, the sync separation ability may be improved to change the setting of HV-SEP, VGA-SEP and/or changing the resister R. Furthermore, adding a high-resistance around several M Ω between SYNC-IN pin and GND (or Vcc) may improve the sync separation ability.

Adding DC restoration circuit such as a clamp circuit can be also effective for the improvement of DC level fluctuation. Also, refer to Sync separation level descriptions.

Prefilter for AD converter

The filter of the TB1305FG and TB1308FG can be used as a prefilter for AD converter. The cutoff frequency is controllable by I2CBUS functions, FILPASS, f0-SW, BANDWIDTH and fc HALF.
The characteristics for cutoff frequency and delay time are as below.

Figure. Typical prefilter frequency characteristics

Figure. Typical cutoff frequency (-3 dB point) characteristics of prefilter due to BANDWIDTH data.

Figure. Typical delay-time (group delay @ 1MHz) characteristics of prefilter due to BANDWIDTH data.

Note on 1125/50p/60p input

When $1125 / 50$ p and/or 60 p signal are input, GAIN $=0(0 d B)$ and FILPASS $=0(O N)$ are recommended due to the performance of the slew rate and cutoff frequency of the TB1305FG and TB1308FG circuits. A gain amplifier and/or a prefilter for $1125 / 50$ p/60p should be added as external circuits, if necessary.

Note on video output pins

To conduct the video signal from the TB1305FG or TB1308FG to the following circuits, a buffer such as the one in the application circuits is required due to the drive capability of the TB1305FG and TB1308FG being insufficient, especially for high-frequency components.
The DC levels of the video output vary according to $I^{2} C B U S$ functions, the APL of the input and temperature drift. Therefore, the DC levels should be re-clamped in connected circuits such as AD converters.

Recommended crystal oscillator

When a connected crystal oscillator is used for the XO, the following oscillation specifications are required.
Oscillation frequency (fundamental): 3.579545 MHz (for NTSC decoding)
Frequency tolerance: +/- 50 ppm

External CW input into crystal oscillator pin

Instead of connecting a crystal oscillator, it is possible to input an external CW (Continual Wave) into pin 21 through a capacitor as below.
The specifications required for CW input are as follows. Input frequency (fundamental): $3.579545 \mathrm{MHz}+/-50 \mathrm{ppm}$
Input amplitude: $1.0 \mathrm{Vp}-\mathrm{p}+/-0.5 \mathrm{Vp}-\mathrm{p}$

How to deal with unused pins
Unused pins should be dealt with as below. Pins not mentioned below should be connected properly.

Pin No.	Pin Name	Procedure	Pin No.	Pin Name	Procedure
1	Cr1/R1-IN	Procedure 1	25	VD2-IN	Procedure 4
2	LINE3-1	Procedure 2	26	HD2-IN	Procedure 4
3	Cb1/B1-IN	Procedure 1	27	ADDRESS	Procedure 3
4	LINE2-1	Procedure 2	28	SYNC-OUT	Procedure 3
5	Y1/G1-IN	Procedure 1	29	VD-OUT	Procedure 3
6	LINE1-1	Procedure 2	30	HD-OUT	Procedure 3
7	NC	Procedure 2	32	Y-OUT	Procedure 3
8	SYNC1-IN	Procedure 3	34	Cb-OUT	Procedure 3
9	SW LINE2	Procedure 2	36	Cr-OUT	Procedure 3
10	Cr2/R2-IN	Procedure 1	37	NC	Procedure 2
11	LINE3-2	Procedure 2	38	SYNC3-IN	Procedure 3
12	Cb2/B2-IN	Procedure 1	39	Y3/G3-IN	Procedure 1
13	LINE2-2	Procedure 2	41	Cb3/B3-IN	Procedure 1
14	Y2/G2-IN	Procedure 1	42	DAC2	Procedure 3
15	LINE1-2	Procedure 2	43	Cr3/R3-IN	Procedure 1
16	SYNC2-IN	Procedure 3	45	C-IN	Procedure 1
17	DAC1	Procedure 3	47	Y-IN	Procedure 1
23	VD1-IN	Procedure 4	48	SW LINE1	Procedure 2
24	HD1-IN	Procedure 4	-	-	-

Procedure 1: Connect a $1 \mu \mathrm{~F}$ capacitor between this pin and GND.
Procedure 2: Connect to GND.
Procedure 3: Leave open.
Procedure 4: Connect a $10 \mathrm{k} \Omega$ resister between this pin and GND.

