16-bit Proprietary Microcontroller

CMOS

F²MC-16L MB90660A Series 2

MB90662A/663A/P663A

■ DESCRIPTION

MB90660A series microcontrollers are 16-bit microcontrollers optimized for high speed realtime processing of consumer equipment and system control of air conditioner video cameras, VCRs, and copiers. Based on the $\mathrm{F}^{2} \mathrm{MC}^{*}-16 \mathrm{CPU}$ core, an $\mathrm{F}^{2} \mathrm{MC}-16 \mathrm{~L}$ is used as the CPU. This CPU includes high-level language-support instructions and robust task switching instructions, and additional addressing modes.
Microcontrollers in this series have built-in peripheral resources including multi-function timers, 16-bit reload timer four channels, 8 -bit PWM one channel, UART one channel, 10 -bit A/D eight converter channels, and external interrupt eight channels.
*: F²MC stands for FUJITSU Flexible Microcontroller.

- FEATURES

- F^{2} MC-16L CPU
- Minimum execution time: $62.5 \mathrm{~ns} / 4 \mathrm{MHz}$ oscillation (uses PLL multiplier): fastest speed at quadruple operation
- Instruction set optimized for controller applications Upward compatibility at object level with the F${ }^{2}$ MC-16(H)
Various data types (bit, byte, word, long-word)
Higher speed due to review of instruction cycle
Expanded addressing modes: 23 types
High coding efficiency
Two access methods (bank system or linear pointer)
Improved multiply-and-divide instructions (additional signed instructions)
Improved high-precision operation with 32 -bit accumulator
Extended intelligent I/O services (access area extended by 64 Kbytes)
Large memory space: 16 Mbytes

PACKAGE

64-pin Plastic SH-DIP
(DIP-64P-M01)
(FPT-64P-M09)

MB90660A Series

(Continued)

- Improved instruction set applicable to high-level language (C) and multitasking System stack pointer Improved indirect instructions using various pointers
Barrel shift instruction
Stack check function
- Improved execution speed: 4-byte instruction queue
- Improved interrupt functions
- Automatic data transfer function independent of CPU

Peripheral Resources

- ROM: 16 Kbytes (MB90661A)

32 Kbytes (MB90662A)
48 Kbytes (MB90663A)
One-time PROM: 48 Kbytes (MB90P663A)

- RAM: 512 bytes (MB90661A)
1.64 Kbytes (MB90662A)

2 Kbytes (MB90663A/MB90P663A)

- General-purpose ports: Max. 51
- UART: 1 channel

Can be used for both asynchronous transfer and clocked serial (I/O extended serial) communications

- A/D converter: 10-bit, 8 channels Includes 8-bit conversion mode
- 16-bit reload timer: 4 channels
- 8-bit PWM: 1 channel
- External interrupts: 8 channels
- 18 -bit timebase timer with watchdog timer function
- PLL clock multiplier function
- CPU intermittent operation function
- Various standby modes
- Package: SH-DIP-64/LQFP-64 (0.65-mm pitch)
- CMOS technology

MB90660A Series

PRODUCT LINEUP

MB90660A Series

PIN ASSIGNMENT

www.DataSheet4U.com

MB90660A Series

PIN DESCRIPTION

Pin no.		Pin name	Circuit type	Function
SH-DIP**	LQFP*2			
30	22	X0	A (Oscillator)	Crystal oscillator pin (32 MHz).
31	23	X1		
33 to 40	25 to 32	P00 to P07	$\begin{gathered} \mathrm{B} \\ (\mathrm{CMOS}) \end{gathered}$	General-purpose I/O ports.
41 to 48	33 to 40	P10 to P17	$\begin{gathered} \mathrm{B} \\ \text { (CMOS) } \end{gathered}$	General-purpose I/O ports.
49 to 52	41 to 44	P20 to P23	$\begin{gathered} \mathrm{B} \\ (\mathrm{CMOS}) \end{gathered}$	General-purpose I/O ports.
53 to 56	45 to 48	P24 to P27	$\begin{gathered} \mathrm{G} \\ (\mathrm{CMOS}) \end{gathered}$	General-purpose I/O ports. This function is activated when the output specification of the reload timer is "disabled".
		TIM0 to TIM3		I/O pins for reload timers 0 to 4. Input is used only as necessary while serving as input for the reload timer. It is therefore necessary to stop output beforehand using other functions unless intentionally used otherwise. Their function as output terminals for the reload timer is activated when the output specification is "enabled".
		INT4 to INT7		External interrupt request input pins. Input is used only as necessary while external interrupts are enabled. It is therefore necessary to stop output beforehand using other functions unless intentionally used otherwise.
22 to 25	14 to 17	P30 to P33	$\begin{gathered} \mathrm{B} \\ \text { (CMOS) } \end{gathered}$	General-purpose I/O ports.
3	59	P40		General-purpose I/O port. This function is always enabled.
		SIN		UART serial data input pin. Input is used only as necessary while serving as UART input. It is therefore necessary to stop output beforehand using other functions unless intentionally used otherwise.
4	60	P41	$\begin{gathered} \text { E } \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General-purpose I/O port. This function is activated when the serial data output specification of the UART is "disabled".
		SOT		UART serial data output pin. This function is activated when the serial data output specification of the UART is "enabled".

*1: DIP-64P-M01
*2: FPT-64P-M09
(Continued)

MB90660A Series

Pin no.		Pin name	Circuit type	Function
SH-DIP*1	LQFP*2			
5	61	P42		General-purpose I/O port. This function is activated when the clock output specification of the UART is "disabled".
		SCK		UART clock I/O pin. This function is activated when the clock output specification of the UART is "enabled". Input is used only as necessary while serving as UART input. It is therefore necessary to stop output beforehand using other functions unless intentionally used otherwise.
6	62	P43	$\begin{gathered} \text { E } \\ \text { (CMOS/H) } \end{gathered}$	General-purpose I/O port. This function is activated when the output specification of the PWM is "disabled".
		PWM		PWM timer output pin. This function is activated when the waveform output specification of the PWM timer is "enabled".
$\begin{aligned} & 7 \\ & 8 \end{aligned}$	$\begin{aligned} & 63 \\ & 64 \end{aligned}$	P44 to P45	$\begin{gathered} \mathrm{D} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General-purpose I/O ports. This function is always active.
		INT0 to INT1		External interrupt request input pins. Input is used only as necessary while external interrupts are enabled.
9	1	P46	$\begin{gathered} \mathrm{D} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General-purpose input port. This function is always active.
		INT2		External interrupt request input pin. Input is used only as necessary while external interrupts are enabled.
		TRG		Timer clear trigger input pin for multi-function timer. Input is used only as necessary while multi-function timer input is enabled.
10	2	P47	$\begin{gathered} \mathrm{D} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General-purpose input port. This function is always active.
		INT3		External interrupt request input pin. Input is used only as necessary while external interrupts are enabled.
		$\overline{\text { ATG }}$		Trigger input pin for the A/D converter. Input is used only as necessary while the A/D converter is performing input.
$11 \text { to } 18$	3 to 10com	P50 to P57	$\begin{gathered} C \\ (A D) \end{gathered}$	Open-drain type I/O ports. This function is enabled when the analog input enable register specification is "port".
		AN0 to AN7		Analog input pins for the A/D converter. This function is enabled when the analog input enable register specification is "AD".

*1: DIP-64P-M01
*2: FPT-64P-M09
(Continued)

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Pin no.} \& \multirow[b]{2}{*}{Pin name} \& \multirow[t]{2}{*}{Circuit type} \& \multirow[b]{2}{*}{Function} \\
\hline SH-DIP* \({ }^{*}\) \& LQFP*2 \& \& \& \\
\hline \multirow[t]{3}{*}{58} \& \multirow[t]{3}{*}{50} \& P60 \& \multirow[t]{3}{*}{\[
\begin{gathered}
\mathrm{E} \\
(\mathrm{CMOS} / \mathrm{H})
\end{gathered}
\]} \& \begin{tabular}{l}
General-purpose I/O port. \\
This function is enabled when the multi-function timer waveform output specification is "disabled" and the 3-phase waveform output specification is "disabled".
\end{tabular} \\
\hline \& \& RT1 \& \& Multi-function timer waveform output pin. This function is enabled when the multi-function timer output specification is "enabled". \\
\hline \& \& U \& \& \begin{tabular}{l}
3 -phase waveform output pin. \\
This function is enabled when the 3-phase waveform output specification is "enabled".
\end{tabular} \\
\hline \multirow[t]{3}{*}{59} \& \multirow[t]{3}{*}{51} \& P61 \& \multirow[t]{3}{*}{\[
\underset{(\mathrm{CMOS} / \mathrm{H})}{\mathrm{E}}
\]} \& General-purpose I/O port. This function is enabled when the multi-function timer waveform output specification is "disabled" and the 3-phase waveform output specification is "disabled". \\
\hline \& \& RT2 \& \& Multi-function timer waveform output pin. This function is enabled when the multi-function timer output specification is "enabled". \\
\hline \& \& V \& \& \begin{tabular}{l}
3 -phase waveform output pin. \\
This function is enabled when the 3 -phase waveform output specification is "enabled".
\end{tabular} \\
\hline \multirow[t]{3}{*}{60} \& \multirow[t]{3}{*}{52} \& P62 \& \multirow[t]{3}{*}{\[
\begin{gathered}
\text { E } \\
(\text { CMOS/H) }
\end{gathered}
\]} \& General-purpose I/O port. This function is enabled when the multi-function timer waveform output specification is "disabled" and the 3-phase waveform output specification is "disabled". \\
\hline \& \& RT3 \& \& Multi-function timer waveform output pin. This function is enabled when the multi-function timer output specification is "enabled". \\
\hline \& \& W \& \& \begin{tabular}{l}
3 -phase waveform output pin. \\
This function is enabled when the 3-phase waveform output specification is "enabled".
\end{tabular} \\
\hline \multirow[t]{2}{*}{61} \& \multirow[t]{2}{*}{53} \& P63 \& \multirow[t]{2}{*}{\[
\underset{(\mathrm{CMOS} / \mathrm{H})}{\mathrm{E}}
\]} \& \begin{tabular}{l}
General-purpose I/O port. \\
This function is enabled when the 3 -phase waveform output specification is "disabled".
\end{tabular} \\
\hline \& \& X \& \& \begin{tabular}{l}
3 -phase waveform output pin. \\
This function is enabled when the 3-phase waveform output specification is "enabled".
\end{tabular} \\
\hline \multirow[t]{2}{*}{62 \({ }^{62}\) ataSheet4y} \& \multirow[t]{2}{*}{54

om} \& P64 \& \multirow[t]{2}{*}{\[
\underset{(\mathrm{CMOS/H})}{\mathrm{E}}

\]} \& | General-purpose I/O port. |
| :--- |
| This function is enabled when the 3-phase waveform output specification is "disabled". |

\hline \& \& Y \& \& | 3 -phase waveform output pin. |
| :--- |
| This function is enabled when the 3-phase waveform output specification is "enabled". |

\hline
\end{tabular}

*1: DIP-64P-M01
*2: FPT-64P-M09

MB90660A Series

(Continued)

Pin no.		Pin name	Circuit type	Function
SH-DIP*1	LQFP*2			
63	55	P65	$\begin{gathered} \mathrm{E} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General-purpose I/O port. This function is enabled when the 3-phase waveform output specification is "disabled".
		Z		3-phase waveform output pin. This function is enabled when the 3-phase waveform output specification is "enabled".
1	57	P66	$\underset{(\mathrm{CMOS} / \mathrm{H})}{\mathrm{E}}$	General-purpose I/O port. This function is enabled when the multi-function timer waveform output specification is "disabled".
		RT0		Multi-function timer waveform output pin. This function is enabled when the multi-function timer output specification is "enabled".
2	58	DTTI	$\underset{(\mathrm{CMOS} / \mathrm{H})}{\mathrm{D}}$	3-phase waveform output disable input (DTTI) pin.
19	11	AV ${ }_{\text {cc }}$	Power supply	Power supply for analog circuits. Turn this power supply on/off by applying a voltage level greater than AV cc to Vcc .
20	12	AVR	Power supply	Reference power supply for analog circuits. Turn this pin on/off by applying a voltage level greater than AVR to $A V \mathrm{cc}$.
21	13	AVss	Power supply	Ground level for analog circuits.
$\begin{aligned} & 26 \\ & 28 \\ & 29 \end{aligned}$	$\begin{aligned} & 18 \\ & 20 \\ & 21 \end{aligned}$	MD0 to MD2	$\begin{gathered} \mathrm{F} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	Input pins for specifying operation mode. Use these pins by directly connecting to V_{cc} or V_{ss}.
27	19	$\overline{\mathrm{RST}}$	$\underset{(\mathrm{CMOS} / \mathrm{H})}{\mathrm{D}}$	External reset request input pin.
64	56	Vcc	Power supply	Power supply for digital circuits.
$\begin{aligned} & 32 \\ & 57 \end{aligned}$	$\begin{aligned} & 24 \\ & 49 \end{aligned}$	Vss	Power supply	Ground level for digital circuits.

*1: DIP-64P-M01
*2: FPT-64P-M09

MB90660A Series

I/O CIRCUIT TYPE

Type	Circuit	Remarks
A		- 3 MHz to 32 MHz operation - Oscillation feedback resistor: Approx. 1 M 3 / $/ 4$
B		- CMOS level input and output With standby control - Pull-up option can be selected With standby control
C		- N-channel open-drain output CMOS level hysteresis input With A/D control
D pataSheet-		- CMOS level hysteresis input Without standby control - Pull-up option can be selected Without standby control

(Continued)

MB90660A Series

(Continued)

Type	Circuit	Remarks
E		- CMOS level output - CMOS level hysteresis input With standby control - Pull-up option can be selected With standby control
F		- CMOS level input (Mask ROM version uses CMOS hysteresis input) Without standby control - Pull-up option can be selected for MD2 (*1) Pull-up option can be selected for MD1/0 (*2) Both without standby option - The MB90P663A does not include a noise filter. It also does not have a P channel protect Tr (*3) for the MD2 pin or pull-down.
G		- CMOS level input and output Without standby control - Pull-up option can be selected With standby control

MB90660A Series

HANDLING DEVICES

1. Preventing Latchup

Latchup may occur with CMOS ICs if voltage higher than Vcc or lower than Vss is applied to input and output pins other than medium- to high-voltage pins or if higher than the voltage which shows on "1. Absolute Maximum Ratings" in section "回 Electrical Characteristics" is applied between Vcc and Vss.

When latchup occurs, power supply current increases rapidly and might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings.
To prevent the similar aftereffects, use also the utmost care not to allow the analog supply voltage to exceed the digital supply voltage.

2. Treatment of Unused Input Pins

Leaving unused input pins open could cause malfunctions. They should be pins should be connected to a pullup or pull-down resistor.

3. External Reset Input

When resetting by inputting "L" level to the RST pin, the "L" level must be input for at least 5 machine cycles to ensure that internal reset has occurred. Be aware of this point when using external clock input.
4. Vcc, Vss Pin

Be sure that both V_{cc} and V_{ss} are at the same voltage.

5. Notes on Using an External Clock

Drive X 0 when using an external clock.

- Using an External Clock

6. Order of Power-on to A/D Converter and Analog Inputs

Power-off ($\mathrm{AVcc}, \mathrm{AVR}$) to the digital power supply (V cc) must be performed only after the A / D converter and the analog inputs (AN0 to AN7) has been turned on.

Turning on or off should always be performed keeping AVR below AVcc.
Use caution for the input voltage not to exceed AV cc when the pin sharing the analog input for its function is used as an input port.

7. Programming Mode

When the MB90P663A is shipped from Fujitsu, all bits ($48 \mathrm{~K} \times 8$ bits) are set to " 1 ". Program by setting selected bits to " 0 " when you wish to set the data. Note that " 1 " cannot be programming electrically.

MB90660A Series

8. Recommended Screening Conditions

High-temperature aging is recommended as the pre-assembly screening procedure for a product with a blanked OTPROM microcomputer program.

9. Programming Yields

All bits cannot be programmed at Fujitsu shipping test to a blanked OTPROM microcomputer, due to its nature. For this reason, a programming yield of 100% cannot be assured at all times.

10.Fluctuations in Supply Voltage

Although the assured V_{cc} supply voltage operating range is as specified, sudden fluctuations even within this range may cause a malfunction. Therefore, the voltage supply to the IC should be kept as constant as possible. The Vcc ripple (P-P value) at the supply frequency (50 to 60 Hz) should be less than 10% of the typical Vcc value, or the coefficient of excessive variation should not be more than $0.1 \mathrm{~V} / \mathrm{ms}$ instantaneous change when power is supplied.

MB90660A Series

PROGRAMMING THE MB90P663A EPROM

Since the MB90P663A is functionally equivalent to the MBM27C1000 when it is in EPROM mode, it is possible to program them with a general-purpose EPROM programmer by using a special adaptor socket.

However, the MB90660A does not support the electronic signature (device ID code) mode.

