mos integrated circuit μ PD75P3116

4-BIT SINGLE-CHIP MICROCONTROLLER

The μ PD75P3116 replaces the μ PD753108's internal mask ROM with a one-time PROM, and features expanded ROM capacity.

Because the μ PD75P3116 supports programming by users, it is suitable for use in evaluation of systems in the development stage using the μ PD753104, 753106, or 753108, and for use in small-scale production.

Detailed information about functions is provided in the following User's Manual. Be sure to read it before designing:

 μ PD753108 User's Manual : U10890E

FEATURES

EC

- \bigcirc Compatible with μ PD753108
- Memory capacity:
 - PROM : 16384 x 8 bits
 - RAM : 512 x 4 bits
- \bigcirc Can be operated in same power supply voltage range as the mask version μ PD753108
 - VDD = 1.8 to 5.5 V
- On-chip LCD controller/driver
- \bigcirc QTOPTM microcontroller

Remark QTOP microcontrollers are microcontrollers with on-chip one-time PROM that are totally supported by NEC. The support include writing application programs, marking, screening, and verification.

ORDERING INFORMATION

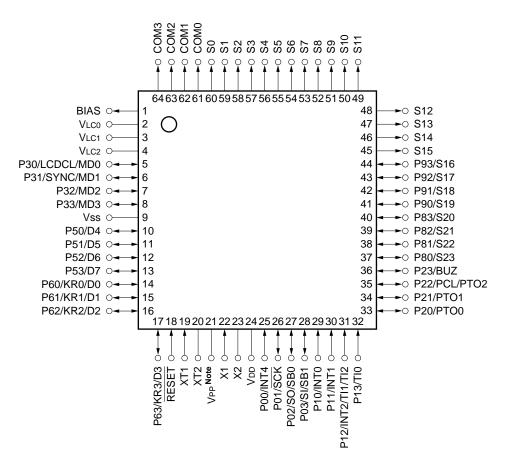
Part Number	Package
µPD75P3116GC-AB8	64-pin plastic QFP (14 x 14 mm, 0.8-mm pitch)
μ PD75P3116GK-8A8	64-pin plastic QFP (12 x 12 mm, 0.65-mm pitch)

Caution This device does not provide an internal pull-up resistor connection function by means of mask option.

The information in this document is subject to change without notice.

FUNCTION OUTLINE

Item			Function		
Instruction execution time		• 0.67	 0.95, 1.91, 3.81, or 15.3 μs (main system clock: @ 4.19 MHz) 0.67, 1.33, 2.67, or 10.7 μs (main system clock: @ 6.0 MHz) 122 μs (subsystem clock: @ 32.768 kHz) 		
Internal memory	PROM	16384	x 8 bits		
	RAM	512 x	4 bits		
General-purpose	register		manipulation: 8 x 4 banks manipulation: 4 x 4 banks		
I/O ports	CMOS input	8	Internal pull-up resistor connection can be specified by software: 7		
	CMOS I/O	20	Internal pull-up resistor connection can be specified by software: 12 Shared by segment pin: 8		
	N-ch open-drain I/O	4	13-V withstand voltage		
	Total	32			
LCD controller/driv	ver	_	 Segment number selection: 16/20/24 segments (Switchable to CMOS I/O ports in a batch of 4 pins, max. 8 pins) Display mode selection : static, 1/2 duty (1/2 bias), 1/3 duty (1/2 bias), 1/3 duty (1/3 bias) 		
Timers		5 chai	 5 channels: • 8-bit timer/event counter : 3 channels (Can be used as 16-bit timer/event counter, carrier generator, and timer with gate) • Basic interval timer/watchdog timer : 1 channel • Watch timer : 1 channel 		
Serial interface		• 2-wii	 3-wire serial I/O mode MSB/LSB first switchable 2-wire serial I/O mode SBI mode 		
Bit sequential buff	er (BSB)	16 bits	3		
Clock output (PCL	_)		Φ, 524, 262, and 65.5 kHz (main system clock: @ 4.19 MHz) Φ, 750, 375, and 93.8 kHz (main system clock: @ 6.0 MHz)		
Buzzer output (BL	JZ)		• 2, 4, and 32 kHz (main system clock: @ 4.19 MHz or subsystem clock: @ 32.768 kHz) • 2.93, 5.86, 46.9 kHz (main system clock: @ 6.0 MHz)		
Vectored interrupts			• External : 3 • Internal : 5		
Test inputs			External : 1 Internal : 1		
System clock osci	Ilation circuit		Ceramic/crystal oscillation circuit for main system clock Crystal oscillation circuit for subsystem clock		
Standby function		STOP	STOP/HALT mode		
Power supply volt	age	VDD =	1.8 to 5.5 V		
Package			 64-pin plastic QFP (14 x 14 mm, 0.8-mm pitch) 64-pin plastic QFP (12 x 12 mm, 0.65-mm pitch) 		