NOTE: Pins 38, 39, 41 and 43 are NC pins for the TB1305FG. Of these, any unused pins should be dealt with as in "Procedure 2".

How to Start the I^{2} CBUS

How to send bus data after power on is described below. Use software to handle the procedure.

1. Turn power on.
2. Transmit all write data.

How to Transmit/Receive via the I^{2} CBUS

Slave Address: Can Be Changed Using Pin 27.

Pin 27-GND: D8 ${ }_{H} /$ D9 $_{H}$

A6	A5	A4	A3	A2	A1	A0	W/R
1	1	0	1	1	0	0	$0 / 1$

Pin 27-OPEN: DA $_{H} /$ DB $_{H}$

A6	A5	A4	A3	A2	A1	A0	W/R
1	1	0	1	1	0	1	$0 / 1$

Pin 27-Vcc: DC $_{H} /$ DD $_{H}$

A6	A5	A4	A3	A2	A1	A0	W/R
1	1	0	1	1	1	0	$0 / 1$

Start and Stop Conditions

Bit Transmission

Acknowledgement

Data Transmit Format 1

Data Transmit Format 2

Data Receive Format

To receive data, the master transmitter changes to a receiver immediately after the first acknowledgement. The slave receiver changes to a transmitter.
The end condition is always created by the master.

Optional Data Transmit Format (Automatic Increment Mode)

In this way, sub-addresses are automatically incremented from the specified sub-address and data are set.
I^{2} CBUS Conditions

Parameter	Symbol	Min.	Typ.	Max.	Unit
Low level input voltage	V_{IL}	0	-	1.1	V
High level input voltage	$\mathrm{V}_{\text {IH }}$	2.8	-	$\mathrm{H}-\mathrm{Vcc}$	V
Hysteresis of Schmitt trigger inputs	$\mathrm{V}_{\text {hys }}$	-	0.7	-	V
Low level output voltage at 3 mA sink current	V_{OL}	0	-	0.6	V
Input current each I/O pin with an input voltage between 0.1 VDD and 0.9 VDD	I_{i}	-10	-	10	$\mu \mathrm{~A}$
Capacitance for each I/O pin	C_{i}	-	-	10	pF
SCL clock frequency	$\mathrm{f}_{\mathrm{SCL}}$	0	-	400	kHz
Hold time START condition	$\mathrm{t}_{\text {HD;STA }}$	0.6	-	-	$\mu \mathrm{s}$
Low period of SCL clock	$\mathrm{t}_{\text {LOW }}$	1.3	-	-	$\mu \mathrm{s}$
High period of SCL clock	$\mathrm{t}_{\text {HIGH }}$	0.6	-	-	$\mu \mathrm{s}$
Set-up time for a repeated START condition	$\mathrm{t}_{\text {SU;STA }}$	0.6	-	-	$\mu \mathrm{s}$
Data hold time	$\mathrm{t}_{\text {HD;DAT }}$	50	-	-	ns
Data set-up time	$\mathrm{t}_{\text {SU;DAT }}$	100	-	-	ns
Set-up time for STOP condition	$\mathrm{t}_{\text {SU;STO }}$	0.6	-	-	$\mu \mathrm{s}$
Bus free time between a STOP and START condition	$\mathrm{t}_{\mathrm{BUF}}$	1.3	-	-	$\mu \mathrm{s}$

NOTE: This parameter is not tested during production and is provided only as information to assist the design of applications.