1. Pin Assignment in EPROM Mode

- MBM27C1000-compatible pins

MBM27C1000		MB90P663A			MBM27C1000		MB90P663A		
	Pin name	Pin no .		Pin name	Pin n o.	Pin name	Pin no.		Pin name
		SH-DIP	LQFP				SH-DIP	LQFP	
1	VPP	29	21	MD2 (VPP)	32	Vcc	64	56	Vcc
2	$\overline{\mathrm{OE}}$	24	16	P32	31	$\overline{\text { PGM }}$	25	17	P33
3	A15	48	40	P17	30	NC	-	-	-
4	A12	45	37	P14	29	A14	47	39	P16
5	A07	56	48	P27	28	A13	46	38	P15
6	A06	55	47	P26	27	A08	41	33	P10
7	A05	54	46	P25	26	A09	42	34	P11
8	A04	53	45	P24	25	A11	44	36	P13
9	A03	52	44	P23	24	A16	22	14	P30
10	A02	51	43	P22	23	A10	43	35	P12
11	A01	50	42	P21	22	$\overline{\mathrm{CE}}$	23	15	P31
12	A00	49	41	P20	21	D07	40	32	P07
13	D00	33	25	P00	20	D06	39	31	P06
14	D01	34	26	P01	19	D05	38	30	P05
15	D02	35	27	P02	18	D04	37	29	P04
16	GND	-	-	-	17	D03	36	28	P03

- Power supply, GND connection pins

Type	Pin no.		Pin name
	SH-DIP	LQFP	
Power	2	58	DTTI
	64	56	Vcc 2
GND	57	49	V $_{\text {ss }}$
PataSheet4U.com	21	13	AVss
	27	19	RST
	32	24	Vss *
	26	18	MD0
	3	59	P40
	4	60	P41
	5	61	P42

MB90660A Series

- Pins other than MBM27C1000-compatible pins

Pin no.		Pin name	Processing
SH-DIP	LQFP		
$\begin{aligned} & 30 \\ & 28 \end{aligned}$	$\begin{aligned} & 22 \\ & 20 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { X0 } \\ \text { MD1 } \end{array}$	$\begin{aligned} & \text { Pull-up by } \\ & 4.7 \mathrm{~K} \Omega \end{aligned}$
31	23	X1	OPEN
9 10 11 to 18 19 20 58 to 63 1 6 to 8	$\begin{gathered} 1 \\ 2 \\ 3 \text { to } 10 \\ 11 \\ 12 \\ 50 \text { to } 55 \\ 57 \\ 62 \text { to } 64 \end{gathered}$	P46 P47 P50 to P57 AVcc AVR P60 to P65 P66 P43 to P45	$1 \mathrm{M} \Omega$-level pull-up resistor connected to each pin

2. EPROM Programmer Socket Adapter and Recommended Programmer Manufacturer

Part no.	Package	Compatible socket adapter Sun Hayato Co., Ltd.	Recommended programmer manufacturer and programmer name		
			Data I/O Co., Ltd.	Advantest Corp.	
MB90P663AP	SH-DIP-64		Recommended	Recommended	Recommended
MB90P663APF	LQFP-64	ROM-64SF-32DP-16L	Recommended	Recommended	Recommended

Inquiry: Sun Hayato Co., Ltd.: TEL (81)-3-3986-0403
FAX (81)-3-5396-9106
Minato Electronics Inc.: TEL: USA (1)-916-348-6066

> JAPAN (81)-45-591-5611

Data I/O Co., Ltd.: TEL: USA/ASIA (1)-206-881-6444
EUROPE (49)-8-985-8580
Advantest Corp.: TEL: Except JAPAN (81)-3-3930-4111

MB90660A Series

3. Programming Data

(1) Adjust the EPROM programmer to settings for the MBM27C1000.
(2) Load program data from addresses 10000 to 1 FFFFн in the EPROM programmer.

OTPROM addresses FF4000н to FFFFFFF of the MB90P663A in operation mode correspond to addresses 14000н to 1FFFFн in EPROM mode.

(3) Set the MB90P663A into the adaptor socket and install the adaptor socket into the EPROM programmer. Pay attention to the orientation of the device and the adaptor socket at this time.
(4) Programming data to the EPROM.
(5) If data cannot be programmed, try again with a $0.1 \mu \mathrm{~F}$ capacitor connected between V_{cc} and GND and V_{PP} and GND.
Note: Since Mask ROM products (MB90662A/663A) do not include an EPROM mode, data cannot be read-out using an EPROM programmer.

MB90660A Series

4. PROM Option Bitmap

The programming method is the same as a PROM, and can be set by programming values to addresses indicated in the memory map.
The following bit map shows the relation between bits and options.

- PROM Option Bitmap

Address	7	6	5	4	3	2	1	0
00004н	P07 Pull-up 1: No 0: Yes	$\begin{aligned} & \text { P06 } \\ & \text { Pull-up } \\ & \text { 1: No } \\ & 0: \text { Yes } \end{aligned}$	P05 Pull-up 1: No 0: Yes	P04 Pull-up 1: No 0: Yes	$\begin{aligned} & \text { P03 } \\ & \text { Pull-up } \\ & \text { 1: No } \\ & \text { 0: Yes } \end{aligned}$	P02 Pull-up 1: No 0: Yes	$\begin{aligned} & \text { P01 } \\ & \text { Pull-up } \\ & \text { 1: No } \\ & 0: \text { Yes } \end{aligned}$	$\begin{aligned} & \text { P00 } \\ & \text { Pull-up } \\ & \text { 1: No } \\ & \text { 0: Yes } \end{aligned}$
00008H	P17 Pull-up 1: No 0: Yes	$\begin{aligned} & \text { P16 } \\ & \text { Pull-up } \\ & \text { 1: No } \\ & 0: \text { Yes } \end{aligned}$	P15 Pull-up 1: No 0: Yes	P14 Pull-up 1: No 0: Yes	$\begin{aligned} & \text { P13 } \\ & \text { Pull-up } \\ & \text { 1: No } \\ & 0: \text { Yes } \end{aligned}$	P12 Pull-up 1: No 0: Yes	P11 Pull-up 1: No 0: Yes	P10 Pull-up 1: No 0: Yes
0000 CH	P27 Pull-up 1: No 0: Yes	P26 Pull-up 1: No 0: Yes	$\begin{aligned} & \text { P25 } \\ & \text { Pull-up } \\ & \text { 1: No } \\ & \text { 0: Yes } \end{aligned}$	P24 Pull-up 1: No 0: Yes	$\begin{aligned} & \text { P23 } \\ & \text { Pull-up } \\ & \text { 1: No } \\ & 0: \text { Yes } \end{aligned}$	P22 Pull-up 1: No 0: Yes	P21 Pull-up 1: No 0: Yes	$\begin{aligned} & \text { P20 } \\ & \text { Pull-up } \\ & \text { 1: No } \\ & \text { 0: Yes } \end{aligned}$
00010H	P43 Pull-up 1: No 0: Yes	P42 Pull-up 1: No 0: Yes	P41 Pull-up 1: No 0: Yes	P40 Pull-up 1: No 0: Yes	P33 Pull-up 1: No 0: Yes	P32 Pull-up 1: No 0 : Yes	P31 Pull-up 1: No 0: Yes	P30 Pull-up 1: No 0: Yes
00014H *1	P47 Pull-up 1: No 0: Yes	P46 Pull-up 1: No 0: Yes	P45 Pull-up 1: No 0: Yes	P44 Pull-up 1: No 0 : Yes	$\begin{aligned} & \text { RST } \\ & \text { Pull-up } \\ & \text { 1: No } \\ & \text { 0: Yes } \end{aligned}$	DTTI Pull-up 1: No 0 : Yes	```Accept asyn- chronous reset 1: Yes 0: No```	$\begin{aligned} & \text { MD1/MD0*2 } \\ & \text { Pull-up } \\ & \text { 1: No } \\ & \text { 0: Yes } \end{aligned}$
00018H	Open	P66 Pull-up 1: No 0: Yes	P65 Pull-up 1: No 0: Yes	P64 Pull-up 1: No 0: Yes	P63 Pull-up 1: No 0: Yes	P62 Pull-up 1: No 0: Yes	P61 Pull-up 1: No 0: Yes	P60 Pull-up 1: No 0: Yes

Initially (value when blank), all bits are " 1 ".
*1: Under this release, the pull-up resistor is cut-off during stop mode for pins for which the pull-up option was selected. (Pins for which the circuit type shown in the " \square Pin Description" is B or E.)
However, the pull-up resistor is not cut-off even in stop mode for P44 to 47, RST, DTTI (pins for which the circuit type shown in the " \square Pin Description" is D or G), and MD1 and MDO.
*2: Whether or not a pull-up/pull-down resistor is present for MD2, MD1 and MD0 is determined as follows. If pull-up/pull-down resistor is selected, it is included with all 2 (or 3) pins. Presence or absence of the pull-up or pulldown resistors for the mode terminal cannot be selected for each pin.

Pin	MB90P663A	MB90663A/2A
No	Pull-down can be selected	
MataSheet4U.MD2	With pull-up resistor	With pull-up resistor
MD0	With pull-up resistor	With pull-up resistor

Notes: - "FFH" must be set to addresses no defined in the table above.

- Since the option setting for the MB90P663A takes 8 machine cycles, the option setting is not made until a clock is provided after power-on. (This results in no pull-up for all pins, and asynchronous reset input is accepted.)

MB90660A Series

BLOCK DIAGRAM

MB90660A Series

F²MC-16L CPU PROGRAMMING MODEL

- Dedicated Registers

- General-purpose Registers

- Processor States (PS)

MB90660A Series

MEMORY MAP

MB90660A Series

I/O MAP

Address	Register	Name	Access ${ }^{2}$	Resource name	Initial value
000000н	Port 0 data register	PDR0	R/W*	Port 0	XXXXXXXX
000001н	Port 1 data register	PDR1	R/W*	Port 1	XXXXXXXX
000002н	Port 2 data register	PDR2	R/W*	Port 2	XXXXXXXX
000003н	Port 3 data register	PDR3	R/W*	Port 3	$----X X X X$
000004н	Port 4 data register	PDR4	R/W!	Port 4	XXXXXXXX
000005H	Port 5 data register	PDR5	R/W*	Port 5	11111111
000006H	Port 6 data register/ Port data buffer register	PDR6/ PDBR	R/W*	Port 6	- XXXXXXX
$\begin{gathered} 000007_{\mathrm{H}} \text { to } \\ \mathrm{FF}_{\mathrm{H}} \end{gathered}$	Vacancy	-	*1	-	-
000010н	Port 0 direction register	DDR0	R/W	Port 0	00000000
000011н	Port 1 direction register	DDR1	R/W	Port 1	00000000
000012н	Port 2 direction register	DDR2	R/W	Port 2	00000000
000013H	Port 3 direction register	DDR3	R/W	Port 3	----0000
000014	Port 4 direction register	DDR4	R/W	Port 4	----0000
000015 ${ }_{\text {H }}$	Analog input enable register	ADER	R/W	Port 5	11111111
000016н	Port 6 direction register	DDR6	R/W	Port 6	-0000000
$\begin{aligned} & 000017 \mathrm{H} \\ & \text { to } 1 \mathrm{BH} \end{aligned}$	Vacancy	-	*1	-	-
00001 Сн to 1 FH	System reserved area	-	*1	-	-
000020н	PWM operation mode control register	PWMC	R/W	PWM	00000--1
000021H	Vacancy	-	*1		-
000022н	PWM reload register	PRLL	R/W		XXXXXXXX
000023н		PRLH	R/W		XXXXXXXX
000024н	Serial mode register	SMR	R/W!	UART	00000-00
000025H	Serial control register	SCR	R/W!		00000100
000026H	Serial input data register/ Serial output data register	$\begin{aligned} & \text { SIDR/ } \\ & \text { SODR } \end{aligned}$	R/W		XXXXXXXX
000027H	Serial status register	SSR	R/W!		00001-00
000028н	Interrupt enable register	ENIR	R/W	External interrupt	00000000
000029 ${ }^{\text {H }}$	Interrupt source register	EIRR	R/W	External interrupt	XXXXXXXX
00002Aн	Request level setting register	ELVR	R/W		00000000
00002Bн					00000000
00002CH	A/D control status register	ADCS	R/W!	A/D converter	00000000
00002D					00000000

(Continued)

MB90660A Series

(Continued)

Address	Register	Name	Access* ${ }^{\text {2 }}$	Resource name	Initial value
00002Ен	A/D data register	ADCR	R/W!	A/D converter	XXXXXXXX
00002F					O00000XX
000030 ${ }^{\text {H }}$	Control status register	TMCSR0	R/W	16-bit reload timer 0	00000000
000031н					----0000
000032н	16-bit timer register/ 16-bit reload register	TMRO/ TMRLR0	R/W		XXXXXXXX
000033н					XXXXXXXX
000034	Control status register	TMCSR1	R/W	```16-bit reload timer 1```	00000000
000035					----0000
000036н	16-bit timer register/ 16-bit reload register	TMR1/ TMRLR1	R/W		XXXXXXXX
000037 ${ }^{\text {H }}$					XXXXXXXX
000038н	Control status register	TMCSR2	R/W	16-bit reload timer 2	00000000
000039н					----0000
00003Ан	16-bit timer register/ 16-bit reload register	TMR2/ TMRLR2	R/W		X XXXXXXX
00003Bн					XXXXXXXX
00003CH	Control status register	TMCSR3	R/W	16-bit reload timer 3	00000000
00003D					----0000
00003Ен	16-bit timer register/ 16-bit reload register	TMR3/ TMRLR3	R/W		X XXXXXXX
00003F ${ }^{\text {¢ }}$					XXXXXXXX
000040н	Timer control status register	TCSR	R/W!	Multi-function timer	10000000
000041н	Compare interrupt control register	CICR	R/W		00000000
000042н	Timer mode control register	TMCR	R/W!		001-0000
000043н	Compare/data select register	COER	R/W		----0000
000044H	Compare buffer mode control register	CMCR	R/W		----0000
000045	Zero detect output control register	ZOCTR	W		---X0000
000046н	Output control buffer register	OCTBR	R/W		11111111
000047	Zero detect interrupt control register	ZICR	R/W!		0---XXXX
000048н	Output compare buffer register 0	OCPBR0	W		XXXXXXXX
000049н					--XXXXXX
00004Ан	Output compare buffer register 1	OCPBR1	W		XXXXXXXX
00004Вн					--XXXXXX
00004 CH	Output compare buffer register 2	OCPBR2	W		X $\mathrm{XXXXXXX}^{\text {P }}$
00004D					--XXXXXX

(Continued)

MB90660A Series

(Continued)

Address	Register	Name	Access ${ }^{2}$	Resource name	Initial value
00004Ен	Output compare buffer register 3	OCPBR3	W	Multi-function timer	XXXXXXXX
00004Fн					$--X X X X X X$
000050н	Compare clear buffer register	CLRBR	W		00000000
000051н					$--000000$
000052н	Dead time control register	DTCR	R/W!		00000000
000053н	Dead time setting register	DTSR	W		XXX0 X X X
000054н	Dead time compare register	DTCMR	W		X XXXXXXX
000055н	Vacancy	-	*1	-	-
000056н	Timer pin control register	TPCR	R/W	16-bit reload timer	-001-000
000057н					-011-010
$\begin{aligned} & 000058 \mathrm{H} \\ & \text { to } 5 \mathrm{E} \end{aligned}$	Vacancy	-	*1	-	-
00005Fн	Machine clock division control register	CDCR	W	UART	----1111
$\begin{array}{\|c} 000060_{\mathrm{H}} \text { to } \\ 8 \mathrm{FH} \end{array}$	Vacancy	-	*1	-	-
$\begin{gathered} 000090_{\text {н to }}^{9 Е н} \\ 9{ }^{2} \end{gathered}$	System reserved area	-	*1	-	-
00009Fн	Delayed interrupt source generate/ cancel register	DIRR	R/W	Delayed interrupt generator module	-------0
0000AOH	Low power mode control register	LPMCR	R/W!	Low power	00011000
0000A1н	Clock select register	CKSCR	R/W!		11111100
$\begin{gathered} \text { 0000А2нto } \\ \text { A7H } \end{gathered}$	System reserved area	-	*1	-	-
0000A8H	Watchdog timer control register	WDTC	R/W!	Watchdog timer	X-XXX111
0000A9н	Timebase timer control register	TBTC	R/W!	Timebased timer	1--00100
0000ААн to AFH	System reserved area	-	*1	-	-
0000B0н	Interrupt control register 00	ICR00	R/W!	Interrupt controller	00000111
0000B1н	Interrupt control register 01	ICR01	R/W!		00000111
0000B2н	Interrupt control register 02	ICR02	R/W!		00000111
0000B3н	Interrupt control register 03	ICR03	R/W!		00000111
0000B4н	Interrupt control register 04	ICR04	R/W!		00000111
0000B5	Interrupt control register 05	ICR05	R/W!		00000111
0000В6н	Interrupt control register 06	ICR06	R/W!		00000111
0000B7 ${ }_{\text {H }}$	Interrupt control register 07	ICR07	R/W!		00000111

(Continued)

MB90660A Series

(Continued)

Address	Register	Name	Access ${ }^{2}$	Resource name	Initial value
0000B8H	Interrupt control register 08	ICR08	R/W!	Interrupt controller	00000111
0000B9н	Interrupt control register 09	ICR09	R/W!		00000111
0000ВАн	Interrupt control register 10	ICR10	R/W!		00000111
0000BBн	Interrupt control register 11	ICR11	R/W!		00000111
0000BCH	Interrupt control register 12	ICR12	R/W!		00000111
0000BD	Interrupt control register 13	ICR13	R/W!		00000111
0000ВEн	Interrupt control register 14	ICR14	R/W!		00000111
0000BFH	Interrupt control register 15	ICR15	R/W!		00000111
$\begin{aligned} & \text { OOOOCOH } \\ & \text { to } \mathrm{FF}_{\mathrm{H}} \end{aligned}$	System reserved area	-	*1	-	-

*1: Access prohibited
*2: Registers marked "R/W!" in the access column include some bits that can only be read or only be written. For details, see the register list for each resource.
: When a register marked "R/W!", "R/W" or "W" in the access column is accessed by a read-modify-write instruction (such as a bit set instruction), the bit operated on by the instruction will be set to the specified value, but a malfunction will occur if there are any other bits which can only be written. Therefore, do not access these locations using these instructions.
Description of Initial Values
0 : The initial value of this bit is " 0 ".
1: The initial value of this bit is " 1 ".
*: The initial value of this bit is " 1 " or " 0 ". (This is determined depending on the level of the MD0 to MD2 pins.)
X : The initial value of this bit is undefined.
-: This bit is not used. The initial value is undefined.
Note: The initial value results for bits which can only be written when initialized by a reset. Note that this is not the value when read.
Also, sometimes LPMCR, CKSCR and WDTC are initialized and sometimes they are not depending on the type of reset. If they are initialized, the initial value is used.

