SKDH 230

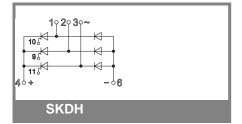
SEMIPONT® 7

Half Controlled Bridge Rectifier

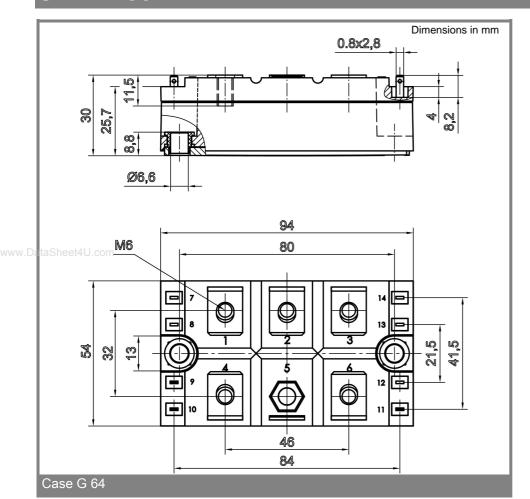
SKDH 230

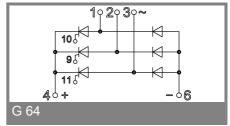
Preliminary Data

Features


- Robust plastic case with screw terminals
- Heat transfer through aluminium oxide ceramic isolated metal base plate
- Blocking voltage up to 1800V
- High surge current
- · lead free solder
- UL -recognition applied for file no. E 63 532

Typical Applications


- Power supplies for electronic equipment
- · Field rectifiers for DC motors
- · Battery charger rectifiers
- 1) available on request


V _{RSM}	V_{RRM}, V_{DRM}	I _D = 230 A (full conduction)
V	V	(T _c = 85 °C)
900	800	SKDH 230/08
1300	1200	SKDH 230/12
1700	1600	SKDH 230/16
1900	1800	SKDH 230/18 ¹⁾

Symbol	Conditions	Values	Units
I _D	T _c = 100 °C	175	А
I _D	T _c = 85 °C	230	
I _{TSM} , I _{FSM}	T _{vi} = 25 °C; 10 ms	2100	Α
	T _{vi} = 130 °C; 10 ms	1700	Α
i²t	T_{vj}^{-3} = 25 °C; 8,3 10 ms	22050	A²s
	T _{vj} = 130 °C; 8,3 10 ms	14450	A²s
V_T, V_F	$T_{vi} = 25 \text{ °C}; I_T, I_F = 300A$	max. 1,9	V
$V_{T(TO)}$	T _{vj} = 130 °C;	0,9	V
r _T	T _{vi} = 130 °C	4,2	mΩ
I _{DD} ; I _{RD}	$T_{vj} = 130 ^{\circ}C; V_{DD} = V_{DRM}; V_{RD} = V_{RRM}$	max. 20	mA
t _{gd}	$T_{vj} = 25 ^{\circ}\text{C}; I_{G} = 1 \text{A}; di_{G}/dt = 1 \text{A/}\mu\text{s}$	1	μs
t _{gr}	$V_D = 0.67 \cdot V_{DRM}$	2	μs
(dv/dt) _{cr}	T _{vi} = 130 °C	max. 1000	V/µs
(di/dt) _{cr}	$T_{vi}^{'j}$ = 130 °C; f = 50 Hz	max. 200	A/µs
t _q	$T_{vi}^{'j}$ = 130 °C; typ.	200	μs
I _H	T _{vi} = 25 °C; typ. / max.	150 / 200	mA
IL	$T_{vj} = 25 ^{\circ}\text{C}; R_{G} = 33 \Omega$	300 / 600	mA
V _{GT}	T _{vi} = 25 °C; d.c.	min. 3	V
I_{GT}	$T_{vi} = 25 ^{\circ}\text{C}; \text{d.c.}$	min. 200	mA
V_{GD}	$T_{vj} = 130 ^{\circ}\text{C}; \text{d.c.}$	max. 0,25	V
I_{GD}	T _{vj} = 130 °C; d.c.	max. 10	mA
R _{th(j-c)}	per diode / per thyristor	0,32	K/W
3 -7	total	0,0533	K/W
R _{th(c-s)}	total	0,03	K/W
T _{vi}		- 40 + 130	°C
T _{stg}		- 40 + 125	°C
V _{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 min.	3600 (3000)	V
M _s	to heatsink	5 ± 15%	Nm
M _t	to terminals	5 ± 15%	Nm
m	approx.	250	g
Case		G 64	

SKDH 230

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.