Absolute Maximum Ratings ($\mathbf{~} \mathrm{a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Characteristic	Symbol	Rating	Unit
Supply voltage	$\mathrm{V}_{\mathrm{CCmax}}$	6.0	V
Input pin voltage	$\mathrm{V}_{\text {in }}$	$\mathrm{GND}-0.3 \sim \mathrm{Vcc}+0.3$	V
Y or Sync input amplitude (pins 5, 8, 14, 16, 38, 39, 47) (Pins 38, 39 are for the TB1308FG only.)	$\mathrm{Y}_{\text {in }}$	2.0	$\mathrm{Vp}-\mathrm{p}$
Power dissipation	$\mathrm{P}_{\mathrm{D}}($ Note 5$)$	1136	mW
Power dissipation reduction rate	$1 / \theta \mathrm{ja}$	9.1	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating temperature	$\mathrm{T}_{\text {opr }}$	$-20 \sim 75$	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	$-55 \sim 150$	${ }^{\circ} \mathrm{C}$

Note 5: Refer to the figure below.

Figure. PD - Ta Curve

Note 6: Handle pins 7 and 37 of the TB1305FG and TB1308FG with special care. These ICs are sensitive to electrostatic discharge and surge impulse.

Install the product correctly. Otherwise, it may result in break down, damage and/or degradation to the product or equipment.

The absolute maximum ratings of a semiconductor device are a set of specified parameter values that must not be exceeded during operation, even for an instant.

If any of these ratings are exceeded during operation, the electrical characteristics of the device may be irreparably altered, in which case the reliability and lifetime of the device can no longer be guaranteed.

Moreover, operations with exceeded ratings may cause breakdown, damage and/or degradation in other equipment. Applications using the device should be designed so that no maximum rating will ever be exceeded under any operating conditions.

Before using, creating and/or producing designs, refer to and comply with the precautions and conditions set forth in these documents.

Operating conditions

Characteristic		Description		Min.	Typ.	Max.	Unit	
Supply voltage (V_{CC})		Pins 31, 46		4.7	5.0	5.3		
		Pin 22; supply power from H Vcc (pin 31) via a resistor.		3.1	3.3	3.5		
Y signal input amplitude		Pins 5, 8, 14, 16, 38, 39, 47; with sync		-	1.0	-	V_{p-p}	
G signal input amplitude		Pins 8, 16, 38; with sync		-	1.0	-	V_{p-p}	
Y signal input frequency		Pins 5, 14, 39		0	-	60	MHz	
		Pin 47		0	-	8		
Chroma signal input amplitude		Pin 45		-	0.3	2	V_{p-p}	
DC voltage of chroma input pin		Pin 45		-	-	3.6	V	
$\mathrm{Cb}, \mathrm{Cr}, \mathrm{Pb}, \mathrm{Pr}$ signal input amplitude		Pins 1, 3, 10, 12, 41, 43; 100\% color bar signal		-	0.7	-	V_{p-p}	
$\mathrm{Cb}, \mathrm{Cr}, \mathrm{Pb}, \mathrm{Pr}$ signal input frequency		Pins 1, 3, 10, 12, 41, 43		0	-	60	MHz	
R, G, B signal input amplitude		Pins $1,3,5,10,12,14,39,41,43 ; 100 \%$ white signal without sync		-	0.7	-	V_{p-p}	
R, G, B signal input frequency		Pins 1, 3, 5, 10, 12, 14, 39, 41, 43, 39, 41, 43		0	-	60	MHz	
HD, VD signal input amplitude		Pins 23, 24, 25, 26		1.0	-	2.0	V_{p-p}	
HD input frequency		Pins 24, 26 for freq counter		0	-	85	kHz	
VD input frequency		Pins 23, 25 for freq counter		44	-	3500	Hz	
LINE detection input voltage	LINE1,3	Pins 2, 6, 11, 15	H	3.5	5.0	C-Vcc	V	
			M	1.4	2.2	2.4		
			L	-	GND	0.6		
	LINE2	Pins 4, 13	H	1.4	2.2	C-Vcc	V	
			L	-	GND	0.6		
	SW LINE	Pins 9, 48	H	1.4	5.0	C-Vcc	V	
			L	-	GND	0.6		
ADDRESS switching voltage		Pin 27	88/89 ${ }_{\text {H }}$	-	GND	0.6	V	
		$\mathrm{DA}^{\text {/ }} \mathrm{DB}_{\mathrm{H}}$	Pin open					
		DC/DD ${ }_{\text {H }}$	3.5	C-Vcc	C-Vcc			
SDA input current			Pin 18		-	-	3	mA

Remark: Supply power to all Vcc pins (pins 22, 31 and 46).
NOTE: Pins 38, 39, 41 and 43, as Y/Cb/Cr/SYNC3-IN, are available for the TB1308FG only. Pins 38, 39, 41 and 43 of the TB1305FG are NC pins.