MB90660A Series

■ INTERRUPT SOURCES, INTERRUPT VECTORS AND INTERRUPT CONTROL REGISTERS

Interrupt source	${ }^{12} \mathrm{OS}$ support	Interrupt vector			Interrupt control register	
				Address	ICR	Address
Reset	\times	\#08	08н	FFFFDCH	-	-
INT9 instruction	\times	\#09	09н	FFFFD8H	-	-
Exception	\times	\#10	0Ан	FFFFD4н	-	-
Multi-function timer DTTI input	\times	\#12	OCH	FFFFCCH	ICR00	0000B0н
External interrupt \#0	\bigcirc	\#13	ODH	FFFFC8H	ICR01	0000B1н
External interrupt \#4	\bigcirc	\#14	ОЕн	FFFFCC4		
Multi-function timer trigger input or zero detect	\bigcirc	\#15	OFH	FFFFCOH	ICR02	0000B2н
Multi-function timer zero detect	\bigcirc	\#17	11н	FFFFB8 ${ }_{\text {н }}$	ICR03	0000В3 ${ }^{\text {¢ }}$
Multi-function timer overflow, compare clear or zero detect	\bigcirc	\#19	13н	FFFFB0н	ICR04	0000B4н
External interrupt \#1	\bigcirc	\#21	15 H	FFFFA8 ${ }_{\text {H }}$	ICR05	0000B5
Multi-function timer compare match	\times	\#22	16н	FFFFA4 ${ }_{\text {H }}$		
External interrupt \#5	\bigcirc	\#23	17\%	FFFFA0н	ICR06	0000B6н
PWM underflow	\times	\#24	18H	FFFF9CH		
External interrupt \#2	\bigcirc	\#25	19н	FFFF98	ICR07	0000B7н
External interrupt \#6	\bigcirc	\#26	1 Ан $^{\text {¢ }}$	FFFF94		
16-bit reload timer \#0	\bigcirc	\#27	1Вн	FFFF90 ${ }_{\text {H }}$	ICR08	0000B8н
16-bit reload timer \#1	\bigcirc	\#28	1 CH	FFFF8C ${ }_{\text {¢ }}$		
16-bit reload timer \#2	\bigcirc	\#29	1訨	FFFF88	ICR09	0000B9н
16-bit reload timer \#3	\bigcirc	\#30	$1 \mathrm{E}_{\text {н }}$	FFFF84 ${ }_{\text {¢ }}$		
End of A/D converter conversion	\bigcirc	\#31	1FH	FFFF80 ${ }_{\text {H }}$	ICR10	0000ВАн
Timebase timer interval interrupt	\times	\#34	22н	FFFF74	ICR11	0000ВВн
UART send complete	\bigcirc	\#35	23н	FFFF70н	ICR12	0000 BCH
UART receive complete	(${ }^{\text {) }}$	\#37	25H	FFFF68	ICR13	0000 BD н
External interrupt \#3	\bigcirc	\#39	27H	FFFF60н	ICR14	0000ВЕн
External interrupt \#7	\bigcirc	\#40	28H	FFFF5CH		
Delayed interrupt generator module	\times	\#42	$2 \mathrm{~A}_{\text {н }}$	FFFF54	ICR15	0000BFH

: indicates that the interrupt request flag is cleared by the $I^{2} O S$ interrupt clear signal (no stop request).
© : indicates that the interrupt request flag is cleared by the $\mathrm{I}^{2} \mathrm{OS}$ interrupt clear signal (with stop request).
\times : indicates that the interrupt request flag is not cleared by the $\mathrm{I}^{2} \mathrm{OS}$ interrupt clear signal.
Note: Do not specify I I2OS activation in interrupt control registers that do not support I ${ }^{2}$ OS.

MB90660A Series

PERIPHERAL RESOURCES

1. Parallel Port

The MB90660A includes 39 I/O pins, 4 input pins, and 8 open-drain output pins.
Port 0, 1, 2, 3 and 6 are I/O ports. They are used for input when the corresponding direction register value is " 0 ", and for output when the value is " 1 ".

Port 5 is an open-drain port. It is used as a port when the analog input enable register is " 0 ".
Ports 40 to 43 are I/O ports. They are used for input when the corresponding direction register value is " 0 ", and for output when the value is " 1 ". Ports 44 to 47 are input ports which can only be used for reading data.

(1) Register Configuration

Port Data Register bit	15	14	413	12	11	10	9	8	
Address: PDR1 000001н									
PDR3 000003н	PD×7	PD×6	PD×5	PD×4	PD×3	$\mathrm{PD} \times 2$	$\mathrm{PD} \times 1$	PD $\times 0$	PDR1, 3
Read/Write \rightarrow Initial value \rightarrow	$\begin{aligned} & \text { (R/W) } \\ & \text { (X) } \end{aligned}$	$\begin{gathered} \text { (R/W) } \\ (X) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (X) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (\mathrm{X}) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (\mathrm{X}) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (\mathrm{X}) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (X) \end{gathered}$	$\begin{aligned} & \text { (R/W) } \\ & (X) \end{aligned}$	
Port Data Register bit	7	6	5	4	3	2	1	0	
Address: PDRO 000000									
: PDR2 000002 H	PD $\times 7$	PD×6	PD×5	PD×4	PD×3	PD×2	$\mathrm{PD} \times 1$	$\mathrm{PD} \times 0$	PDR0, 2,6
: PDR6 000006н (PDBR)									
Read/Write \rightarrow	(R/W)								
Initial value \rightarrow	(X)								
bit	15	14	13	12	11	10	9	8	
Address: 000005 H	PD57	PD56	PD55	PD54	PD53	PD52	PD51	PD50	PDR5
Read/Write \rightarrow	(R/W)								
Initial value \rightarrow	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	
bit	7	6	5	4	3	2	1	0	
Address: 000004	PD47	PD46	PD45	PD44	PD43	PD42	PD41	PD40	PDR4
Read/Write \rightarrow	(R)	(R)	(R)	(R)	(R/W)	(R/W)	(R/W)	(R/W)	
Initial value \rightarrow	(X)								

Notes: There are no register bits for bits 15 to 12 of Port 3.
There is no register bit for bit 7 of Port 6.
Bits 7 to 4 of Port 4 can only be used to read data.

MB90660A Series

Port Direction Register bit
Address: DDR1 000011н : DDR3 000013н

Read/Write \rightarrow Initial value \rightarrow

Port Direction Register
Address: DDRO 000010
: DDR2 000012н
: DDR4 000014н
: DDR6 000016н
Read/Write $\rightarrow \quad(\mathrm{R} / \mathrm{W})(\mathrm{R} / \mathrm{W})$
Initial value \rightarrow
(0) (0) (0) (0) (0) (0) (0) (0)

Notes: There are no register bits for bits 15 to 12 of Port 3.
There are not register bits for bits 7 to 4 of Port 4
There is no DDR for Port 5.
There is no register bit for bit 7 of Port 6.

Analog Input Enable Register
Address: 000015
Read/Write \rightarrow Initial value \rightarrow

15	14	13	12	11	10	9	8	
ADE7	ADE6	ADE5	ADE4	ADE3	ADE2	ADE1	ADE0	ADER
(R/W) (1)	(R/W) (1)	$(\mathrm{R} / \mathrm{W})$ (1)	(R/W) (1)	$\begin{gathered} \text { (R/W) } \\ (1) \end{gathered}$	$(\mathrm{R} / \mathrm{W})$ (1)	(R/W) (1)	$\begin{gathered} \text { (R/W) } \\ (1) \end{gathered}$	

MB90660A Series

(2) Block Diagrams

- I/O Ports

- Open-drain Ports (Also Used for Analog Input)

- Input Ports

MB90660A Series

2. Multi-function Timer

The multi-function timer controls up to 7 realtime output pins, and includes the following functions.

- Interval timer function It can output pulses or generate an interrupt at a fixed interval.
- PWM output function

Can perform output for a fixed cycle pulse while changing the duty ratio (ratio between " L " output width and " H " output width) in realtime.

- 3-phase AC sine wave output (inverter control output) function

Can perform 3-phase AC sine wave output using AC motor inverter control, etc. (using any setting for the nonoverlap interval)
This timer also has the following characteristics.

- Pulse cycle control using 14-bit timer

A machine cycle of $1,2,8$ or 16 can be selected based on pre-scalars as the clock source (Minimum resolution of 62.5 ns at 16 MHz operation).
Can use a carrier frequency up to 30 KHz at 8 -bit stop when used for AC motor control.
Up count only or up/down count can be selected using the count mode selection.
Possessing a buffer, cycle can be changed in realtime by transferring data from buffer upon zero detect.

- Duty control using compare registers

Possessing four compare registers, output pulse duty can be set for four separate channels.
Each possessing a separate buffer, duty can be changed in realtime by transferring data from buffer upon zero detect or comparison.

- Non-overlap control using dead time timer

Dead time timer can be used to generate PWM output for three channels or even reversed signals with nonoverlap, thus allowing an AC motor control wave ($\mathrm{U}, \mathrm{V}, \mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}$) to be generated.
A machine cycle of $1,4,8$ or 32 can be selected based on pre-scalars as the clock source for the dead timer (Minimum resolution of 62.5 ns at 16 MHz operation)

- Forced stop control using DTTI pin input

The forced pin output level can be fixed by DTTI pin input or software.
Inactive control can be performed during AC motor control using DTTI pin input.
External pin control even during vibration stop can be performed through clockless DTTI pin input.

- Event detection and interrupt generation using various flags

Flags can be set and/or interrupts generated upon zero detect, overflow, detect of match with compare registers, or clear by TRG pin input, or any match of the compare registers for the four channels for the 14-bit timer (also possible to disable interrupt output).
www.DataSheet4U.com

MB90660A Series

(1) Register Configuration

[^0]
MB90660A Series

(2) Block Diagrams

- Timer/wave generator block diagram

MB90660A Series

- Output selector/dead time generator block diagram

MB90660A Series

3. UART

The UART is a serial I/O port for asynchronous (start/stop) or CLK synchronous communications with external resources. It has the following characteristics:

- Full duplex double buffering
- Asynchronous (start/stop) or CLK synchronous communications
- Multiprocessor mode support
- Internal dedicated baud-rate generator
Asynchronous
: 19230/9615/31250/4808/2404/1202 bps
CLK synchronous : $2 \mathrm{M} / 1 \mathrm{M} / 500 \mathrm{~K} / 250 \mathrm{~K}$ bps
- Free baud-rate setting based on external clock
- Error detection functions (parity, framing and overrun)
- Use of NRZ coded transfer signal
- Supports intelligent I/O services

(1) Register Configuration

bit	15	14	13	12	11	10	9	8	
Address : 000025 ${ }^{\text {H }}$	PEN	P	SBL	CL	A/D	REC	RXE	TXE	(SCR)

bit	7	6	5	4	3	2	1	0	
Address : 000026н	D7	D6	D5	D4	D3	D2	D1	D0	Serial output register

bit $\begin{array}{lllllllll}15 & 14 & 13 & 12 & 11 & 10 & 9 & 8\end{array}$
Address: 00005FH

MB90660A Series

(2) Block Diagram

MB90660A Series

4. 10-bit, 8-channel A/D Converter (with 8-bit Resolution Mode)

This 10-bit, 8-channel A/D converter is used to convert analog input voltage to corresponding digital values. It has the following features.

- Conversion time: 6.13μ s per channel (includes sample and hold time at 98 machine cycles/machine clock of 16 MHz)
- Sample hold time: $3.75 \mu \mathrm{~s}$ per channel (60 machine cycles per machine clock of 16 MHz)
- RC-type sequential approximation conversion with sample and hold circuits
- 10-bit or 8-bit resolution
- Analog input can be selected from 8 channels

Single conversion mode : One channel selected for conversion
Scan conversion mode : Consecutive multiple channels converted (programmable with max. eight channels)
Repetitive conversion mode : Data on the specified channel is converted repeatedly
Stop conversion mode : Once one channel is converted, operations stop and the device waits until started again (conversion start can be synchronized)

- At the end of each A/D conversion, an interrupt request to the CPU can be generated. This interrupt can be used to activate $I^{2} O S$ or transfer A/D conversion results to memory, making it useful when continuous processing is desired.
- Conversion can be triggered by software, an external trigger (falling edge), and/or a timer (rising edge).
(1) Register Configuration

Initial value $\rightarrow \quad(0) \quad(0) \quad(0) \quad(0) \quad(0) \quad(0) \quad(0) \quad(0)$

A/D Data register (upper)
Address: 00002Fн
bit

Read/Write
Initial value \rightarrow
A/D Data register (lower)
Address: 00002Ен
Read/Write -
Initial value \rightarrow
bit

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | D7

MB90660A Series

(2) Block Diagram

MB90660A Series

5. PWM Timer

This block, which is an 8-bit reload timer module, outputs the pulse width modulation (PWM) using pulse output control corresponding to the timer operation.
In terms of hardware, this block possesses an 8-bit down counter, two 8-bit reload registers for setting " L " width and "H" width, a control register, external pulse output pin, and interrupt output circuit to achieve the following functions.

- PWM output operation : Pulse waves of any period and duty factor are output.

This block can also be used as a D/A converter with an external circuit. Interrupt requests can be output based on counter underflow.

(1) Register Configuration

(2) Block Diagram

MB90660A Series

6. 16-bit Reload Timer (with Event Count Function)

The 16-bit reload timer consists of a 16-bit down counter, a 16-bit reload register, control register, and 4 timer pins (I/O set by timer pin select register). Three internal clocks and an external clock can be selected as input clocks. A toggle output waveform is output at the output pin (TOT) in reload mode, while a square wave indicating that the timer is counting is output at the output pin in single-shot mode. The input pin (TIN) can be used for event input in even count mode, and for trigger input or gate input in internal clock mode.

This product has this timer built into four channels.

(1) Register Configuration

Control status register (upper)
Address: channel 0 000031
: channel 1000035_{H}
: channels 2000039 н
: channels 300003 D)

$$
\begin{array}{llllllll}
\text { Read/Write } \rightarrow & (-) & (-) & (-) & (-) & (R / W) & (R / W) & (R / W) \\
\text { Initial value } \rightarrow & (-) & (-) & (-) & (-) & (0) & (0) & (0)
\end{array}(0)
$$

16-bit timer register (upper) bit
$\begin{array}{llllllll}15 & 14 & 13 & 12 & 11 & 10 & 9 & 8\end{array}$ 16 -bit reload register (upper)
Address: channel 0 000033н : channel 1 000037 H
: channels 200003 BH
: channels 300003 FH Read/Write Initial value -

16-bit timer register (lower)
16-bit reload register (lower)
Address: channel 0 000032 H : channel 1000036 н : channels 200003 Ан : channels 300003 Ен

Read/Write Initial value
Control status register (lower)
Address: channel 0 000030н

$$
\text { : channel } 1000034
$$

: channels 2000038 H
: channels $300003 \mathrm{C}_{\boldsymbol{H}}$ Read/Write Initial value

Timer pin control register (upper)
Address: 000057H
Read/Write Initial value

$$
(R / W)(R / W)
$$

$$
\left(\begin{array}{llll}
(X) & (X) & (X) & (X) \\
(X) & (X) & (X)
\end{array}\right.
$$ $\begin{array}{lllllllll}\text { bit } & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0\end{array}$

bit	7	6	5	4	3	2	1	0
	-	OTE1	CSB1	CSA1	-	OTEO	CSBO	CSAO
\rightarrow	(-)	(R/W)	(R/W)	(R/W)	(-)	(R/W)	(R/W)	(R/W)
\rightarrow	(-)	(0)	(0)	(1)	(-)	(0)	(0)	(0)

(-) (0)
(0)
(1)
(-)
(0)
(0)
TPCR

Timer pin control register (lower)
Address: 000056H
Read/Write \rightarrow Initial value \rightarrow

MB90660A Series

(2) Block Diagram

*: Timer channel and direction (I/O) can be selected for each pin.

MB90660A Series

7. External Interrupts

In addition to " H " and " L ", rising and falling edge can be selected as the external interrupt level for a total of four interrupt level types.

(1) Register Configuration

Interrupt enable register Address: 000028н

bit	7	6	5	4	3	2	1	0

Read/Write -

| EN7 | EN6 | EN5 | EN4 | EN3 | EN2 | EN1 | EN0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Initial value (0)

(0)
(0)
(0)
(0)
(0)
(0) (0)
bit
Interrupt source register
Address: 000029н

15	14	13	12	11	10	9	8	
ER7	ER6	ER5	ER4	ER3	ER2	ER1	ER0	EIRR
$\begin{gathered} \text { (R/W) } \\ (0) \end{gathered}$	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (0) \end{gathered}$	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (0) \end{gathered}$	(R/W) (0)	$\begin{gathered} \text { (R/W) } \\ (0) \end{gathered}$	$\begin{gathered} (R / W) \\ (0) \end{gathered}$	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (0) \end{gathered}$	(R / W) (0)	

bit $\begin{array}{lllllllll}15 & 14 & 13 & 12 & 11 & 10 & 9 & 8\end{array}$
Request level setting register (upper)
Address: 00002Вн

LB7	LA7	LB6	LA6	LB5	LA5	LB4	LA4

(0) (0)
(0) (0)
(0)
(0) (0)
(0)

Read/Write \rightarrow

bit	7	6	5	4	3	2	1	0	ELVR
Address: 00002Ан	LB3	LA3	LB2	LA2	LB1	LA1	LB0	LAO	
Read/Write \rightarrow Initial value \rightarrow	$\begin{gathered} (R / W) \\ (0) \end{gathered}$	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (0) \end{gathered}$	(R/W) (0)	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (0) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (0) \end{gathered}$	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (0) \end{gathered}$	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (0) \end{gathered}$	(R/W) (0)	

(2) Block Diagram

MB90660A Series

8. Delayed Interrupt Generation Module

The delayed interrupt generation module is used to generate an interrupt for task switching. If this module is used, an interrupt request to the $\mathrm{F}^{2} \mathrm{MC}$-16L CPU can be generated or cancelled by software.
(1) Register Configuration

> Delayed interrupt request generation/cancel register Address: 000009н

Read/Write \rightarrow
Initial value \rightarrow

The DIRR register controls the generation and cancellation of delayed interrupt requests. A delayed interrupt request is generated when " 1 " is written to this register, while a delayed interrupt request is cancelled when " 0 " is written here. Request cancel status results upon reset. Although either " 0 " or " 1 " may be written into reserved bits, we recommend using the set bit and clear bit instructions when accessing this register in consideration of possible future extensions.

(2) Block Diagram

MB90660A Series

9. Watchdog Timer and Timebase Timer Functions

The watchdog timer consists of a 2-bit watchdog counter using carry signals from the 18-bit timebase timer as the clock source, a control register, and a watchdog reset controller.
In addition to an 18-bit timer, the timebase timer consists of a circuit for controlling interval interrupts. Note that the timebase timer uses the main clock regardless of the status of the MCS bit within the CKSCR register.
(1) Register Configuration

Watchdog timer bit	7	6	5	4	3	2	1	0	WDTC
control register	PONR	-	WRST	ERST	SRST	WTE	WT1	WTO	
Read/Write \rightarrow	(R)	$(-)$	(R)	(R)	(R)	(W)	(W)	(W)	
Initial value \rightarrow	(X)	(-)	(X)	(X)	(X)	(1)	(1)	(1)	
Timebase timer bit	15	14	13	12	11	10	9	8	
control register Address: 0000А9н	Reserved	-	-	TBIE	TBOF	TBR	TBC1	TBCO	TBTC
Read/Write \rightarrow	(-)	(-)	(-)	(R/W)	(R/W)	(W)	(R/W)	(R/W)	
Initial value \rightarrow	(1)	(-)	(-)	(0)	(0)	(1)	(0)	(0)	

(2) Block Diagram

MB90660A Series

10. Low Power Consumption Controller (CPU intermittent operation function, stable oscillation wait time, and clock multiplier function)

The following operation modes are available: PLL clock mode, PLL sleep mode, clock mode, main clock mode, main sleep mode and stop mode. Operation modes other than PLL clock mode are classified as low power consumption modes.