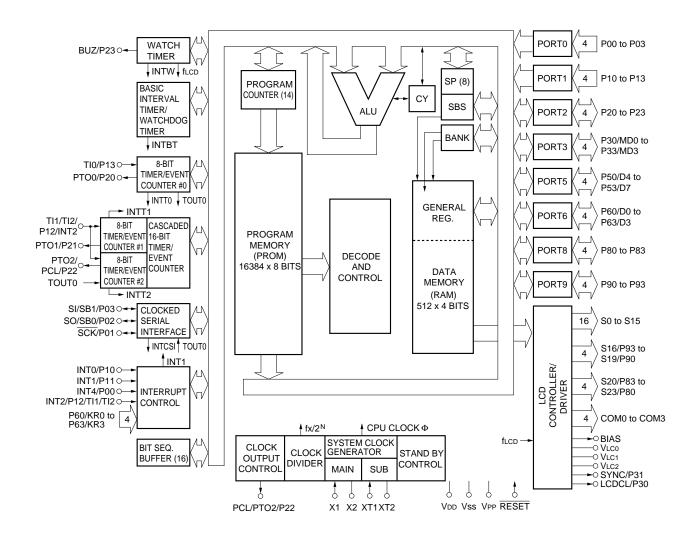


CONTENTS

1.	PIN CONFIGURATION (Top View)	4
2.	BLOCK DIAGRAM	5
3.	PIN FUNCTIONS	6
	3.1 Port Pins	6
	3.2 Non-port Pins	8
	3.3 Equivalent Circuits for Pins	10
	3.4 Recommended Connection of Unused Pins	12
4.	Mk I AND Mk II MODE SELECTION FUNCTION	13
	4.1 Differences between Mk I Mode and Mk II Mode	13
	4.2 Setting of Stack Bank Selection (SBS) Register	14
5.	DIFFERENCES BETWEEN μ PD75P3116 AND μ PD753104, 753106, AND 753108	15
6.	MEMORY CONFIGURATION	16
7.	INSTRUCTION SET	18
8.	ONE-TIME PROM (PROGRAM MEMORY) WRITE AND VERIFY	27
	8.1 Operation Modes for Program Memory Write/Verify	27
	8.2 Program Memory Write Procedure	28
	8.3 Program Memory Read Procedure	29
	8.4 One-time PROM Screening	30
9.	ELECTRICAL SPECIFICATIONS	31
10	. CHARACTERISTIC CURVES (REFERENCE VALUES)	46
11	. PACKAGE DRAWINGS	48
12	. RECOMMENDED SOLDERING CONDITIONS	50
AF	PPENDIX A. FUNCTION LIST OF μ PD75308B, 753108, AND 75P3116	51
AF	PPENDIX B. DEVELOPMENT TOOLS	53
AF	PPENDIX C. RELATED DOCUMENTS	57

1. PIN CONFIGURATION (Top View)

- 64-pin plastic QFP (14 x 14 mm, 0.8-mm pitch) : μ PD75P3116GC-AB8
- 64-pin plastic QFP (12 x 12 mm, 0.65-mm pitch): μPD75P3116GK-8A8



Note Always connect the VPP pin directly to VDD during normal operation.

PIN IDENTIFICATIONS

P00-P03	: Port0	COM0 to COM3	: Common Output 0 to 3
P10-P13	: Port1	VLC0 to VLC2	: LCD Power Supply 0 to 2
P20-P23	: Port2	BIAS	: LCD Power Supply Bias Control
P30-P33	: Port3	LCDCL	: LCD Clock
P50-P53	: Port5	SYNC	: LCD Synchronization
P60-P63	: Port6	TI0 to TI2	: Timer Input 0 to 2
P80-P83	: Port8	PTO0 to PTO2	: Programmable Timer Output 0 to 2
P90-P93	: Port9	BUZ	: Buzzer Clock
KR0-KR3	: Key Return 0 to 3	PCL	: Programmable Clock
SCK	: Serial Clock	INT0, 1, 4	: External Vectored Interrupt 0, 1, 4
SI	: Serial Input	INT2	: External Test Input 2
SO	: Serial Output	X1, X2	: Main System Clock Oscillation 1, 2
SB0, SB1	: Serial Data Bus 0, 1	XT1, XT2	: Subsystem Clock Oscillation 1, 2
RESET	: Reset	Vpp	: Programming Power Supply
MD0 to MD3	: Mode Selection 0 to 3	Vdd	: Positive Power Supply
D0 to D7	: Data Bus 0 to 7	Vss	: Ground
S0 to S23	: Segment Output 0 to 23		