Electrical Characteristics
(Unless otherwise specified, C and $\mathrm{H} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{D} \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{I}^{2} \mathrm{CBUS}$ data: preset values)
Current Consumption

Pin Name	Symbol	Test Conditions	Min	Typ.	Max	Unit
$C V_{C C}(\operatorname{pin} 46)$	ICCC	-	30.0	38.0	46.0	mA
H $\mathrm{V}_{\mathrm{CC}}(\mathrm{pin} 31)$	ICCH	-	4.5	6.0	7.5	
$D V_{C C}(\operatorname{pin} 22)$	$\mathrm{I}_{\text {CCD }}$	Resistance to $5 \mathrm{~V} ; \mathrm{R}=150 \Omega$	8.5	10.5	12.5	

Pin Voltage (test condition: no signal input)

| Pin No. | Pin Name | Symbol | Test Conditions | Min | Typ. | Max |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: | :---: |

Video Block

Characteristic		Symbol	Test Conditions	Min	Typ.	Max	Unit
Input dynamic range	Sync-tip clamp mode	Vdsync	FILPASS $=1$, BANDWIDTH $=$ max	1.40	1.65	-	Vp-p
	Bias mode	Vdbias		1.40	1.65	-	
	Chroma input	Vdchrm	Pin 45	1.40	1.65	-	
I/O gain	GAIN $=0$	Gfoffg0	FILPASS $=0$, input $=0.2 \mathrm{Vp}-\mathrm{p} 10 \mathrm{kHz}$	-1.0	-0.5	0	dB
	GAIN = 1	Gfoffg6		5.0	5.5	6.0	
	GAIN $=0$	Gfong0	FILPASS $=1$, f0 SW $=0$, BANDWIDTH = min, input $=0.2 \mathrm{Vp}-\mathrm{p} 10 \mathrm{kHz}$	-0.5	0	0.5	
	GAIN $=1$	Gfong6		5.5	6.0	6.5	
I/O frequency characteristic 1	GAIN $=0$	fg0	FILPASS = 0, -3 dB point, NOTE 7	70	90	110	MHz
	GAIN = 1	fg6		60	80	100	
I/O frequency characteristic 2	BANDWIDTH $=\max$	fLmax	FILPASS $=1$, GAIN $=0$, f0 $S W=1$, -3 dB point, NOTE 7	18.4	20.5	22.6	MHz
	BANDWIDTH = cnt	fLent		11.4	12.7	14.0	
	BANDWIDTH $=$ min	fLmin		3.7	4.2	4.7	
I/O frequency characteristic 3	BANDWIDTH $=$ max	fHmax	FILPASS $=1, \mathrm{GAIN}=0, \mathrm{f0} \mathrm{SW}=0$, -3 dB point, NOTE 7	27.9	31.0	34.1	MHz
	BANDWIDTH $=\mathrm{cnt}$	fHent		21.6	24.0	26.4	
	BANDWIDTH $=$ min	$f \mathrm{Hmin}$		14.6	16.3	18.0	
I/O frequency characteristic 4	BANDWIDTH $=\max$	fhfLmax	FILPASS $=1$, GAIN $=0$, f0 $S W=1$, fc HALF $=1,-3 \mathrm{~dB}$ point, NOTE 7	9.2	10.3	11.4	MHz
	BANDWIDTH = cnt	fhfLent		5.7	6.4	7.1	
	BANDWIDTH $=$ min	fhfL min		1.85	2.1	2.35	
I/O frequency characteristic 5	BANDWIDTH = max	fhfHmax	FILPASS $=1$, GAIN $=0$, f0 $S W=0$, fc HALF $=1,-3 \mathrm{~dB}$ point, NOTE 7	13.9	15.5	17.1	MHz
	BANDWIDTH $=\mathrm{cnt}$	fhfHent		10.8	12	13.2	
	BANDWIDTH $=\mathrm{min}$	fhfHmin		7.3	8.2	9.1	
Differential 1 of frequency characteristic among 3 outputs	GAIN $=0$	fdg0	FILPASS $=0,-3 \mathrm{~dB}$ point, NOTE 7	-10	0	10	MHz
	GAIN = 1	fdg6		-10	0	10	
Differential 2 of frequency characteristic among 3 outputs	BANDWIDTH $=\max$	fdHmax	FILPASS $=1, \mathrm{f0} \mathrm{SW}=1,-3 \mathrm{~dB}$ point, NOTE 7	-0.90	0	0.90	MHz
	BANDWIDTH $=\mathrm{cnt}$	fdHent		-0.54	0	0.54	
	BANDWIDTH = min	fdHmin		-0.18	0	0.18	
Differential 3 of frequency characteristic among 3 outputs	BANDWIDTH $=$ max	fdHmax	FILPASS $=1, \mathrm{fO} \mathrm{SW}=0,-3 \mathrm{~dB}$ point, NOTE 7	-1.30	0	1.30	MHz
	BANDWIDTH = cnt	fdHent		-1.05	0	1.05	
	BANDWIDTH $=$ min	fdHmin		-0.70	0	0.70	
I/O delay time 1	GAIN $=0$	Tdg0	FILPASS = 0, 1 MHz , NOTE 7	-	5	10	ns
	GAIN = 1	Tdg6		-	5	10	
I/O delay time 2	BANDWIDTH = max	TdLmax	FILPASS $=1$, GAIN $=0, f 0 S W=1$, 1 MHz , NOTE 7	18	23	28	ns
	BANDWIDTH $=\mathrm{cnt}$	TdLent		29	34	39	
	BANDWIDTH $=\min$	TdLmin		85	95	105	
I/O delay time 3	BANDWIDTH $=\max$	TdHmax	FILPASS $=1$, GAIN $=0, f 0 \mathrm{SW}=0$, 1 MHz , NOTE 7	10	15	20	ns
	BANDWIDTH = cnt	TdHent		15	20	25	
	BANDWIDTH $=$ min	TdHmin		22	27	32	
I/O delay time 4	BANDWIDTH = max	TdhfLmax	FILPASS $=1$, GAIN $=0$, fO $S W=1$, fc HALF $=1,1 \mathrm{MHz}$, NOTE 7	35	40	45	ns
	BANDWIDTH $=\mathrm{cnt}$	TdhfLent		58	65	72	
	BANDWIDTH $=$ min	TdhfLmin		170	190	210	