Main clock mode and main sleep mode are modes where the microcontroller operates using the main clock (OSC oscillation clock) only. In these modes, the main clock divided by two is used as the operation clock and the PLL clock (VCO oscillation clock) is stopped.

In PLL sleep mode and main sleep mode, only the operation clock of the CPU is stopped, while operations besides the CPU clock continue.

In clock mode, only the timebase timer is allowed to operate.
In stop mode, oscillation is stopped, allowing data to be held at the lowest power consumption possible.
The CPU intermittent operation function causes the clock provided to the CPU to function intermittently when accessing registers, internal memory, internal resources and the external bus. This allows processing to be performed at lower power consumption by reducing the CPU execution speed while continuing to provide a high speed clock to internal resources.

The PLL clock multiplier can be selected as 1, 2, 3 or 4 using the CS1 and CS0 bits.
The stable oscillation wait time for the main clock when stop mode is cancelled can be set using the WS1 and WSO bits.

(1) Register Configuration

Low power consumption mode bit	7	6	5	4	3	2	1	0	LPMCR
control register Address: 0000A0	STP	SLP	SPL	RST	Reserved	CG1	CG0	Reserved	
Read/Write \rightarrow	(W)	(W)	(R/W)	(W)	(-)	(R/W)	(R/W)	(-)	
Initial value \rightarrow	(0)	(0)	(0)	(1)	(1)	(0)	(0)	(0)	
bit	15	14	13	12	11	10	9	8	
Address: 0000A1	Reserved	MCM	WS1	WSO	Reserved	MCS	CS1	CSO	CKSCR
Read/Write Initial value -	$\begin{aligned} & (-) \\ & (1) \end{aligned}$	$\begin{aligned} & (\mathrm{R}) \\ & (1) \end{aligned}$	$(\mathrm{R} / \mathrm{W})$ (1)	(R / W) (1)	$\begin{aligned} & (-) \\ & (1) \end{aligned}$	(R/W) (1)	$\begin{gathered} \text { (R/W) } \\ (0) \end{gathered}$	$\begin{gathered} (R / W) \\ (0) \end{gathered}$	

[^1]
MB90660A Series

(2) Block Diagram

MB90660A Series

11. Interrupt Controller

The interrupt control register is located within the interrupt controller. Its status conforms to all I/O possessed by the interrupt function. This register includes the following three functions.

- Sets the interrupt level of the corresponding peripheral resource
- Selects whether to use conventional interrupts or extended intelligent I/O services for the interrupt of the corresponding peripheral resource
- Selects the channel for the extended intelligent I/O services

(1) Register Configuration

Note: Since read-modify-write type instructions can cause a malfunction, do not access using these instructions.

MB90660A Series

(2) Block Diagram

MB90660A Series

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Rating

Parameter	Symbol	Value		Unit	Remarks
		Min.	Max.		
Power supply voltage	Vcc	Vss -0.3	Vss +7.0	V	
	AVcc* ${ }^{\text {* }}$	Vss -0.3	Vss +7.0	V	
	$\mathrm{VavR}^{* 1}$	Vss - 0.3	Vss +7.0	V	
Programming voltage	$V_{\text {PP }}$	Vss - 0.3	13.0	V	*6
Input voltage*2	VI	Vss -0.3	$\mathrm{Vcc}+0.3$	V	
Output voltage*2	Vo	Vss - 0.3	V cc +0.3	V	
"L" level maximum current**	loL1	-	10	mA	*7
	loL2	-	30	mA	*8
"L" level average output current*4	loavi	-	4	mA	*7
	lolav2	-	20	mA	* 8
"L" level total average output current*5	${ }^{2}$ lolav1	-	30	mA	*7
	${ }^{2}$ lolav2	-	60	mA	*8
"H" level maximum output current*3	Іон	-	-10	mA	
" H " level average output current* ${ }^{\text {* }}$	Iohav	-	-4	mA	
"H" level total average output current*5	${ }^{2}$ lohav	-	-40	mA	
Power consumption	Pd	-	400	mW	
Operating temperature	T_{A}	-40	+85	${ }^{\circ} \mathrm{C}$	
Storage temperature	$\mathrm{T}_{\text {stg }}$	-55	+150	${ }^{\circ} \mathrm{C}$	

*1: AVcc and $\mathrm{V}_{\text {avr }}$ must not exceed V cc.
*2: V_{I} and V o must not exceed $\mathrm{Vcc}+0.3 \mathrm{~V}$.
*3: Maximum output current specifies the peak value of one corresponding pin.
*4: Average output current specifies the average current within a 100 ms interval flowing through one corresponding pin.
*5: Average total output current specifies the average current within a 100 ms interval flowing through all corresponding pins.
*6: MD2 pin of MB90P663A
*7: Pins excluding P60/RT1/U, P61/RT2/V, P62/RT3/W, P63/X, P64/Y and P65/Z pins
*8: P60/RT1/U, P61/RT2/V, P62/RT3/W, P63/X, P64/Y and P65/Z pins
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.
www.DataSheet4U.com

MB90660A Series

2. Recommended Operating Conditions

$(\mathrm{Vss}=\mathrm{AV} \mathrm{ss}=0.0 \mathrm{~V})$

Parameter	Symbol	Ratings		Unit	Remarks
		Min.	Max.		
Power supply voltage	V_{cc}	2.7	5.5	V	During normal operation
	V_{cc}	2.0	5.5		Stop operation status is held
Operating temperature	T_{A}	-40	+85	${ }^{\circ} \mathrm{C}$	

WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.
Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representative beforehand.

MB90660A Series

3. DC Characteristics

Parameter	Symbol	Pin name	Conditions	Value			Unit	Remarks
				Min.	Typ.	Max.		
"H" level output voltage	Voн	Except P50 to P57	$\begin{aligned} & \mathrm{V} \mathrm{cc}=4.5 \mathrm{~V} \\ & \mathrm{loH}=-4.0 \mathrm{~mA} \end{aligned}$	$\mathrm{Vcc}-0.5$	-	-	V	
			$\begin{aligned} & \mathrm{V} \mathrm{cc}=2.7 \mathrm{~V} \\ & \mathrm{loH}=-1.6 \mathrm{~mA} \end{aligned}$	$\mathrm{Vcc}-0.3$	-	-	V	
"L" level output voltage	Vol1	Except P60 to P65	$\begin{aligned} & \mathrm{V} \mathrm{cc}=4.5 \mathrm{~V} \\ & \mathrm{loL}=4.0 \mathrm{~mA} \end{aligned}$	-	-	0.4	V	
			$\begin{aligned} & \mathrm{V} \mathrm{cc}=2.7 \mathrm{~V} \\ & \mathrm{loL}=2.0 \mathrm{~mA} \end{aligned}$	-	-	0.4	V	
	Vol2	P60 to P65	$\begin{aligned} & \mathrm{V} \mathrm{cc}=4.5 \mathrm{~V} \\ & \mathrm{loL}=15.0 \mathrm{~mA} \end{aligned}$	-	-	1.0	V	
			$\begin{aligned} & \mathrm{Vcc}=2.7 \mathrm{~V} \\ & \mathrm{loL}=2.0 \mathrm{~mA} \end{aligned}$	-	-	0.4	V	
" H " level input voltage	VIH	Pins except VIHs, Vінм	-	0.7 Vcc	-	$\mathrm{vcc}+0.3$	V	
	V ${ }_{\text {HS }}$	Hysteresis input pins	-	0.8 Vcc	-	VCC +0.3	V	*
	Vінм	MD pin	-	vcc -0.3	-	VCC +0.3	V	
"L" level input voltage	VIL	Pins except Vııs, VILM	-	vss -0.3	-	0.3 Vcc	V	
	VILs	Hysteresis input pins	-	vss -0.3	-	0.2 Vcc	V	*
	VILM	MD pin	-	vss -0.3	-	vss +0.3	V	
Input leakage current	IIL	Except P50 to P57	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{ss}}<\mathrm{V}_{1}<\mathrm{V}_{\mathrm{cc}} \end{aligned}$	-10	-	10	$\mu \mathrm{A}$	
Pull-up resistor	Rpup	Pins for which pull-up option is selected	When $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$	25	-	100	$\mathrm{k} \Omega$	
			When $\mathrm{Vcc}=3.0 \mathrm{~V}$	40	-	200	$\mathrm{k} \Omega$	
Pull-down resister	Rppn	Pins for which pull-down options selected	When Vcc $=5.0 \mathrm{~V}$	25	80	200	$\mathrm{k} \Omega$	
			When Vcc $=3.0 \mathrm{~V}$	40	160	400	$\mathrm{k} \Omega$	
Supply current	Icc	When $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$	Internal 16 MHz operation	-	50	70	mA	During normal operation
	Iccs		Internal 16 MHz operation	-	25	30	mA	During sleep
	Icc	When $\mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}$	Internal 8 MHz operation	-	10	20	mA	During normal operation
	Iccs		Internal 8 MHz operation	-	5	10	mA	During sleep
	ІсСН	-	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	0.1	10	$\mu \mathrm{A}$	During stop
Input capacitance	Cin	Except AVcc, $\mathrm{AV}_{\mathrm{ss}}, \mathrm{Vcc}$ and V_{ss}	-	-	10	-	pF	
Open-drain output leakage current	lieak	P50 to P57	-	-	0.1	10	$\mu \mathrm{A}$	N channel Tr off

* : Applies to pins P40 to P47, P50 to P57, P60 to P66, DTTI and $\overline{\text { RST. }}$

MB90660A Series

4. AC Characteristics

(1) Clock Timing Values

- Used at $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm 10 \%$

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min.	Max.		
Oscillation frequency	Fc	X0, X1	-	3	32	MHz	
Oscillation cycle time	tc	X0, X1	-	31.25	333	ns	
Frequency fluctuation ratio* (when locked)	ýf	-	-	-	3	\%	
Input clock pulse width	$\begin{aligned} & \text { Pwh } \\ & \text { PwL } \end{aligned}$	X0	-	10	-	ns	Use duty ratio of 30% to 70% as guideline
Input clock rising and falling times	$\begin{array}{\|l\|l} \hline \text { tor } \\ \text { tof } \end{array}$	X0	-	-	5	ns	
Internal operating clock frequency	fcp	-	-	1.5	16	MHz	
Internal operating clock cycle time	tcp	-	-	62.5	666	ns	

*: The frequency fluctuation ratio represents the maximum fluctuation from the central frequency as a percentage when a multiplier is locked.
\square

- Used at $\mathrm{V} c \mathrm{c}=2.7 \mathrm{~V}$ (minimum)

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min.	Max.		
Oscillation frequency	Fc	$\mathrm{X0}, \mathrm{X} 1$	-	3	16	MHz	
Oscillation cycle time	tc	X0, X1	-	62.5	333	ns	
Input clock pulse width	$\begin{aligned} & \text { Pwh } \\ & \mathrm{P}_{\mathrm{wL}} \end{aligned}$	X0	-	20	-	ns	Use duty ratio of 30% to 70% as guideline
Input clock rising and falling times	$\begin{aligned} & \text { tor } \\ & \mathrm{tor}_{\mathrm{tof}} \end{aligned}$	X0	-	-	5	ns	
Internal operating clock frequency	fcp	-	-	1.5	8	MHz	
Internal operating clock cycle time	tcp	-	-	125	666	ns	

MB90660A Series

(2) Recommended Resonator Manufacturers

- Sample Application of Piezoelectric Resonator (FAR Family)

FAR part number (built-in capacitor type)	Frequency (MHz)	Dumping resistor	Initial deviation of FAR frequency ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$)	Temperature characteristics of FAR frequency ($\mathrm{T}_{\mathrm{A}}=-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$)	Loading*2 capacitors
FAR-C4CC-02000-L20	2.00	510Ω	$\pm 0.5 \%$	$\pm 0.5 \%$	Built-in
FAR-C4SA-04000-M01	4.00	-	$\pm 0.5 \%$	$\pm 0.5 \%$	
FAR-C4CB-04000-M00		-	$\pm 0.5 \%$	$\pm 0.5 \%$	
FAR-C4CB-08000-M02	8.00	-	$\pm 0.5 \%$	$\pm 0.5 \%$	
FAR-C4CB-12000-M02	12.00	-	$\pm 0.5 \%$	$\pm 0.5 \%$	
FAR-C4CB-16000-M02	16.00	-	$\pm 0.5 \%$	$\pm 0.5 \%$	
FAR-C4CB-20000-L14B	19.80	-	$\pm 0.5 \%$	$\pm 0.5 \%$	
FAR-C4CB-24000-L14A	23.76	-	$\pm 0.5 \%$	$\pm 0.5 \%$	

Inquiry: FUJITSU LIMITED

MB90660A Series

- Sample Application of Ceramic Resonator

- Mask Products

Resonator manufacturer*	Resonator	Frequency (MHz)	C1 (pF)	C2 (pF)	R
Kyocera Corporation	KBR-2.0MS	2.00	150	150	-
	PBRC2.00A		150	150	-
	KBR-4.0MSA	4.00	33	33	680Ω
			Built-in	Built-in	680Ω
	PBRC4.00A		33	33	680Ω
	PBRC4.00B		Built-in	Built-in	680Ω
	KBR-6.0MSA	6.00	33	33	-
			Built-in	Built-in	-
	PBRC6.00A		33	33	-
	P'BRC6.00B		Built-in	Built-in	-
	KBR-8.0M	8.00	33	33	560Ω
	PBRC8.00A	8.00	33	33	-
	PBRC8.00B		Built-in	Built-in	-
	KBR-10.0M	10.00	33	33	330Ω
	PBRC10.00B		Built-in	Built-in	680Ω
	KBR-12.0M	12.00	33	33	330Ω
	PBRC12.00B		Built-in	Built-in	680Ω
(Continued)					

MB90660A Series

(Continued)

Resonator manufacturer*	Resonator	Frequency (MHz)	C1 (pF)	C2 (pF)	R
Murata Mfg. Co., Ltd.	CSA2.00MG040	2.00	100	100	-
	CST2.00MG040		Built-in	Built-in	-
	CSA4.00MG040	4.00	100	100	-
	CST4.00MGW040		Built-in	Built-in	-
	CSA6.00MG	6.00	30	30	-
	CST6.00MGW		Built-in	Built-in	-
	CSA8.00MTZ	8.00	30	30	-
	CST8.00MTW		Built-in	Built-in	-
	CSA10.00MTZ	10.00	30	30	-
	CST10.00MTW		Built-in	Built-in	-
	CSA12.00MTZ	12.00	30	30	-
	CST12.00MTW		Built-in	Built-in	-
	CSA16.00MXZ040	16.00	15	15	-
	CST16.00MXW0C3		Built-in	Built-in	-
	CSA20.00MXZ040	20.00	10	10	-
	CSA24.00MXZ040	24.00	5	5	-
	CSA32.00MXZ040	32.00	5	5	-

Inquiry: Kyocera Corporation

- AVX Corporation

North American Sales Headquarters: TEL 1-803-448-9411

- AVX Limited European Sales Headquarters: TEL 44-1252-770000
- AVX/Kyocera H.K. Ltd.

Asian Sales Headquarters: TEL 852-363-3303
Murata Mfg. Co., Ltd.

- Murata Electronics North America, Inc.: TEL 1-404-436-1300
- Murata Europe Management GmbH: TEL 49-911-66870
- Murata Electronics Singapore (Pte.) Ltd.: TEL 65-758-4233

MB90660A Series

- Clock Timing

- PLL Operation Warranty Range

Relationship between oscillator frequency and internal operating clock frequency

Note: Even in the case of evaluation tool, operation is assured down to 2.7 V .

AC specification values are specified for the measured reference voltages given below.

- Input Signal Waveforms

Hysteresis input pin

- Output Signal Waveforms

Output pin

Pins except hysteresis input and MD input
0.7 Vcc
0.3 Vcc

MB90660A Series

(3) Reset Input Specifications

$\left(\mathrm{V}_{\mathrm{cc}}=+2.7 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min.	Max.		
Reset input time	trstL	$\overline{\mathrm{RST}}$	-	16	-	Machine cycle	

(4) Power-On Reset

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min.	Max.		
Power supply rise time	tR	Vcc	-	-	30	ms	*
Power supply cutoff time	toff	Voc		1	-	ms	Due to repeated operations

* V cc should be lower than 0.2 V before power supply rise.

Notes: - The above specifications are the numeric values needed for causing a power-on reset.

- There are built in resisters initialized only by power on reset in the device.

Turn on power supply according to the specification at the point of this initialization.

An abrupt change in the supply voltage may activate power-on reset. If the supply voltage must be changed during operation, the voltage change should be smooth without sudden fluctuations.

MB90660A Series

(5) UART timing
$\left(\mathrm{Vcc}=+2.7 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pinname	Conditions	Value		Unit	Remarks
				Min.	Max.		
Serial clock cycle time	tscyc	SCK	-	8 tcp	-	ns	$\mathrm{CL}=80 \mathrm{pF}+1 \mathrm{TTL}$ for internal clock operation output pin
SCK $\downarrow \rightarrow$ SOT delay time	tsıov	$\begin{aligned} & \text { SCK } \\ & \text { SOT } \end{aligned}$	$\mathrm{V} \mathrm{cc}=5.0 \mathrm{~V} \pm 10 \%$	-80	80	ns	
			$\mathrm{Vcc}=3.0 \mathrm{~V} \pm 10 \%$	-120	120	ns	
Valid SIN \rightarrow SCK \uparrow	tivsh	$\begin{aligned} & \text { SCK } \\ & \text { SIN } \end{aligned}$	V cc $=5.0 \mathrm{~V} \pm 10 \%$	100	-	ns	
			$\mathrm{V} \mathrm{cc}=3.0 \mathrm{~V} \pm 10 \%$	200	-	ns	
SCK $\uparrow \rightarrow$ valid SIN hold time	tshix	$\begin{aligned} & \text { SCK } \\ & \text { SIN } \end{aligned}$	V cc $=5.0 \mathrm{~V} \pm 10 \%$	60	-	ns	
			V cc $=3.0 \mathrm{~V} \pm 10 \%$	120	-	ns	
Serial clock H pulse width	tshsL	SCK	-	4 tcp	-	ns	$\mathrm{CL}=80 \mathrm{pF}+1 \mathrm{TTL}$ for external clock operation output pin
Serial clock L pulse width	tsısh	SCK	-	4 tcp	-	ns	
SCK $\downarrow \rightarrow$ SOT delay time	tstov	$\begin{aligned} & \text { SCK } \\ & \text { SOT } \end{aligned}$	$\mathrm{V} \mathrm{cc}=5.0 \mathrm{~V} \pm 10 \%$	-	150	ns	
			V cc $=3.0 \mathrm{~V} \pm 10 \%$	-	200	ns	
Valid SIN \rightarrow SCK \uparrow	tivs	$\begin{aligned} & \text { SCK } \\ & \text { SIN } \end{aligned}$	$\mathrm{V} \mathrm{cc}=5.0 \mathrm{~V} \pm 10 \%$	60	-	ns	
			V cc $=3.0 \mathrm{~V} \pm 10 \%$	120	-	ns	
SCK $\uparrow \rightarrow$ valid SIN hold time	tshix	$\begin{aligned} & \text { SCK } \\ & \text { SIN } \end{aligned}$	$\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%$	60	-	ns	
			$\mathrm{V} \mathrm{cc}=3.0 \mathrm{~V} \pm 10 \%$	120	-	ns	

Notes: - These are AC specification during CLK synchronous mode.