Characteristic		Symbol	Test Conditions	Min	Typ.	Max	Unit
I/O delay time 5	BANDWIDTH $=\max$	TdhfHmax	FILPASS $=1$, GAIN $=0, f 0 S W=0$, fc HALF $=1,1 \mathrm{MHz}$, NOTE 7	22	27	32	ns
	BANDWIDTH = cnt	TdhfHent		29	34	39	
	BANDWIDTH $=$ min	TdhfHmin		45	50	55	
Differential 1 of delay time among 3 outputs	GAIN $=0$	Tddg0	FILPASS $=0,1 \mathrm{MHz}$, NOTE 7	-10	0	10	ns
	GAIN $=1$	Tddg6		-10	0	10	
Differential 2 of delay time among 3 outputs	BANDWIDTH $=$ max	TddHmax	FILPASS $=1$, $\mathrm{fO} \mathrm{SW}=1,1 \mathrm{MHz}$, NOTE 7	-10	0	10	ns
	BANDWIDTH = cnt	TddHent		-10	0	10	
	BANDWIDTH $=$ min	TddHmin		-10	0	10	
Differential 3 of delay time between Y and $\mathrm{Cb} / \mathrm{Cr}$ outputs	BANDWIDTH = max	TddHmax	$\begin{aligned} & \text { FILPASS = 1, f0 SW = 0, } \\ & \text { fc HALF = 1, } 1 \mathrm{MHz} \text {, NOTE } 7 \end{aligned}$	0	10	20	ns
	BANDWIDTH = cnt	TddHent		10	20	30	
	BANDWIDTH $=\min$	TddHmin		35	45	55	
Differential 4 of delay time between Cb and Cr outputs	BANDWIDTH $=$ max	TddHmax	$\text { FILPASS }=1, \text { f0 SW }=0,$ fc HALF $=1,1 \mathrm{MHz}$, NOTE 7	-10	0	10	ns
	BANDWIDTH = cnt	TddHent		-10	0	10	
	BANDWIDTH $=\mathrm{min}$	TddHmin		-10	0	10	
Mute mode attenuation		Gmute	$30 \mathrm{MHz} \sin$ wave input, NOTE 7	-	-	-50	dB
Crosstalk among inputs		Gcrs	$30 \mathrm{MHz} \sin$ wave input, NOTE 7	-	-	-50	dB

NOTE 7: This parameter is not tested during production and is provided only as information to assist the design of applications.
Synchronization Block (Test condition: A-SYNC = 1 (ON))

Characteristic			Symbol	Test Conditions	Min	Typ	Max	Unit
H/V-sync separation level		525/60i	VsepL1	HV-SEP $=0,286 \mathrm{mV}$-p sync, NOTE 7	24	28	32	\%
		VsepH1	HV-SEP = 1, $286 \mathrm{mVp}-\mathrm{p}$ sync, NOTE 7	27	31	35		
		1125/60i	VsepL2	HV-SEP = 0, 0.3 Vp-p sync, NOTE 7	30	34	38	\%
		VsepH2	HV-SEP = 1, 0.3 Vp-p sync, NOTE 7	40	44	48		
		SVGA/60	VsepL3	HV-SEP $=0$, VGA-SEP $=1,0.3 \mathrm{Vp}-\mathrm{p}$ sync, NOTE 7	14	18	22	\%
		VsepH3	HV-SEP $=1$, VGA-SEP $=1,0.3 \mathrm{Vp}-\mathrm{p}$ sync, NOTE 7	16	20	24		
Threshold amplitude for HD input			VthHD	SYNC SW = 100	0.8	-	-	Vp-p
Threshold amplitude for VD input			VthVDn	SYNC SW = 100	0.9	-	-	Vp-p
HD-OUT voltage			VhdH	High level	3.2	3.4	3.5	V
			VhdL	Low level	-	0.1	0.4	
HD-OUT width			Thdw0	HD WIDTH = 0	1.55	1.65	1.75	us
			Thdw1	HD WIDTH = 1	0.55	0.65	0.75	
HD-OUT phase	H sync-in to HD-out		Thdp1	SYNC-SW = 000, 1125/60p input	130	150	170	ns
	HD-in to HD-out		Thdp2	SYNC-SW = 100, NOTE 7	23	28	32	ns

Characteristic		Symbol	Test Conditions	Min	Typ.	Max	Unit
VD-OUT voltage		VvdH	High level	3.2	3.4	3.5	V
		VvdL	Low level	-	0.1	0.4	
		Tvdws	Separated VD-OUT	-	290	-	us
	1250i ODD	Tvdwodd	When 1250i input	-	285	-	us
	1250i EVEN	Tvdweven		-	270	-	
	Free-run 1	Tvdwfi	Free-run VD-OUT in interlace mode	-	4	-	H
	Free-run 2	Tvdwfp	Free-run VD-OUT in progressive mode	-	8	-	
VD-OUT phase	V sync-in to VD-out	Tvdp1	625/50i input	0.15	0.20	0.26	H
		Tvdp2	525/60i input	0.15	0.20	0.26	
		Tvdp3	625/50p input	0.15	0.20	0.26	
		Tvdp4	525/60p input	0.15	0.20	0.26	
		Tvdp5	1125/50i input	0.15	0.20	0.26	
		Tvdp6	1125/60i input	0.15	0.20	0.26	
		Tvdp7	750/50p input	0.15	0.20	0.26	
		Tvdp8	750/60p input	0.15	0.20	0.26	
		Tvdp9	1125/50p input	0.10	0.15	0.20	
		Tvdp10	1125/60p input	0.15	0.20	0.26	
		Tvdp11	VGA/60 input	0.15	0.20	0.26	
		Tvdp12	SVGA/60 input	0.15	0.20	0.26	
		Tvdp13	XGA input	0.15	0.20	0.26	
		Tvdp14	SXGA input	0.15	0.20	0.26	
		Tvdp15	UXGA input	0.15	0.20	0.26	
	-in to VD-out	Tvdp16	1250/50i input, H sync-in to VD-out	330	340	350	ns
	o VD-out	Tvdp17	SYNC-SW=100, NOTE 7	23	28	32	ns
Minimum amplitude for suppressed V-sync to separate	HV-SEP = 0	VsupvL	Suppressed H/V-sync input, without picture, NOTE 7	-	-	52	\%
	HV-SEP = 1	VsupvH		-	-	48	
SYNC-OUT voltage		VsoH	High level	3.2	3.4	3.5	V
		VsoL	Low level	-	0.1	0.4	