- C_{L} is the load capacity value assigned to the pin during testing.
- tcp is the machine cycle time (unit: ns).

MB90660A Series

- Internal Shift Clock Mode

- External Shift Clock Mode

SCK

SOT

SIN

MB90660A Series

(6) Timer input timing
$\left(\mathrm{Vcc}=+2.7 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V} s=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min.	Max.		
Input pulse width	tтiwh ttiwn	TIM0 to TIM3	-	4 tcp	-	ns	

(7) Trigger input timing

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min.	Max.		
Input pulse width	ttrgh ttrgl	$\overline{\text { ATG, DTTI, TRG, }}$ INT4 to INT7	-	5 tcp	-	ns	
		$\overline{\text { ATG, }}$, DTTI, TRG, INTO to INT3		5 tcp	-	ns	

- INT4 to INT7

- INTO to INT3

MB90660A Series

5. Electrical Characteristics of A/D Converter

Parameter	Symbol	Pin name	Value			Unit
			Min.	Typ.	Max.	
Resolution	-	-	-	10	10	bit
Total error	-	-	-	-	± 3.0	LSB
Linearity error	-	-	-	-	± 2.0	LSB
Differential linearity error	-	-	-	-	± 1.5	LSB
Zero transition voltage	Vot	AN0 to AN7	-1.5	+0.5	+2.5	LSB
Full-scale transition voltage	$V_{\text {FST }}$	AN0 to AN7	AVR - 4.5	AVR - 1.5	AVR + 0.5	LSB
Conversion time	-	-	6.125^{*}	-	-	$\mu \mathrm{s}$
			$12.25{ }^{\text {2 }}$	-	-	$\mu \mathrm{s}$
Analog port input voltage	Iain	AN0 to AN7	-	0.1	10	$\mu \mathrm{A}$
Analog input voltage	$V_{\text {AIN }}$	AN0 to AN7	0	-	AVR	V
Reference voltage	-	AVR	3.5	-	AVcc	V
Supply current	IA	AV ${ }_{\text {cc }}$	-	3	-	mA
	IAH	AVcc	-	-	5^{*}	$\mu \mathrm{A}$
Reference voltage supply current	Ir	AVR	-	200	-	$\mu \mathrm{A}$
	IRH	AVR	-	-	$5^{* 3}$	$\mu \mathrm{A}$
Variation between channels	-	AN0 to AN7	-	-	4	LSB

*1: $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm 10 \%$ at 16 MHz machine clock
*2: $\mathrm{V} \mathrm{cc}=3.0 \mathrm{~V} \pm 10 \%$ at 8 MHz machine clock
*3: Current when CPU is stopped and A / D converter is not operating (when $\mathrm{V}_{\mathrm{cc}}=\mathrm{AVcc}=\mathrm{AVR}=5.0 \mathrm{~V}$)
Notes: - The relative error becomes larger as the reference voltage (AVR) becomes smaller.

- Be sure to use the A/D converter only when output impedance of the external analog input circuit meets the following conditions.

External circuit output impedance < approx. $7 \mathrm{k} \Omega$

- If the output impedance of the external circuit is too high, there may not be enough time to sample the analog voltage. (Sampling time $=3.75 \mu \mathrm{~s} @ 4 \mathrm{MHz}$ (equivalent to internal 16 MHz when multiplying by 4))
- For an external capacitor to be provided outside the chip, its capacity should desirably be thousands times larger than of the capacity in the chip taking in consideration the influence of the capacity destribution of the external and internal capacitors.

- Figure Model of Analog Input Circuit

Note: Use the values shown here as guidelines.

MB90660A Series

6. Definitions of A/D Converter Terms

Resolution : Analog transition observed with an A/D converter. Analog voltage can be divided in $1024=2^{10}$ parts at 10-bit resolution.
Total error : This refers to the difference between actual and logical values. This error is caused by offset errors, gain errors, non-linearity errors and noise.
Linearity error
: Deviation of the line drawn between the zero transition point (00 $00000000 \leftrightarrow$ 000000 0001) and the full-scale transition point (11 1111 $1110 \leftrightarrow 111111$ 1111) for the device from actual conversion characteristics.

Differential linearity error : Deviation from ideal input voltage required to shift output code by one LSB.

www.DataSheet4U.com

MB90660A Series

EXAMPLES CHARACTERISTICS

(1) "H" Level Output Voltage

(3) "L" Level Output Voltage (P60 to P65)

(2) "L" Level Output Voltage

(4) "H" Level Input Voltage/"L" Level Input Voltage
(5) "H" Level Input VoItage/"L" Level Input Voltage

MB90660A Series

(6) Power Supply Current ($f_{c p}=$ Internal frequency)

(7) Pull-up Resistor

MB90660A Series

INSTRUCTIONS (340 INSTRUCTIONS)

Table 1 Explanation of Items in Tables of Instructions

Item	Meaning
Mnemonic	Upper-case letters and symbols: Represented as they appear in assembler. Lower-case letters: Numbers after lower-case letters: Indicate when described in assembler.
$\#$	Indicates the number of bytes.

MB90660A Series

Table 2 Explanation of Symbols in Tables of Instructions

Symbol	Meaning
A	32-bit accumulator The bit length varies according to the instruction. Byte : Lower 8 bits of AL Word : 16 bits of AL Long : 32 bits of AL:AH
$\begin{aligned} & \mathrm{AH} \\ & \mathrm{AL} \end{aligned}$	Upper 16 bits of A Lower 16 bits of A
SP	Stack pointer (USP or SSP)
PC	Program counter
PCB	Program bank register
DTB	Data bank register
ADB	Additional data bank register
SSB	System stack bank register
USB	User stack bank register
SPB	Current stack bank register (SSB or USB)
DPR	Direct page register
brg1	DTB, ADB, SSB, USB, DPR, PCB, SPB
brg2	DTB, ADB, SSB, USB, DPR, SPB
Ri	R0, R1, R2, R3, R4, R5, R6, R7
RWi	RW0, RW1, RW2, RW3, RW4, RW5, RW6, RW7
RWj	RW0, RW1, RW2, RW3
RLi	RLO, RL1, RL2, RL3
dir	Compact direct addressing
addr16 addr24 ad24 0 to 15 ad24 16 to 23	Direct addressing Physical direct addressing Bit 0 to bit 15 of addr24 Bit 16 to bit 23 of addr24
io	I/O area (000000н to 0000FFr)
imm4 imm8 imm16 imm32 ext (imm8)	4-bit immediate data 8-bit immediate data 16-bit immediate data 32-bit immediate data 16-bit data signed and extended from 8-bit immediate data
$\begin{gathered} \text { disp8 } \\ \text { disp16 } \end{gathered}$	8 -bit displacement 16-bit displacement
bp	Bit offset
$\begin{aligned} & \text { vct4 } \\ & \text { vct8 } \end{aligned}$	Vector number (0 to 15) Vector number (0 to 255)
()b	Bit address

(Continued)

MB90660A Series

(Continued)

Symbol	
rel	Branch specification relative to PC
ear eam	Effective addressing (codes 00 to 07) Effective addressing (codes 08 to 1F)
rlst	Register list

Table 3 Effective Address Fields

Code	Notation			Address format	Number of bytes in address extension *
00	R0	RW0	RLO	Register direct	
01	R1	RW1	(RLO)		
02	R2	RW2	RL1	"ea" corresponds to byte, word, and	
03	R3	RW3	(RL1)	long-word types, starting from the	
04	R4	RW4	RL2		-
05	R5	RW5	(RL2)		
06	R6	RW6	RL3		
07	R7	RW7	(RL3)		
08	@RW0 @RW1 @RW2 @RW3			Register indirect	
09					0
0A					0
0B					
OC	@RW0 + @RW1 + @RW2 + @RW3 +			Register indirect with post-increment	
0D					0
OE					
OF					
10	@RW0 + disp8			Register indirect with 8-bit	
11	@RW1 + disp8			displacement	
12	@RW2 + disp8				
13	@RW3 + disp8				1
14	@RW4 + disp8				1
15	@RW5 + disp8				
16	@RW6 + disp8 @RW7 + disp8				
17					
18	@RW0 + disp16			Register indirect with 16-bit	
19	@RW1 + disp16			displacement	2
1A	@RW2 + disp16 @RW3 + disp16				2
1B					
	@RW0 + RW7			Register indirect with index	0
1D	@RW1 + RW7			Register indirect with index	0
1E	@PC + disp16addr16			PC indirect with 16-bit displacement	2
1F				Direct address	2

Note: The number of bytes in the address extension is indicated by the " + " symbol in the " $\#$ " (number of bytes) column in the tables of instructions.

MB90660A Series

Table 4 Number of Execution Cycles for Each Type of Addressing

Code	Operand	(a)	Number of register accesses for each type of addressing
		Number of execution cycles for each type of addressing	
00 to 07	Ri RWi RLi	Listed in tables of instructions	Listed in tables of instructions
08 to 0B	@RWj	2	1
0 C to 0 F	@RWj +	4	2
10 to 17	@RWi + disp8	2	1
18 to 1B	@RWj + disp16	2	1
$\begin{aligned} & 1 \mathrm{C} \\ & 1 \mathrm{D} \\ & 1 \mathrm{E} \\ & 1 \mathrm{~F} \end{aligned}$	$\begin{aligned} & @ R W 0+\text { RW7 } \\ & @ R W 1+\text { RW7 } \\ & @ \mathrm{PC}+\operatorname{disp} 16 \\ & \text { addr16 } \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \\ & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 0 \\ & 0 \end{aligned}$

Note: "(a)" is used in the " \sim " (number of states) column and column B (correction value) in the tables of instructions.
Table 5 Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles

Operand	(b) byte		(c) word		(d) long	
	Number of cycles	Number of access	Number of cycles	Number of access	Number of cycles	Number of access
Internal register	+0	1	+0	1	+0	2
Internal memory even address	+0	1	+0	1	+0	2
Internal memory odd address	+0	1	+2	2	+4	4
Even address on external data bus (16 bits)	+1	1	+1	1	+2	2
Odd address on external data bus (16 bits)	+1	1	+4	2	+8	4
External data bus (8 bits)	+1	1	+4	2	+8	4

Notes: • "(b)", "(c)", and "(d)" are used in the "~" (number of states) column and column B (correction value) in the tables of instructions.

- When the external data bus is used, it is necessary to add in the number of wait cycles used for ready input and automatic ready.

Table 6 Correction Values for Number of Cycles Used to Calculate Number of Program Fetch Cycles

Instruction	Byte boundary	Word boundary
Internal memory	-	+2
External data bus (16 bits)	-	+3
External data bus (8 bits)	+3	-

Notes: - When the external data bus is used, it is necessary to add in the number of wait cycles used for ready input and automatic ready.

- Because instruction execution is not slowed down by all program fetches in actuality, these correction values should be used for "worst case" calculations.

MB90660A Series

Table 7 Transfer Instructions (Byte) [41 Instructions]

	Mnemonic	\#	~	RG	B	Operation	LH	AH	I	S	T	N	Z	V	C	RMW
MOV	A, dir	2	3	0	(b)	byte (A) \leftarrow (dir)	Z		-	-	-			-	-	
MOV	A, addr16	3	4	0	(b)	byte (A) \leftarrow (addr16)	Z	*	-	-	-	*	*	-	-	
MOV	A, Ri	1	2	1	0	byte (A) \leftarrow (Ri)	Z	*	-	-	-	*	*	-	-	
MOV	A, ear	2	${ }^{2}$	1	0	byte (A) \leftarrow (ear)	Z	*	-	-	-	*	*	-	-	-
MOV MOV	A, eam	$2+$ 2	$3+$ (a) 3	0 0	(b)	byte (A) byte $($ A $)$ ((io)	Z	*	-	-	-	*	*	-	-	-
MOV	A, \#imm 8	2	2	0	(0	byte (A) \leftarrow imm 8	Z	*	-	-	-	*	*	-	-	-
MOV	A, @A	2	3	0	(b)	byte (A) $\leftarrow((\mathrm{A})$)	Z	-	-	-	-	*	*	-	-	-
MOV	A, @RLi+disp8	3	10	2	(b)	byte (A) $\leftarrow($ (RLi)+disp8)	Z		-	-	-	*	*	-	-	
MOVN	A, \#imm4	1	1	0	0	byte $(A) \leftarrow$ imm4	Z		-	-	-	R	*	-	-	-
movx	A, dir		3	0	(b)	byte (A) \leftarrow (dir)	x	*	-	-	-	*	*	-	-	-
MOVX	A, addr16	3	4	0	(b)	byte (A) \leftarrow (addr16)	X	*	-	-	-	*	*	-	-	
MOVX	A, Ri	2	2	1	0	byte (A) $\leftarrow(\mathrm{Ri})$	X	*	-	-	-	*	*	-	-	
MOVX	A, ear	2	2	1	0	byte (A) \leftarrow (ear)	X	*	-	-	-	*	*	-	-	
MOVX	A, eam	$2+$	$3+$ (a)	0	(b)	byte (A) \leftarrow (eam)	X	*	-	-	-	*	*	-	-	
MOVX	A, io	2	3	0	(b)	byte (A) \leftarrow (io)	X	*	-	-	-	*	*	-	-	-
MOVX	A, \#imm8	2	2	0	0	byte (A) \leftarrow imm8	X	*	-	-	-	*	*	-	-	-
MOVX	A, @A	2	3	0	(b)	byte $(\mathrm{A}) \leftarrow($ (A))	X	-	-	-	-	*	*	-	-	
MOVX MOVX	A,@RWi+disp8	2	5	1	(b)	byte $($ A $) \leftarrow($ (RWi) + disp8 $)$	\times		-	-	-	*		-	-	
MOVX	A, @RLi+disp8	3	10	2	(b)	byte $(\mathrm{A}) \leftarrow((\mathrm{RLi})+$ disp8 $)$	X		-	-	-	*	*	-	-	
MOV	dir, A	2	3	0	(b)	byte (dir) $\leftarrow\left(\begin{array}{l}\text { A }\end{array}\right.$	-	-	-	-	-	*	*	-	-	-
MOV	addr16, A	3	4	1	(b)	byte (addr16) \leftarrow (A)	-	-	-	-	-	*		-	-	
MOV	Ri, A	1	2	1	0	byte (Ri) $\leftarrow(\mathrm{A})$	-	-	-	-	-	*	*	-	-	
MOV	ear, A	2	2	0	0	byte (ear) \leftarrow (A)	-	-	-	-	-	*	*	-	-	-
MOV	eam, A	$2+$	$3+$ (a)	0	(b)	byte (eam) $\overleftarrow{\text { (}}$ (A)	-	-	-	-	-	*	*	-	-	-
MOV	io, A	2	3	0	(b)		-	-	-	-	-	*	*	-	-	
MOV MOV	@RLi+ ear ${ }_{\text {R }}$	3	10 3	2	(b)		-	-	-	-	-	*	*	-	-	
MOV	Ri, eam	2+	$4+$ (a)	1	(b)	byte (Ri) \leftarrow (eam)	-	-	-	-	-	*	*	-	-	
MOV	ear, Ri	2	4	2	0	byte (ear) $\leftarrow(\mathrm{Ri})$	-	-	-	-	-	*	*	-	-	-
MOV	eam, Ri	$2+$	$5+$ (a)	1	(b)	byte (eam) \leftarrow (Ri)	-	-	-	-	-	*	*	-	-	-
MOV	Ri, \#imm8	2	2	1	0	byte (Ri) \leftarrow imm8	-	-	-	-	-	*	*	-	-	
MOV	io, \#imm8	3	5	0	(b)	byte (io) \leftarrow imm8	-	-	-	-	-	-	-	-	-	-
MOV	dir, \#imm8	3	5	0	(b)	byte (dir) \leftarrow imm8	-	-	-	-	-	-	-	-	-	-
MOV	ear, \#imm8	3	2	1	0	byte (ear) \leftarrow imm8	-	-	-	-	-	*	*	-	-	-
MOV	eam, \#imm8	$3+$	4+ (a)	0	(b)	byte $($ eam $) \leftarrow$ imm8	-	-	-	-	-	-	${ }_{*}$	-	-	-
MOV	@AL, AH @A, T	2	3	0	(b)	byte $((\mathrm{A})) \leftarrow(\mathrm{AH})$	-	-	-	-	-	*	*	-	-	
XCH	A, ear	2	4	2	0	byte (A) \leftrightarrow (ear)	Z	-	-	-	-	-	-	-	-	-
$\times \mathrm{XCH}$	A, eam	$2+$	$5+$ (a)	0	$2 \times$ (b)	byte (A) $\leftrightarrow($ eam $)$	Z	-	-	-	-	-	-	-	-	-
$\times \mathrm{XCH}$	Ri, ear	2		4		byte (Ri) \leftrightarrow (ear)	-	-	-	-	-	-	-	-	-	-
XCH	Ri, eam	2+	$9+$ (a)	2	$2 \times$ (b)	byte (Ri) \leftrightarrow (eam)	-	-	-	-	-	-	-	-	-	-

Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

[^2]
MB90660A Series

Table 8 Transfer Instructions (Word/Long Word) [38 Instructions]