Characteristic		Symbol	Test Conditions	Min	Typ.	Max	Unit
Dummy HD-OUT frequency		fh156	HV FREQ $=0000$, S MODE $=1$	-	15.564	-	kHz
		fh157	HV FREQ $=0001$, S MODE $=1$	-	15.701	-	
		fh312	HV FREQ $=0010$, S MODE $=1$	-	31.401	-	
		fh315	HV FREQ $=0011, \mathrm{~S} \mathrm{MODE}=1$	-	31.401	-	
		fh281	HV FREQ $=0100$, S MODE $=1$	-	27.966	-	
		fh337	HV FREQ $=0101, \mathrm{~S} \mathrm{MODE}=1$	-	33.771	-	
		fh375	HV FREQ $=0110$, $\mathrm{S} \mathrm{MODE}=1$	-	37.288	-	
		fh450	HV FREQ $=0111$, S MODE $=1$	-	44.746	-	
		fh1250	HV FREQ $=1000$, S MODE $=1$	-	31.401	-	
		fh379	HV FREQ = 1001, S MODE = 1	-	37.288	-	
		fh640	HV FREQ $=1010$, $\mathrm{S} \mathrm{MODE}=1$	-	63.923	-	
		fh750	HV FREQ $=1011$, S MODE $=1$	-	74.577	-	
		fh562	HV FREQ $=1100$, S MODE $=1$	-	55.932	-	
Dummy VD-OUT frequency		fv625i	HV FREQ $=0000$, S MODE $=1$	-	312.5	-	H
		fv525i	HV FREQ $=0001$, S MODE $=1$	-	262.5	-	
		fv625p	HV FREQ $=0010$, S MODE $=1$	-	625	-	
		fv525p	HV FREQ = 0011, S MODE = 1	-	525	-	
		fv1125i5	HV FREQ $=0100$, S MODE $=1$	-	562.5	-	
		fv1125i6	HV FREQ $=0101$, S MODE $=1$	-	562.5	-	
		fv750p5	HV FREQ $=0110, \mathrm{~S} \mathrm{MODE}=1$	-	750	-	
		fv750p6	HV FREQ $=0111, \mathrm{~S} \mathrm{MODE}=1$	-	750	-	
		fv1250iO	HV FREQ = 1000, S MODE = 1, ODD	-	624.5	-	
		fv1250iE	HV FREQ $=1000, S$ MODE $=1$, EVEN	-	625.5	-	
		fvsvga	HV FREQ = 1001, S MODE = 1	-	628	-	
		fvsxga	HV FREQ $=1010, \mathrm{~S} \mathrm{MODE}=1$	-	1066	-	
		fvuxga	HV FREQ $=1011, \mathrm{~S} \mathrm{MODE}=1$	-	1250	-	
		fv1125p5	HV FREQ $=1100$, S MODE $=1$	-	1125	-	
VD PHS delay phase	others	Tvdphs1	No input, S MODE = 1, VD PHS = 1	0.15	0.2	0.26	H
	1125/50p	Tvdphs2		0.1	0.15	0.2	
LINE1 detection threshold	$\mathrm{L} \Leftrightarrow \mathrm{M}$	VIn1LM	Pin 6, 15	0.8	1.0	1.2	V
	$\mathrm{M} \Leftrightarrow \mathrm{H}$	VIn1MH		2.8	3.0	3.2	
LINE2 detection threshold	$\mathrm{L} \Leftrightarrow \mathrm{H}$	VIn2LH	Pin 4, 13	0.8	1.0	1.2	
LINE3 detection threshold	$\mathrm{L} \Leftrightarrow \mathrm{M}$	VIn3LM	Pin 2, 11	0.8	1.0	1.2	
	$\mathrm{M} \Leftrightarrow \mathrm{H}$	VIn3MH		2.8	3.0	3.2	
SW LINE detection threshold	L $\Leftrightarrow \mathrm{H}$	VInsLH	Pin 9, 48	0.8	1.0	1.2	
Input impedance of LINE input pin		Zline	Pin 2,4,6,9,11,13,15,48, NOTE 7	120	150	-	$\mathrm{k} \Omega$
DAC1,2 output voltage		VdacH	High level	4.8	5.0	-	V
		VdacL	Low level	-	0.2	0.4	
Test mode threshold voltage		Vontest	Pin 45, turned-on voltage for test mode	3.6	-	-	V