	Mnemonic	\#	\sim	RG	B	Operation	LH	AH	I	S	T	N	Z	V	C	RMW
MOVW	A, dir	2	3	0	(c)	word (A) \leftarrow (dir)	-		-	-	-			-	-	-
MOVW	A, addr16	3	4	0	(c)	word (A) \leftarrow (addr16)	-		-	-	-	*	*	-	-	
MOVW	A, SP	1	1	0	0	word $(A) \leftarrow(S P)$	-		-	-	-	*	*	-	-	-
MOVW	A, RWi	2	2	1	0	word (A) $\leftarrow(\mathrm{RWi}$)	-	*	-	-	-	*	*	-	-	-
MOVW MOVW	A, ear	${ }_{2}^{2}$	$\stackrel{2}{3+(a)}$	1	(c)	word (A) word $($ A $)$ \leftarrow e ${ }^{\text {ear }}$ (eam)	-	*	-	-	-	*	*	-	-	-
MOVW	A, eam	$2+$ 2	${ }_{3}^{3+}$ (a)	0	(c)	word (A) word (A) ((eam)	-	*	-	-	-	*	*	-	-	-
MOVW	A, @A	2	3	0	(c)	word $(A) \leftarrow((A))$	-	-	-	-	-	*	*	-	-	_
MOVW	A, \#imm16	3	2	0	0	word (A) \leftarrow imm16	-	*	-	-	-	*	*	-	-	_
MOVW	A, @RWi+disp8	2	5		(c)	word (A) $\leftarrow(($ RWi) + disp8)	-	*	-	-	-	*	*	-	-	
MOVW	A, @RLi+disp8	3	10	2	(c)	word $(\mathrm{A}) \leftarrow((\mathrm{RLi})+$ disp8)	-		-	-	-	*	*	-	-	-
MOVW	dir, A	2	3	0	(c)	word (dir) $\leftarrow(\mathrm{A})$	-	-	-	-	-	*	*	-	-	-
MOVW	addr16, A	3	4	0	(c)	word (addr16) \leftarrow (A)	-	-	-	-	-	*	*	-	-	-
MOVW	SP, A	1	1	0	0	word (SP) $\leftarrow(\mathrm{A})$	-	-	-	-	-	*		-	-	-
MOVW	RWi, A	1	2	1	0	word (RWi) \leftarrow (A)	-	-	-	-	-	*	*	-	-	-
MOVW	ear, A	${ }_{2}^{2}$	$\stackrel{2}{3+(a)}$	0	(c)	word (ear) $\leftarrow(\mathrm{A})$	-	-	-	-	-	*	*	-	-	
MOVW	io, A , A	$2+$ 2	${ }_{3}^{3+}$ (a)	0	(c)	word (eam) ${ }_{\text {word }}$ (io) \leftarrow (A) ${ }_{\text {a }}$ ($)$	-	-	-	-	-	*	*	-	-	-
MOVW	@RWi+disp8, A	2	5	1	(c)	word ((RWi) +disp8) \leftarrow (A)	-	-	-	-	-	*	*	-	-	-
MOVW	@RLi+disp8, A	3	10	2	(c)	word ($(\mathrm{RLi})+$ disp8) $\leftarrow(\mathrm{A})$	-	-	-	-	-	*		-	-	-
MOVW	RWi, ear	2	3	2	(0)	word (RWW I) \leftarrow (ear)	-	-	-	-	-	*	*	-	-	
MOVW	RWi, eam	$2+$	$4+$ (a)	1	(c)	word (RWi) \leftarrow (eam)	-	-	-	-	-	*	*	-	-	
MOVW	ear, RWi	2	4	2	0	word (ear) $\leftarrow($ RWi)	-	-	-	-	-			-	-	-
MOVW	eam, RWi	$2+$	$5+$ (a)	1	(c)	word (eam) \leftarrow (RWi)	-	-	-	-	-		*	-	-	-
MOVW	RWi, \#imm16	3	2		0	word (RWi) \leftarrow imm16	-	-	-	-	-	*	*	-	-	
MOVW	io, \#imm16	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	5	0 1	(c)	word (io) \leftarrow imm16 word (ear) \leftarrow imm16	-	-	-	-	-	*	*	-	-	
MOVW	eam, \#imm16	$4+$	$4+$ (a)	0	(c)	word (eam) \leftarrow imm 16	-	-	-	-	-	-	-	-	-	-
MOVW /MOV	$\begin{aligned} & \mathrm{AL}, \mathrm{AH} \\ & \mathrm{~W} @ \mathrm{~A}, \mathrm{~T} \end{aligned}$	2	3	0	(c)	word $((\mathrm{A})) \leftarrow(\mathrm{AH})$	-	-	-	-	-	*	*	-	-	-
XCHW	A, ear	2	${ }_{5}^{4}$	2	${ }_{2 \times}^{0}$		-	-	-	-	-	-	-	-	-	-
XCHW	A, eam	$2+$	$5+$ (a)	0	$2 \times$ (c)	word (A) \leftrightarrow (eam)	-	-	-	-	-	-	-	-	-	-
$\begin{aligned} & \text { XCHW } \\ & \text { XCHW } \end{aligned}$	RWi, ear RWi, eam	${ }_{2}^{2+}$	${ }_{9+}{ }^{7}(\mathrm{a})$	4 2	$\underset{2 \times}{0}$ (c)	word (RWi) \leftrightarrow (ear) word (RWi) \leftrightarrow (eam)	-	-	-	-	-	-	-	-	-	-
MOVL	A, ear	2	4	2	0	long $(\mathrm{A}) \leftarrow$ (ear)	-	-	-	-	-	*	*		-	-
MOVL	A, eam	$2+$	$5+$ (a)	0	(d)	long $(\mathrm{A}) \leftarrow$ (eam)	-	-	-	-	-	*	*	-	-	-
MOVL	A, \#imm32	5	3	0	0	long $(A) \leftarrow$ imm 32	-	-	-	-	-			-	-	-
MOVL MOVL	ear, A eam, A	$\begin{gathered} 2 \\ 2+ \end{gathered}$	$\begin{gathered} 4 \\ 5+(a) \end{gathered}$	$\begin{aligned} & 2 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ \text { (d) } \end{gathered}$	$\begin{aligned} & \text { long }(\text { ear }) \leftarrow(A) \\ & \text { long }(\text { eam }) \leftarrow(A) \end{aligned}$	-	-	-	-	-	*	*	-	-	-

Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90660A Series

Table 9 Addition and Subtraction Instructions (Byte/Word/Long Word) [42 Instructions]

Mnemonic		\#	\sim	RG	B	Operation	LH	AH	I	S	T	N	Z	V	C	RMW
ADD	A,\#imm8	2	2	0	0	byte $(A) \leftarrow(A)+$ imm8	Z	-	-	-	-	*			*	
ADD	A, dir	2	5	0	(b)	byte $(A) \leftarrow(A)$ +(dir)	Z	-	-	-	-	*	*	*	*	-
ADD	A, ear	2	3	1	0	byte (A) $\leftarrow(A)+($ ear $)$	Z	-	-	-	-	*	*		*	
ADD	A, eam	$2+$	$4+$ (a)	0	(b)	byte $(A) \leftarrow(A)+($ eam $)$	Z	-	-	-	-	*	*	*	*	-
ADD	ear, A	2		2	0	byte (ear) $\leftarrow($ ear $)+(\mathrm{A})$	-	-	-	-	-	*	*			-
ADD	eam, A	$2+$	$5+$ (a)	0	$2 \times$ (b)	byte (eam) $\leftarrow($ eam $)+(\mathrm{A})$	Z	-	-	-	-	*	*	*		*
ADDC	A	1	(a)	0	0	byte $(\mathrm{A}) \leftarrow(\mathrm{AH})+(\mathrm{AL})+(\mathrm{C})$	Z	-	-	-	-	*	*	*	*	-
ADDC	A, ear	2	${ }^{3}$	1	0	byte $(\mathrm{A}) \leftarrow(\mathrm{A})+($ ear $)+(\mathrm{C})$	Z	-	-	-	-	*	*		*	-
ADDC	A, eam	$2+$	4+ (a)	0	(b)	byte $(\mathrm{A}) \leftarrow(\mathrm{A})+(\mathrm{eam})+(\mathrm{C})$	Z	-	-	-	-	*	*		*	-
ADDDC	A	1	(a)	0	0	byte $(\mathrm{A}) \leftarrow(\mathrm{AH})+(\mathrm{AL})+$ (C) (decimal)	Z	-	-	-	-	*	*		*	-
SUB	A, \#imm8	2	2	0	0	byte $($ A $) \leftarrow(\mathrm{A})$-imm8	Z	-	-	-	-	*			*	-
SUB	A, dir	2	5	0	(b)	byte (A) \leftarrow (A) - (dir)	Z	-	-	-	-	*	*		*	-
SUB	A, ear	2	3	1	0	byte $(\mathrm{A}) \leftarrow(\mathrm{A})-($ ear $)$	Z	-	-	-	-	*	*		*	-
SUB	A, eam	$2+$	4+ (a)	0	(b)	byte $(A) \leftarrow(A)-($ eam $)$	Z	-	-	-	-	*			*	-
SUB	ear, A	2	(a)	2	0	byte (ear) \leftarrow (ear) - (A)	-	-	-	-	-	*	*	*	*	-
SUB	eam, A	$2+$	$5+$ (a)	0	$2 \times$ (b)	byte (eam) $\leftarrow\left(\begin{array}{l}\text { eam })-(A) ~\end{array}\right.$	-	-	-	-	-	*	*	*	*	
SUBC		1	2	0	0	byte $(\mathrm{A}) \leftarrow(\mathrm{AH})-(\mathrm{AL})-(\mathrm{C})$	Z	-	-	-	-	*	*		*	-
SUBC	A, ear	2	${ }^{3}$	0	0	byte (A) $\leftarrow\left(\begin{array}{l}\text { A }\end{array}\right)-$ (ear) - (C)	Z	-	-	-	-	*		*	*	-
SUBC	A, eam	$2+$	$4+$ (a)	0	(b)	byte (A) $\leftarrow(\mathrm{A})-$ (eam) - (C)	Z		-	-	-	*	*	*	*	-
SUBDC	A	1	3	0	0	byte $(\mathrm{A}) \leftarrow(\mathrm{AH})-(\mathrm{AL})-(\mathrm{C})$ (decimal)	Z	-	-	-	-					
ADDW	A	1	2	0	0	word $(A) \leftarrow(A H)+(A L)$	-	-	-	-	-	*	*		*	
ADDW	A, ear	2	3	1	0	word (A) $\leftarrow(A)+($ ear $)$	-	-	-	-	-					-
ADDW	A, eam	$2+$	$4+$ (a)	0	(c)	word $(A) \leftarrow(A)+(e a m)$	-	-	-	-	-					-
ADDW	A, \#imm16	3	2	0	0	word $(\mathrm{A}) \leftarrow(\mathrm{A})+\mathrm{imm16}$	-	-	-	-	-		*		*	-
ADDW	ear, A	2	${ }^{3}$	2	0		-	-	-	-	-		*	*		-
ADDW	eam, A	$2+$	$5+$ (a)	0	$2 \times$ (c)	word (eam) $\leftarrow($ eam $)+(A)$	-	-	-	-	-	*	*	*	*	
ADDCW	A, ear	$\stackrel{2}{2+}$	$\stackrel{3}{4+(a)}$	0	(c)	word $(A) \leftarrow(A)+($ ear $)+(\mathrm{C})$ word $(\mathrm{A}) \leftarrow(\mathrm{A})+($ eam $)+(\mathrm{C})$	-	-	-	-	-	*	*	*	*	-
SUBW	A	1	2	0	0	word $(A) \leftarrow(A H)-(A L)$	-	-	-	-	-	*	*		*	-
SUBW	A, ear	2	3	1	0	word $(A) \leftarrow(A)-($ ear $)$	-	-		-	-	*	*		*	-
SUBW	A, eam	2+	$4+$ (a)	0	(c)	word $(A) \leftarrow(A)-($ eam $)$	-	-	-	-	-	*	*		*	-
SUBW	A, \#imm16	3	2	0	0	word $(A) \leftarrow(A)$-imm16	-	-	-	-	-	*	*			-
SUBW	ear, A	2	3	2	0	word (ear) \leftarrow (ear) - (A)	-	-	-	-	-	*	*	*	*	-
SUBW	eam, A	$2+$	$5+(\mathrm{a})$	0	$2 \times$ (c)	word (eam) $\leftarrow($ eam $)-(A)$	-	-	-	-	-	*	*	*	*	*
SUBCW SUBCW	A, ear	2	3	1	0		-	-	-	-	-	*	*		*	-
SUBCW	A, eam	2+	$4+$ (a)	0	(c)	$\text { word }(A) \leftarrow(A)-(\text { eam })-(C)$	-	-	-	-	-	*			*	
ADDL	A, ear	2		2	(d)		-	-	-		-	*	*	*		
ADDL	A, eam	$2+$	$7+$ (a)	0	(d)	$\operatorname{long}(A) \leftarrow(A)+(e a m)$	-	-	-	-	-					-
ADDL	A, \#imm32	5	4	0	0	long $(A) \leftarrow(A)+i m m 32$	-	-	-	-	-	*	*		*	-
SUBL	A, ear	2	6	2	0	long $(A) \leftarrow(A)-($ ear $)$	-	-	-	-	-	*	*	*	*	-
SUBL	A, eam	$2+$	$7+$ (a)	0	(d)	long $(\mathrm{A}) \leftarrow(\mathrm{A})-$ - eam)	-	-	-	-	-	*	*	*	*	-
SUBL	A, \#imm32	5	(a)	0	(long $(\mathrm{A}) \leftarrow(\mathrm{A})$-imm32	-	-	-	-	-	*	*		*	-

Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

[^3]Table 10 Increment and Decrement Instructions (Byte/Word/Long Word) [12 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
INC ear INC eam DEC ear DEC eam	$\begin{gathered} 2 \\ 2+ \\ 2 \\ 2+ \end{gathered}$	$\begin{gathered} 2 \\ 5+(\mathrm{a}) \\ 3 \\ 5+(\mathrm{a}) \end{gathered}$	$\begin{aligned} & \hline 2 \\ & 0 \\ & 2 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ 2 \times(b) \\ 0 \\ 2 \times(b) \end{gathered}$	$\begin{aligned} & \text { byte }(\text { ear }) \leftarrow(\text { ear })+1 \\ & \text { byte }(\text { eam }) \leftarrow(\text { eam })+1 \\ & \text { byte }(\text { ear }) \leftarrow(\text { ear })-1 \\ & \text { byte }(\text { eam }) \leftarrow(\text { eam })-1 \end{aligned}$				$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$-$			*	-	-
INCW ear INCW eam DECW ear DECW eam	$\begin{gathered} 2 \\ 2+ \\ 2 \\ 2+ \end{gathered}$	$\begin{gathered} 3 \\ 5+(a) \\ 3 \\ 5+(a) \end{gathered}$	$\begin{aligned} & 2 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ 2 \times(c) \\ 0 \\ 2 \times(c) \end{gathered}$	word (ear) \leftarrow (ear) +1 word $($ eam $) \leftarrow($ eam $)+1$ word (ear) \leftarrow (ear) -1 word $($ eam $) \leftarrow($ eam $)-1$	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$		-	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	-		*	*	-	*
INCL ear INCL eam DECL ear DECL eam	$\begin{gathered} 2 \\ 2+ \\ 2 \\ 2+ \end{gathered}$	$\begin{gathered} 7 \\ 9+(a) \\ 7 \\ 9+(a) \end{gathered}$	$\begin{aligned} & 4 \\ & 0 \\ & 4 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ 2 \times(d) \\ 0 \\ 2 \times(d) \end{gathered}$	$\begin{aligned} & \text { long }(\text { ear }) \leftarrow(\text { ear })+1 \\ & \text { long (eam }) \leftarrow(\text { eam })+1 \\ & \text { long (ear) } \leftarrow(\text { ear })-1 \\ & \text { long }(\text { eam }) \leftarrow(\text { eam })-1 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$		- - -	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$	-	*	*	*	- - -	*

Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 11 Compare Instructions (Byte/Word/Long Word) [11 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH	AH	I	S	T	N	Z	V	C	RMW
CMP A	1	1	0	0	byte (AH) - (AL)	-	-	-	-	-	*	*	*	*	-
CMP A, ear	2	2	1	0	byte $(A) \leftarrow$ (ear)	-	-	-	-	-	*	*	*	*	-
CMP A, eam	2+	$3+$ (a)	0	(b)	byte $(A) \leftarrow($ eam $)$	-	-	-	-	-	*	*	*	*	-
CMP A, \#imm8	2	2	0	0	byte $(A) \leftarrow$ imm8	-	-	-	-	-	*	*	*	*	-
CMPW A	1	1	0	0	word (AH) - (AL)	-	-	-	-	-	*	*	*	*	-
CMPW A, ear	2	2	1	0	word $(\mathrm{A}) \leftarrow$ (ear)	-	-	-	-	-	*	*	*	*	-
CMPW A, eam	2+	$3+$ (a)	0	(c)	word $(A) \leftarrow$ (eam)	-	-	-	-	-	*	*	*	*	-
CMPW A, \#imm16	3	2	0	0	word $(A) \leftarrow$ imm16	-	-	-	-	-	*	*	*	*	-
CMPL A, ear	2	6	2	0	word $(\mathrm{A}) \leftarrow$ (ear)	-	-	-	-	-	*	*	*	*	-
CMPL A, eam	2+	7+ (a)	0	(d)	word $(A) \leftarrow($ eam $)$	-	-	-	-	-	*	*	*	*	-
CMPL A, \#imm32	5	3	0	0	word $(A) \leftarrow$ imm32	-	-	-	-	-	*	*	*	*	-

Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90660A Series

Table 12 Multiplication and Division Instructions (Byte/Word/Long Word) [11 Instructions]

Mnemonic		\#	\sim	RG	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
DIVU	A	1	*1	0	0	word (AH) /byte (AL)	-	-	-	-	-	-	-	*	*	-
DIVU	A, ear	2	*2	1	0	Quotient \rightarrow byte (AL) Remainder \rightarrow byte (A word (A)/byte (ear)	-	-	-	-	-	-	-	*	*	-
DIVU	A, eam	2+	*3	0	* 6	Quotient \rightarrow byte (A) Remainder \rightarrow byte (ear) word (A)/byte (eam)	-	-	-	-	-	-	-	*	*	-
DIVUW	A, ear	2	* 4	1	0	Quotient \rightarrow byte (A) Remainder \rightarrow byte (eam) long (A)/word (ear)	-	-	-	-	-	-	-	*	*	-
						Quotient \rightarrow word (A) Remainder \rightarrow word (ear)										
DIVUW	A, eam	2+	*5	0	*7	long (A)/word (eam) Quotient \rightarrow word (A) Remainder \rightarrow word	-	-	-	-	-	-	-	*	*	-
MULU	A	1	*8	0	0	(eam)	-	-	-	-	-	-	-	-	-	-
MULU	A, ear	2	*9	1	0		-	-	-	-	-	-	-	-	-	-
MULU	A, eam	2+	* 10	0	(b)	byte (A) *byte (ear) \rightarrow word (A) byte (A) *byte (eam) \rightarrow word (A)	-	-	-	-	-	-	-	-	-	-
MULUW		1	*11	0	0		-	-	-	-	-	-	-	-	-	-
MULUW	A, ear	2	* 12	1	0	word (AH) * ${ }^{\text {word }}$ (AL) \rightarrow long (A)	-	-	-	-	-	-	-	-	-	-
MULUW	A, eam	2+	* 13	0	(c)	word (A) *word (ear) \rightarrow long (A) word (A) *word (eam) \rightarrow long (A)	-	-	-	-	-	-	-	-	-	-

*1: 3 when the result is zero, 7 when an overflow occurs, and 15 normally.
*2: 4 when the result is zero, 8 when an overflow occurs, and 16 normally.
*3: $6+(\mathrm{a})$ when the result is zero, $9+(\mathrm{a})$ when an overflow occurs, and $19+(\mathrm{a})$ normally.
*4: 4 when the result is zero, 7 when an overflow occurs, and 22 normally.
*5: $6+$ (a) when the result is zero, $8+$ (a) when an overflow occurs, and $26+$ (a) normally.
*6: (b) when the result is zero or when an overflow occurs, and $2 \times(\mathrm{b})$ normally.
*7: (c) when the result is zero or when an overflow occurs, and $2 \times$ (c) normally.
*8: 3 when byte $(A H)$ is zero, and 7 when byte $(A H)$ is not zero.
*9: 4 when byte (ear) is zero, and 8 when byte (ear) is not zero.
*10: $5+(\mathrm{a})$ when byte (eam) is zero, and $9+(\mathrm{a})$ when byte (eam) is not 0 .
*11: 3 when word (AH) is zero, and 11 when word (AH) is not zero.
*12: 4 when word (ear) is zero, and 12 when word (ear) is not zero.
*13: $5+(\mathrm{a})$ when word (eam) is zero, and $13+(\mathrm{a})$ when word (eam) is not zero.
Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

[^4]Table 13 Logical 1 Instructions (Byte/Word) [39 Instructions]

Mnemonic		\#	\sim	RG	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
AND	A, \#imm8	2	2	0	0	byte $(\mathrm{A}) \leftarrow(\mathrm{A})$ and imm8	-	-	-	-	-			R	-	-
AND	A, ear	2	-	1	0	byte $(A) \leftarrow(A)$ and (ear)	-	-	-	-	-		*	R	-	-
AND	A, eam	2+	4+ (a)	0	(b)	byte $(A) \leftarrow(A)$ and (eam)	-	-	-	-	-		*	R	-	-
AND	ear, A	2	3	2	0	byte (ear) \leftarrow (ear) and (A)	-	-	-	-	-		*	R	-	-
AND	eam, A	2+	$5+(\mathrm{a})$	0	$2 \times$ (b)	byte $($ eam $) \leftarrow($ eam $)$ and (A)	-	-	-	-	-		*	R	-	*
OR	A, \#imm	2	2	0	0	byte $(\mathrm{A}) \leftarrow(\mathrm{A})$ or imm8	-	-	-	-	-		*	R	-	-
OR	A, ear	2	3	1	0	byte $(A) \leftarrow(A)$ or (ear)	-	-	-	-	-			R	-	-
OR	A, eam	2+	4+ (a)	0	(b)	byte $(A) \leftarrow(A)$ or (eam)	-	-	-	-	-			R	-	-
OR	ear, A	2	(2	0	byte (ear) \leftarrow (ear) or (A)	-	-	-	-	-		*	R	-	-
OR	eam, A	2+	5+ (a)	0	$2 \times$ (b)	byte (eam) $\leftarrow($ eam $)$ or (A)	-	-	-	-	-		*	R	-	*
XOR	A, \#imm	2	2	0	0	byte $(\mathrm{A}) \leftarrow(\mathrm{A})$ xor imm8	-	-	-	-	-		*	R	-	-
XOR	A, ear	2	3	1	0	byte $(A) \leftarrow(A)$ xor (ear)	-	-	-	-	-			R	-	-
XOR	A, eam	2+	4+ (a)	0	(b)	byte $(A) \leftarrow(A)$ xor (eam)	-	-	-	-	-			R	-	-
XOR	ear, A	2	3	2	0	byte (ear) \leftarrow (ear) xor (A)	-	-	-	-	-		*	R	-	-
XOR	eam, A	2+	5+ (a)	0	$2 \times$ (b)	byte $($ eam $) \leftarrow($ eam $)$ xor (A)	-	-	-	-	-	*	*	R	-	*
N	A	1	2	0	0	byte (A)	-	-	-	-	-	*	*	R	-	-
NOT	ea	2	3	2	0	byte (ear) \leftarrow not (ear)	-	-	-	-	-	*	*	R	-	-
NOT	eam	2+	5+ (a)	0	$2 \times(\mathrm{b})$	byte (eam) \leftarrow not (eam)	-	-	-	-	-	*	*	R	-	*
ANDW	A	1	2	0	0	word $(A) \leftarrow(A H)$ and (A)	-	-	-	-	-			R	-	-
ANDW	A, \#imm16	3	2	0	0	word $(A) \leftarrow(A)$ and imm16	-	-	-	-	-			R	-	-
ANDW	A, ear	2	3	1	0	word $(A) \leftarrow(A)$ and (ear)	-	-	-	-	-			R	-	-
ANDW	A, eam	2+	4+ (a)	0	(c)	word $(A) \leftarrow(A)$ and (eam)	-	-	-	-	-		*	R	-	
ANDW	ear, A	2	(a)	2	0	word (ear) \leftarrow (ear) and (A)	-	-	-	-	-	*	*	R	-	-
ANDW	eam, A	2+	5+	0	$2 \times$ (c)	word $($ eam $) \leftarrow($ eam $)$ and (A)	-	-	-	-	-	*	*	R	-	*
	A	1	2	0	0	word $(\mathrm{A}) \leftarrow(\mathrm{AH})$ or (A)	-	-	-	-	-	*	*	R	-	-
ORW	A, \#imm16	3	2	0	0	word $(A) \leftarrow(A)$ or imm16	-	-	-	-	-			R	-	
ORW	A, ear	2	3		0	word $(A) \leftarrow(A)$ or (ear)	-	-	-	-	-			R	-	
ORW	A, eam	2+	4+ (a)	0	(c)	word $(A) \leftarrow(A)$ or (eam)	-	-	-	-	-			R	-	-
ORW	ear, A	2	3	2	0	word (ear) \leftarrow (ear) or (A)	-	-	-	-	-			R	-	-
ORW	eam, A	2+	$5+$ (a)	0	$2 \times$ (c)	word (eam) $\leftarrow($ eam) or (A)	-	-	-	-	-	*	*	R	-	*
XORW	A		2	0	0	word $(\mathrm{A}) \leftarrow(\mathrm{AH})$ xor (A)	-	-	-	-	-			R	-	
XORW	A, \#imm16	3	2	0	0	word $(A) \leftarrow(A)$ xor imm16	-	-	-	-	-			R	-	-
XORW	A, ear	2	3	1	0	word $(A) \leftarrow(A)$ xor (ear)	-	-	-	-	-			R	-	-
XORW	A, eam	2+	4+ (a)	0	(c)	word $(A) \leftarrow(A)$ xor (eam)	-	-	-	-	-			R	-	-
XORW	ear, A	2	(a)	2	0	word (ear) \leftarrow (ear) xor (A)	-	-	-	-	-	*	*	R	-	-
XORW	eam, A	2+	$5+(\mathrm{a})$	0	$2 \times$ (c)	word (eam) \leftarrow (eam) xor (A)	-	-	-	-	-	*	*	R	-	*
NOT	A	1	2	0	0	word $(\mathrm{A}) \leftarrow \operatorname{not}(\mathrm{A})$	-	-	-	-	-	*	*	R	-	-
NOTW	ear	2	3	2	0	word (ear) \leftarrow not (ear)	-	-	-	-	-		*	R	-	-
NOTW	eam	2+	$5+(\mathrm{a})$	0	$2 \times(\mathrm{c})$	word (eam) \leftarrow not (eam)	-	-	-	-	-	*	*	R	-	*

Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90660A Series

Table 14 Logical 2 Instructions (Long Word) [6 Instructions]

Mnemonic		\#	\sim	RG	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMw
ANDL	A, ear	2	6	2	0	long (A) \leftarrow (A) and (ear)	-	-	-	-	-			R		
ANDL	A, eam	2+	7+ (a)	0	(d)	long $(A) \leftarrow(A)$ and (eam)	-	-	-	-	-	*	*	R	-	-
ORL	A, ear	2	6	2	0	long $(A) \leftarrow(A)$ or (ear)	-	-	-	-	-			R	-	-
ORL	A, eam	2+	$7+$ (a)	0	(d)	long $(A) \leftarrow(A)$ or (eam)	-	-	-	-	-	*	*	R	-	-
XORL	A, ea	2	6	2	0	long $(A) \leftarrow(A)$ xor (ear)	-	-	-	-	-	*	*	R	-	-
XORL	A, eam	2+	7+ (a)	0	(d)	long $(A) \leftarrow(A)$ xor (eam)	-	-	-	-	_			R	-	-

Table 15 Sign Inversion Instructions (Byte/Word) [6 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
NEG A	1	2	0	0	byte $(\mathrm{A}) \leftarrow 0-(\mathrm{A})$	X	-	-	-	-	*	*	*	*	-
NEG ear NEG eam	$\begin{gathered} 2 \\ 2+ \end{gathered}$	$\begin{gathered} 3 \\ 5+(\mathrm{a}) \end{gathered}$	$\begin{aligned} & 2 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ 2 \times(b) \end{gathered}$	byte (ear) $\leftarrow 0$ - (ear) byte $($ eam $) \leftarrow 0$ - (eam)	-	-	-	-	-	*	*	*	*	-
NEGW A	1	2	0	0	word $(\mathrm{A}) \leftarrow 0-(\mathrm{A})$	-	-	-	-	-	*	*	*	*	-
NEGW ear	2	(a)	2	(c)	word (ear) $\leftarrow 0-$ (ear)	-	-	-	-	-	*	*	*	*	-
NEGW eam	2+	$5+$ (a)	0	$2 \times$ (c)	word (eam) $\leftarrow 0$ - (eam)	-	-	-	-	-	*	*	*	*	*

Table 16 Normalize Instruction (Long Word) [1 Instruction]

Mnemonic	$\#$	\sim	RG	B	Operation	LH	AH	I	S	T	N	Z	V	C	RMW
NRML A, R0	2	${ }^{*} 1$	1	0	long $($ A $) \leftarrow$ Shift until first digit is " $1 "$ byte $($ R0 $) \leftarrow$ Current shift count	-	-	-	-	-	-	$*$	-	-	-

*1: 4 when the contents of the accumulator are all zeroes, $6+(\mathrm{RO})$ in all other cases (shift count).
Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90660A Series

Table 17 Shift Instructions (Byte/Word/Long Word) [18 Instructions]

Mnemonic	\#	~	RG	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
RORC A ROLC A	2	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	byte $(A) \leftarrow$ Right rotation with carry byte $(A) \leftarrow$ Left rotation with carry	-	-	-	-	-		*	-	*	-
RORC ear	2	3	2	0	byte (ear) \leftarrow Right rotation with carry	-	-	-	-	-	*	*	-	*	-
RORC eam	2+	$5+$ (a)	0	$2 \times$ (b)	byte (eam) \leftarrow Right rotation with carry	-	-	-	-	-	*		-		*
ROLC ear	2	3	2		byte (ear) \leftarrow Left rotation with carry	-	-	-	-	-	*		-	*	-
ROLC eam	$2+$	5+ (a)	0	$2 \times$ (b)	byte (eam) \leftarrow Left rotation with carry	-	-	-	-	-	*	*	-	*	
ASR A, R0	2	*1	1	0	byte $($ A $) \leftarrow$ Arithmetic right barrel shift ($A, ~ R O)$	-	-	-	-	*	*	*	-	*	-
LSR A, RO	2	*1	1	0	byte (A) \leftarrow Logical right barrel shift (A, R0)	-	-	-	-	*	*	*	-	*	-
LSL A, R0	2	*1	1	0	byte (A) \leftarrow Logical left barrel shift (A, RO)	-	-	-	-	-	*	*	-	*	-
ASRW A	1	2	0	0	word (A) \leftarrow Arithmetic right shift (A, 1 bit)	-		-	-	*	*			*	
LSRW A/SHRW	1	2	0	0	word (A) \leftarrow Logical right shift (A, 1 bit)	-	-	-	-	*	R	*	-	*	-
A	1	2	0	0	word (A) \leftarrow Logical left shift (A, 1 bit)	-	-	-	-	-		*	-	*	-
LSLW A/SHLW	2	*1	1	0	word $(A) \leftarrow$ Arithmetic right barrel shift (A, RO)	-	-	-	-	*	*	*	-	*	-
ASRW A, R0	2	${ }^{* 1}$	1	0	word (A) \leftarrow Logical right barrel shift (A, R0)	-	-	-	-	*	*	*	-	*	-
LSRW A, R0	2	*1	1	0	word (A) \leftarrow Logical left barrel shift (A, R0)	-	-	-	-	-	*		-		-
ASRL A, RO	2	*2	1	0	long (A) \leftarrow Arithmetic right shift (A, R0)	-	-	-	-	*	*			*	-
LSRL A, R0	2	*2	1	0	long (A) \leftarrow Logical right barrel shift (A, RO)	-	-	-	-			*	-	*	-
LSLL A, R0	2	*2	1	0	long (A) \leftarrow Logical left barrel shift (A, R0)	-	-	-	-	-		*	-	*	

*1: 6 when R0 is $0,5+(R 0)$ in all other cases.
*2: 6 when $R 0$ is $0,6+(R 0)$ in all other cases.
Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90660A Series

Table 18 Branch 1 Instructions [31 Instructions]

Mnemonic		\#	~	RG	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
BZ/BEQ	rel	2	*1	0	0	Branch when (Z) = 1	-	-	-	-	-	-	-	-	-	
BNZ/BNE	rel	2	*1	0	0	Branch when (Z) $=0$	-	-	-	-	-	-	-	-	-	-
BC/BLO	rel	2	*1	0	0	Branch when (C) = 1	-	-	-	-	-	-	-	-	-	-
BNC/BHS	rel	2	*1	0	0	Branch when (C) $=0$	-	-	-	-	-	-	-	-	-	-
	rel	2	*1	0	0	Branch when (N) $=1$	-	-	-	-	-	-	-	-	-	
BP	rel	2	*1	0	0	Branch when (N) $=0$	-	-	-	-	-	-	-	-	-	-
BV	rel	2	*1	0	0	Branch when (V) $=1$	-	-	-	-	-	-	-	-	-	
BNV	rel	2	*1	0	0	Branch when (V) $=0$	-	-	-	-	-	-	-	-	-	-
BT	rel	2	*1	0	0	Branch when (T) $=1$	-	-	-	-	-	-	-	-	-	
BNT	rel	2	*1	0	0	Branch when (T) $=0$	-	-	-	-	-	-	-	-	-	-
BLT	rel	2	*1	0	0	Branch when (V) xor (N) $=1$	-	-	-	-	-	-	-	-	-	-
BGE	rel	2	*1	0	0	Branch when (V) xor (N) $=0$	-	-	-	-	-	-	-	-	-	
BLE	rel	2	*1	0	0	Branch when ((V) xor (N)) or (Z) = 1	-	-	-	-	-	-	-	-	-	-
BGT	rel	2	*1	0	0	Branch when (V) $\mathrm{xor}(\mathrm{N})$) or $(\mathrm{Z})=0$	-	-	-	-	-	-	-	-	-	-
BLS	rel	2	*1	0	0	Branch when (C) or $(Z)=1$	-	-	-	-	-	-	-	-	-	
BHI	rel	2	*1	0	0	Branch when (C) or (Z) $=0$	-	-	-	-	-	-	-	-	-	-
BRA	rel	2	*1	0	0	Branch unconditionally	-	-	-	-	-	-	-	-	-	
JMP	@A	1		0	0	word (PC) \leftarrow (A)	-	-	-	-	-	-	-	-	-	-
JMP	addr16	3		0	0	word (PC) \leftarrow addr 16	-	-	-	-	-	-	-	-	-	
JMP	@ear	2	3	0	0	word (PC) \leftarrow (ear)	-	-	-	-	-	-	-	-	-	
JMP	@eam @ear *3	$\stackrel{2+}{2}$	$4+$ (a)	0 2	(c)	word (PC) word (PC) \leftarrow (eam) ear $),(\mathrm{PCB}) \leftarrow($ ear +2$)$	-	-	-	-	-	-	-	-	-	
JMPP	@eam *3	2+		0	(d)	word (PC) $\leftarrow($ eam $),(\mathrm{PCB}) \leftarrow($ eam +2$)$	-	-	-	-	-	-	-	-	-	-
JMPP	addr24	4	+ 4	0	0	word $(P C) \leftarrow \operatorname{ad} 240$ to 15 , $(\mathrm{PCB}) \leftarrow$ ad24 16 to 23	-	-	-	-	-	-	-	-	-	-
CALL	@ear*4	2		1	(c)	word (PC) \leftarrow (ear)	-	-	-	-	-	-	-	-	-	-
CALL	@eam *4	$2+$		0	$2 \times$ (c)	word (PC) \leftarrow (eam)	-	-	-	-	-	-	-	-	-	-
CALL	addr16 *5	3	${ }_{6}^{7+(a)}$	0	(c)	word (PC) \leftarrow addr 16	-	-	-	-	-	-	-	-	-	-
CALLV	\#vct4*5		7	2	$2 \times$ (c) $2 \times$ (c)	Vector call instruction word $(P C) \leftarrow($ ear $) 0$ to 15	-	-	-	-	-	-	-	-	-	-
CALLP	@ear *6	2	10	2	$2 \times$ (c)	word (PC) \leftarrow (ear) 0 to 15 $(P C B) \leftarrow($ ear $) 16$ to 23	-	-	-	-	-	-	-	-	-	
CALLP	@eam *6	2+	11+ (a)	0	*2	word $($ PC $) \leftarrow($ eam $) 0$ to 15 $(\mathrm{PCB}) \leftarrow(\mathrm{eam}) 16$ to 23	-	-	-	-	-	-	-	-	-	-
CALLP	addr24 *7	4	10	0	$2 \times$ (c)	word $(\mathrm{PC}) \leftarrow$ addr0 to 15, (PCB) \leftarrow addr16 to 23	-	-	-	-	-	-	-	-	-	-

*1: 4 when branching, 3 when not branching.
*2: (b) $+3 \times(\mathrm{c})$
*3: Read (word) branch address.
*4: W: Save (word) to stack; R: read (word) branch address.
*5: Save (word) to stack.
*6: W: Save (long word) to W stack; R: read (long word) R branch address.
*7: Save (long word) to stack.
Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