Test circuit

Components in the test circuits are only used to obtain and confirm the device characteristics. These components and circuits do not warrant to prevent the application equipment from malfunction or failure.

Application circuit 1 (TB1305FG: typical values)

Input video signals, which are driven with low impedance.
The application circuits shown in this document are examples provided for reference purposes only. Thorough evaluation is required in the mass production design phase.
By furnishing these examples of application circuits, Toshiba does not grant the use of any industrial property rights.

Application circuit 2 (TB1308FG: typical values)

Input video signals, which are driven with low impedance.
The application circuits shown in this document are examples provided for reference purposes only. Thorough evaluation is required in the mass production design phase.
By furnishing these examples of application circuits, Toshiba does not grant the use of any industrial property rights.

Application circuit 3 (system configuration)

(1) For non-standard signals such as CVBS, YC (S-video), 525i, 625i or so.

The TB1305FG and TB1308FG cannot be used for non-standard signals such as weak strength signals, ghost signals and so on. Therefore, these signals should be dealt with through the use of another device such as a color-decoder which is capable of handling these signals. In such cases, the signal switcher and the video circuits of the TB1305FG and TB1308FG can be used.

The TB1305FG and TB1308FG cannot distinguish between component and RGB video. The different kinds of input signal should be separated through the use of different signal-specific input pins; for example, specific-purpose pins for RGB video input only or component video input only.
(2) For standard component video (SMPTE STANDARD) and standard RGB video (VESA STANDARD)

The TB1305FG and TB1308FG can detect a format type for standard signal inputs.

The application circuits shown in this document are examples provided for reference purposes only. Thorough evaluation is required in the mass production design phase.
By furnishing these examples of application circuits, Toshiba does not grant the use of any industrial property rights.

Package dimensions

Unit: mm

Weight: 0.83 g (typ.)

Appendix: Comparison Table of the Family

1) Pin functions

Pin No.	TB1305FG	TB1308FG
Pin 38	NC	SYNC3-IN
Pin 39	NC	Y3/G3-IN
Pin 41	NC	Cb3/B3-IN
Pin 43	NC	Cr3/R3-IN

2) Write BUS functions

Name	Data	TB1305FG	TB1308FG
YCbCr SW	11	Not available	Y3/Cb3/Cr3
SYNC SW	010	Not available	SYNC3
	110	HD1/VD1/No. available	HD1/VD1/SYNC3
	111	HD2/VD2/Not available	HD2/VD2/SYNC3

3) Read BUS functions

Name	TB1305FG	TB1308FG
VERSION	$00:$ TB1305FG	$01:$ TB1308FG

About solderability, following conditions were confirmed

- Solderability
(1) Use of Sn-37Pb solder Bath
- solder bath temperature $=230^{\circ} \mathrm{C}$
- dipping time $=5$ seconds
- the number of times = once
- use of R-type flux
(2) Use of $\mathrm{Sn}-3.0 \mathrm{Ag}-0.5 \mathrm{Cu}$ solder Bath
- solder bath temperature $=245^{\circ} \mathrm{C}$
- dipping time $=5$ seconds
- the number of times = once
- use of R-type flux

RESTRICTIONS ON PRODUCT USE

- The information contained herein is subject to change without notice. 021023_D
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc. 021023_A
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk. 021023_B
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations. 060106_Q
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third parties.
- Please use this product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses occurring as a result of noncompliance with applicable laws and regulations.
- The products described in this document are subject to the foreign exchange and foreign trade control laws.

[^0]: *: Undefined