[^5]
MB90660A Series

Table 19 Branch 2 Instructions [19 Instructions]

*1: 5 when branching, 4 when not branching
*2: 13 when branching, 12 when not branching
*3: $7+$ (a) when branching, $6+$ (a) when not branching
*4: 8 when branching, 7 when not branching
*5: 7 when branching, 6 when not branching
*6: $8+$ (a) when branching, $7+$ (a) when not branching
*7: Retrieve (word) from stack
*8: Retrieve (long word) from stack
*9: In the CBNE/CWBNE instruction, do not use the RWj+ addressing mode.
Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90660A Series

Table 20 Other Control Instructions (Byte/Word/Long Word) [36 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH	AH	I	S	T	N	Z	V	C	RMW
PUSHW A	1	4	0	(c)	word $(\mathrm{SP}) \leftarrow(\mathrm{SP})-2,((\mathrm{SP})) \leftarrow(\mathrm{A})$	-	-	-	-	-	-	-	-	-	-
PUSHW AH	1	4	0	(c)	word $(\mathrm{SP}) \leftarrow(\mathrm{SP})-2,((\mathrm{SP})) \leftarrow(\mathrm{AH})$	-	-	-	-	-	-	-	-	-	-
PUSHW PS	1	* 4	${ }_{* 5}$	$\underset{* 4}{\text { (c) }}$	word (SP) $\leftarrow(S P)-2,((S P)) \leftarrow(P S)$	-	-	-	-	-	-	-	-	-	-
PUSHW rlst	2				$(\mathrm{SP}) \leftarrow(\mathrm{SP})-2 \mathrm{n},((\mathrm{SP})) \leftarrow(\mathrm{rlst})$	-	-	-	-	-	-	-	-	-	-
POPW A	1	3	0	(c)	word $(A) \leftarrow((S P)),(S P) \leftarrow(S P)+2$	-	*	-	-	-	-	-	-	-	-
POPW AH	1	3	0	(c)	word $(\mathrm{AH}) \leftarrow((\mathrm{SP})$), (SP) $\leftarrow(\mathrm{SP})+2$	-	-	-	-	-	-	-	-	-	-
POPW PS	1	${ }_{*}^{4}$	$\stackrel{1}{*}$	$\left({ }_{* 4}\right.$	word (PS) $\leftarrow(($ SP $)$), $(\mathrm{SP}) \leftarrow(\mathrm{SP})+2$	-	-	*	*	*	*	*		*	
POPW rlst	2	*2	*5		$(\mathrm{rlst}) \leftarrow((S P)),(\mathrm{SP}) \leftarrow(\mathrm{SP})+2 \mathrm{n}$	-	-	-	-	-	-	-	-	-	-
JCTX @A	1	14	0	$6 \times$ (c)	Context switch instruction	-	-	*	*	*	*	*	*	*	-
$\begin{array}{ll}\text { AND } & \text { CCR, \#imm8 } \\ \text { OR } & \text { CCR, \#imm8 }\end{array}$	2	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	byte $($ CCR $) \leftarrow(C C R)$ and imm8 byte $(C C R) \leftarrow(C C R)$ or imm8	-	-	*	*	*	*	*	*	*	-
MOV RP, \#imm8 MOV ILM, \#imm8	2	2	0	0	byte (RP) \leftarrow imm8	-	-	-	-	-	-	-	-	-	-
	2	2	0	0	byte (LLM) ↔imm8	-	-	-	-	-	-	-	-	-	-
MOVEA RWi, ear MOVEA RWi, eam MOVEA A, ear MOVEA A, eam	2	3	1	0	word (RWi) \leftarrow ear	-	-	-	-	-	-	-	-	-	-
	$2+$	2+ (a)	1	0	word (RWi) \leftarrow eam	-	-	-		-	-	-	-	-	-
	2	1	0	0	word (A) \leftarrow ear	-	*	-	-	-	-	-	-	-	-
	2+	$1+$ (a)	0	0	word (A) \leftarrow eam	-		-	-	-	-	-	-	-	-
ADDSP \#imm8 ADDSP \#imm16	2	3	0	0	word (SP) $\leftarrow(\mathrm{SP})+$ +ext (imm8)	-	-	-	-	-	-	-	-	-	-
	3	3	0	0	word $(\mathrm{SP}) \leftarrow(\mathrm{SP})+$ +imm16	-	-	-	-	-	-	-	-	-	-
MOV A, brgl	2	*1	0	0	byte $($ A $) \leftarrow$ (brgl)	Z	*	-	-	-	*	*	-	-	-
MOV brg2, A	2	1	0	0	byte (brg2) \leftarrow (A)	-	-	-	-	-	*	*	-	-	-
NOP	1	1	0	0	No operation	-	-	-	-	-	-	-	-	-	-
ADB	1	1	0	0	Prefix code for accessing AD space	-	-	-	-	-	-	-	-	-	-
DTB	1	1	0	0	Prefix code for accessing DT space	-	-	-	-	-	-	-	-	-	-
PCB	1	1	0	0	Prefix code for accessing PC space	-	-	-	-	-	-	-	-	-	-
SPB	1	1	0	0	Prefix code for accessing SP space	-	-	-	-	-	-	-	-	-	-
NCC	1	1	0	0	Prefix code for no flag change	-	-	-	-	-	-	-	-	-	-
CMR	1	1	0	0	Prefix code for common register bank	-	-	-	-	-	-	-	-	-	-

*1: PCB, ADB, SSB, USB, and SPB : 1 state DTB, DPR
: 2 states
*2: $7+3 \times$ (pop count) $+2 \times$ (last register number to be popped), 7 when rlst $=0$ (no transfer register)
*3: $29+$ (push count) $-3 \times$ (last register number to be pushed), 8 when rlst $=0$ (no transfer register)
*4: Pop count \times (c), or push count \times (c)
*5: Pop count or push count.
Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

[^6]
MB90660A Series

Table 21 Bit Manipulation Instructions [21 Instructions]

Mnemonic		\#	~	RG	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
MOVB	A, dir:bp	3	5	0	(b)	byte $($ A $) \leftarrow$ (dir:bp) b	Z	*	-	-	-	*	*	-	-	-
MOVB	A, addr16:bp	4	5	0	(b)	byte $(\mathrm{A}) \leftarrow($ addr 16 b bp) b	Z	*	-	-	-	*	*	-	-	
MOVB	A, io:bp	3	4	0	(b)	byte $(\mathrm{A}) \leftarrow(\mathrm{io}: \mathrm{bp}) \mathrm{b}$	Z	*	-	-	-	*	*	-	-	-
MOVB	dir:bp, A	3	7	0	$2 \times$ (b)	bit (dir:bp) $\mathrm{b} \leftarrow(\mathrm{A})$	-	-	-	-	-	*	*	-	-	*
MOVB	addr16:bp, A	4	7	0	$2 \times$ (b)	bit (addr16:bp) $\mathrm{b} \leftarrow(\mathrm{A})$	-	-	-	-	-	*	*	-	-	*
MOVB	io:bp, A	3	6	0	$2 \times$ (b)	bit (io:bp) $\mathrm{b} \leftarrow(\mathrm{A})$	-	-	-	-	-	*	*	-	-	*
SETB	dir:bp	3	7	0	$2 \times$ (b)	bit (dir:bp) $\mathrm{b} \leftarrow 1$	-	-	-	-	-	-	-	-	-	*
SETB	addr16:bp	4	7	0	$2 \times$ (b)	bit (addr16:bp) $\mathrm{b} \leftarrow 1$	-	-	-	-	-	-	-	-	-	
SETB	io:bp	3	7	0	$2 \times$ (b)	bit (io:bp) $b \leftarrow 1$	-	-	-	-	-	-	-	-	-	
CLRB	dir:bp	3	7	0	$2 \times$ (b)	bit (dir:bp) $b \leftarrow 0$	-	-	-	-	-	-	-	-	-	
CLRB	addr16:bp	4	7	0	$2 \times$ (b)	bit (addr16:bp) $b \leftarrow 0$	-	-	-	-	-	-	-	-	-	
CLRB	io:bp	3	7	0	$2 \times$ (b)	bit (io:bp) $\mathrm{b} \leftarrow 0$	-	-	-	-	-	-	-	-	-	
					(b)	Branch when (dir:bp) b $=0$	-			-		-				
BBC	addr16:bp, rel io:bp, rel	$\begin{aligned} & 5 \\ & 4 \end{aligned}$	*1	0	(b)	Branch when (addr16:bp) $b=0$ Branch when (io:bp) $b=0$	-	-	-	-	-	-	*	-	-	-
BBC	io:bp, rel	4	*2		(b)	Branch when (io:bp) $\mathrm{b}=0$		-	-	-	-	-		-	-	
BBS	dir:bp, rel	4	${ }^{*}$	0	(b)	Branch when (dir:bp) $b=1$	-	-	-	-	-	-	*	-	-	-
BBS	addr16:bp, rel	5	*1	0	(b)	Branch when (addr16:bp) $b=1$	-	-	-	-	-	-	*	-	-	-
BBS	io:bp, rel	4	*2	0	(b)	Branch when (io:bp) $b=1$	-	-	-	-	-	-	*	-	-	
SBBS	addr16:bp, rel	5	*3	0	$2 \times$ (b)	Branch when (addr16:bp) $b=1$, bit $=1$	-	-	-	-	-	-	*	-	-	*
WBTS	io:bp	3	*4	0	*5	Wait until (io:bp) $\mathrm{b}=1$	-	-	-	-	-	-	-	-	-	-
WBTC	io:bp	3	*4	0	*5	Wait until (io:bp) $\mathrm{b}=0$	-	-	-	-	-	-	-	-	-	-

*1: 8 when branching, 7 when not branching
*2: 7 when branching, 6 when not branching
*3: 10 when condition is satisfied, 9 when not satisfied
*4: Undefined count
*5: Until condition is satisfied
Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90660A Series

Table 22 Accumulator Manipulation Instructions (Byte/Word) [6 Instructions]

Mnemonic	\#	~	RG	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMw
SWAP	1	3	0	0	byte (A) 0 to $7 \leftrightarrow(A) 8$ to 15	-	-	-	-	-	-	-	-	-	
SWAPW/XCHW AL, AH	1	2	0	0	word (AH) $\leftrightarrow(\mathrm{AL})$	-	*	-	-	-	-	-	-	-	-
EXT	1	1	0	0	byte sign extension	X	-	-	-	-	*	*	-	-	-
EXTW	1	2	0	0	word sign extension	-	X	-	-	-	*	*	-	-	-
ZEXT	1	1	0	0	byte zero extension	Z	-	-	-	-	R	*	-	-	-
ZEXTW	1	1	0	0	word zero extension	-	Z	-	-	-	R	*	-	-	-

Table 23 String Instructions [10 Instructions]

Mnemonic	\#	~	RG	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
MOVS/MOVSI MOVSD	2	$\begin{aligned} & \hline{ }^{* 2} \\ & { }^{2} \end{aligned}$	$\begin{aligned} & \hline{ }^{* 5} \\ & * 5 \end{aligned}$	$\begin{aligned} & { }^{* 3} \\ & *_{3} \end{aligned}$	Byte transfer @AH $+\leftarrow @ A L+$, counter $=$ RW0 Byte transfer @AH- \leftarrow @AL-, counter = RW0	-	-	-	-	-	-	-	-	-	-
$\begin{aligned} & \text { SCEQ/SCEQI } \\ & \text { SCEQD } \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \star_{1} \\ & { }^{*} \end{aligned}$	$\begin{aligned} & * 5 \\ & { }_{* 5} \end{aligned}$	$\begin{aligned} & * 4 \\ & * 4 \end{aligned}$	Byte retrieval $(@ A H+)-A L$, counter = RW0 Byte retrieval (@AH-) - AL, counter = RW0	-	-	-	-	-	*	*	*	*	-
FISL/FILSI	2	6m +6	*5	*3	Byte filling @AH $+\leftarrow A L$, counter = RW0	-	-	-	-	-	*	*	-	-	-
MOVSW/MOVSW MOVSWD	2	$\begin{aligned} & \star_{2} \\ & \star_{2} \end{aligned}$	$\begin{aligned} & \star_{8} \\ & { }^{8} \end{aligned}$	$\begin{array}{\|l\|} \hline * 6 \\ { }^{*} 6 \end{array}$	Word transfer @AH+ $\leftarrow @ A L+$, counter = RW0 Word transfer @AH- \leftarrow @AL-, counter = RW0	-	-	-	-	-	-	-	-	-	-
SCWEQ/SCWEQI SCWEQD	2	$\begin{aligned} & { }^{*} 1 \\ & { }^{1} \end{aligned}$	$\begin{aligned} & \star 8 \\ & \star 8 \end{aligned}$	*7 ${ }^{*}$	Word retrieval (@AH+) - AL, counter = RW0 Word retrieval (@AH-) - AL, counter = RW0	-	-	-	-	-	*	*	*	*	-
FILSW/FILSWI	2	$6 \mathrm{~m}+6$	*8	*6	Word filling @AH+ \leftarrow AL, counter $=$ RW0	-	-	-	-	-	*	*	-	-	-

m : RW0 value (counter value)
n : Loop count
*1: 5 when RW0 is $0,4+7 \times(\mathrm{RW} 0)$ for count out, and $7 \times \mathrm{n}+5$ when match occurs
*2: 5 when RW0 is $0,4+8 \times(\mathrm{RWO})$ in any other case
*3: (b) $\times($ RW0 $)+($ b $) \times($ RW0) when accessing different areas for the source and destination, calculate (b) separately for each.
*4: (b) $\times n$
*5: $2 \times$ (RW0)
*6: (c) $\times($ RW0 $)+(\mathrm{c}) \times($ RW0 $)$ when accessing different areas for the source and destination, calculate (c) separately for each.
*7: (c) $\times \mathrm{n}$
*8: $2 \times$ (RW0)
Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90660A Series

MASK OPTION LIST

No.	Part number	MB60662A MB90663A		MB90P663A	
	Specifying procedure	Specify when ordering masking		Set with EPROM programmer	
1	$\begin{aligned} & \hline \text { P00 to P07 } \\ & \text { P10 to P17 } \\ & \text { P20 to P27 } \\ & \text { P30 to P33 } \\ & \text { P40 to P47 } \\ & \text { P60 to P66 } \\ & \hline \text { RST } \\ & \text { DTTI } \end{aligned}$	Pull-up resistor can be selected for each pin		Pull-up resistor can be selected for each pin	
2	MD2	Pull-down resistor	Can be selected all at once	Cannot be selected; pull-down resistor not provided	
	MD1	Pull-up resistor		Pull-up resistor	Can be selected all at once
	MD0	Pull-up resistor		Pull-up resistor	
3	Accept asynchronous reset input Accepted Not accepted	Can be selected		Can be selected	

Notes: • A specification of "yes" for accept asynchronous reset input refers to a function whereby reset input is accepted when oscillation for output ports (including peripheral resource output) is stopped and port output (including peripheral resource output) is forced Hi-z. Note, however, that since internal reset (reset of the CPU and peripheral resources) is synchronized with the clock, the CPU and peripheral resources are not initialized when the clock is stopped.

- For details on writing to the MB90P663A, see Chapter 6, "■ PROGRAMMING THE MB90P663A EPROM".
- Use of a pull-up/pull-down resistors for the mode pins (MD2 to MDO) can be selected separately for each pin. If "yes" is selected, a pull-up is attached to MD0 and MD1 and a pull-down to MD2 for mask ROM versions. A pull-up is attached to MD0 and MD1, but a pull-down is not attached to MD2 for OTP versions.
- Since it takes eight machine cycles to make option settings for the MB90P663A, options cannot be set between when power is first turned on and the clock is supplied. (This results in a setting of no pull-up for all pins and accept asynchronous reset input.)

MB90660A Series

ORDERING INFORMATION

Part number	Package	Remarks
MB90662AP-SH	64-pin plastic SH-DIP (DIP-64P-M01)	
MB90663AP-SH		
MB90P663AP-SH	MB90662APFM	
MB90663APFM		
MB90P663APFM	64-pin plastic LQFP (FTP-64P-M09)	

MB90660A Series

PACKAGE DIMENSIONS

64-pin Plastic SH-DIP
(DIP-64P-M01)

© 1994 FUJITSU LIMITED D64001S-3C-4
Dimensions in mm (inches)

64-pin Plastic LQFP
(FPT-64P-M09)

© 1994 FUJITSU LIMTED F64018S-1C-2
Dimensions in mm (inches)

MB90660A Series

FUJITSU LIMITED

For further information please contact：

Japan

FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT，4－1－1，Kamikodanaka
Nakahara－ku，Kawasaki－shi
Kanagawa 211－88，Japan
Tel：（044）754－3763
Fax：（044）754－3329

North and South America

FUJITSU MICROELECTRONICS，INC．
Semiconductor Division
3545 North First Street
San Jose，CA 95134－1804，U．S．A．
Tel：（408）922－9000
Fax：（408）432－9044／9045

Europe

FUJITSU MIKROELEKTRONIK GmbH
Am Siebenstein 6－10
63303 Dreieich－Buchschlag
Germany
Tel：（06103）690－0
Fax：（06103）690－122

Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE．LIMITED \＃05－08， 151 Lorong Chuan
New Tech Park
Singapore 556741
Tel：（65）281－0770
Fax：（65）281－0220

All Rights Reserved．
The contents of this document are subject to change without notice．Customers are advised to consult with FUJITSU sales representatives before ordering．

The information and circuit diagrams in this document presented as examples of semiconductor device applications，and are not intended to be incorporated in devices for actual use．Also， FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams．

FUJITSU semiconductor devices are intended for use in standard applications（computers，office automation and other office equipment，industrial，communications，and measurement equipment，personal or household devices，etc．）．

CAUTION：

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage， or where extremely high levels of reliability are demanded（such as aerospace systems，atomic energy controls，sea floor repeaters，vehicle operating controls，medical devices for life support，etc．）are requested to consult with FUJITSU sales representatives before such use．The company will not be responsible for damages arising from such use without prior approval．

Any semiconductor devices have inherently a certain rate of failure．You must protect against injury，damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy，fire protection，and prevention of over－current levels and other abnormal operating conditions．

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan，the prior authorization by Japanese government should be required for export of those products from Japan．

F9703
© FUJITSU LIMITED Printed in Japan

[^0]: www.DataSheet4U.com

[^1]: www.DataSheet4U.com

[^2]: www.DataSheet4U.com

[^3]: www.DataSheet4U.com

[^4]: www.DataSheet4U.com

[^5]: www.DataSheet4U.com

[^6]: www.DataSheet4U.com