2. BLOCK DIAGRAM

3. PIN FUNCTIONS

3.1 Port Pins (1/2)

Pin name	I/O	Alternate function	Function	8-bit I/O	Status after reset	I/O circuit type ^{Note 1}
P00	Input	INT4	4-bit input port (PORT0) P01 to P03 are 3-bit pins for which connection of	Х	Input	
P01	I/O	SCK	an internal pull-up resistor can be specified by software.			<f>-A</f>
P02	I/O	SO/SB0	soltware.			<f>-B</f>
P03	I/O	SI/SB1				<m>-C</m>
P10	Input	INT0	4-bit input port (PORT1)	х	Input	-C
P11		INT1	Connection of an internal pull-up resistor can be specified by software in 4-bit units.			
P12		TI1/TI2/INT2	P10/INT0 can select noise elimination circuit.			
P13		ТІО				
P20	I/O	PTO0	4-bit I/O port (PORT2)	х	Input	E-B
P21		PTO1	Connection of an internal pull-up resistor can be specified by software in 4-bit units.			
P22		PCL/PTO2				
P23		BUZ				
P30	I/O	LCDCL/MD0	Programmable 4-bit I/O port (PORT3)	х	Input	E-B
P31		SYNC/MD1	Input and output in single-bit units can be specified. When set for 4-bit units, connection of an internal			
P32		MD2	pull-up resistor can be specified by software.			
P33	1	MD3				
P50 Note 2	I/O	D4	N-ch open-drain 4-bit I/O port (PORT5)	х	High	M-E
P51 Note 2	1	D5	When set to open-drain, voltage is 13 V.		impedance	
P52 Note 2	1	D6				
P53 Note 2	1	D7				

Notes 1. Circuit types enclosed in brackets indicate Schmitt trigger input.

2. Low-level input leakage current increases when input instructions or bit manipulation instructions are executed.

3.1 Port Pins (2/2)

Pin name	I/O	Alternate function	Function	8-bit I/O	Status after reset	I/O circuit type Note 1
P60	I/O	KR0/D0	Programmable 4-bit I/O port (PORT6) Input and output in single-bit units can be specified.	Х	Input	<f>-A</f>
P61		KR1/D1	When set for 4-bit units, connection of an internal			
P62		KR2/D2	pull-up resistor can be specified by software.			
P63		KR3/D3				
P80	I/O	S23	4-bit I/O port (PORT8)	0	Input	н
P81		S22	When set for 4-bit units, connection of an internal pull-up resistor can be specified by software ^{Note 3} .			
P82		S21				
P83		S20				
P90	I/O	S19	Programmable 4-bit I/O port (PORT9)	0	Input	Н
P91		S18	When set for 4-bit units, connection of an internal pull-up resistor can be specified by software ^{Note 3} .			
P92	1	S17				
P93		S16				

Notes 1. Circuit types enclosed in brackets indicate Schmitt trigger input.

2. Low-level leak current increases when an input instruction or a bit manipulation instruction is performed.

3. Do not connect an internal pull-up resistor by software when used as the segment signal output.

3.2 Non-port Pins (1/2)

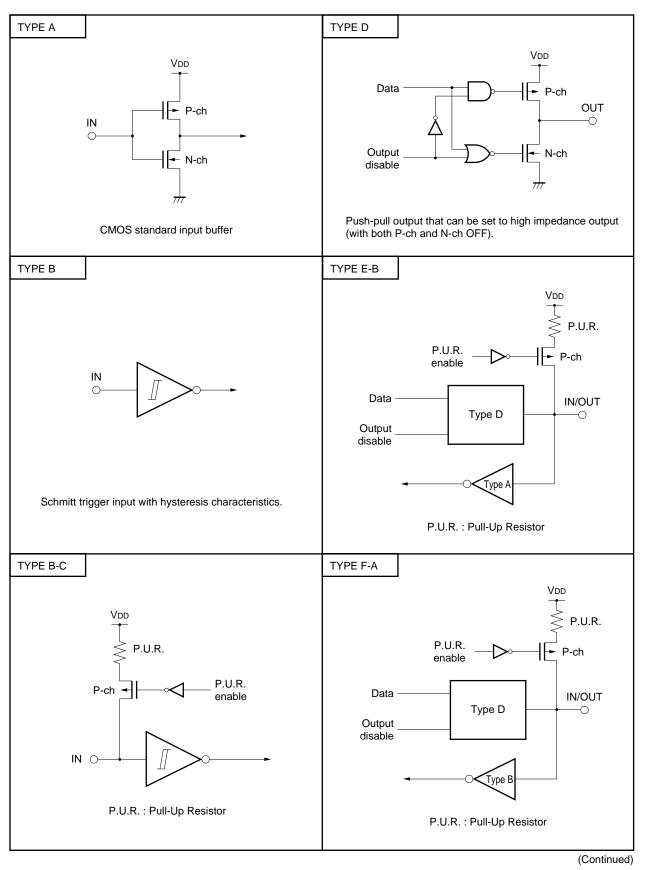
Pin name	I/O	Alternate function	Function		Status after reset	I/O circuit type ^{Note 1}
TI0	Input	P13	External event pulse input to timer/event counter		Input	-C
TI1		P12/INT2/TI2				
TI2		P12/INT2/TI1				
PTO0	Output	P20	Timer/event counter output		Input	E-B
PTO1		P21				
PTO2		P22/PCL				
PCL		P22/PTO2	Clock output			
BUZ		P23	Frequency output (for buzzer or system	clock trimming)		
SCK	I/O	P01	Serial clock I/O		Input	<f>-A</f>
SO/SB0		P02	Serial data output Serial data bus I/O			<f>-B</f>
SI/SB1		P03	Serial data input Serial data bus I/O			<m>-C</m>
INT4	Input	P00	Edge detection vectored interrupt input (valid for detecting both rising and falling	g edges)		
INT0	Input	P10	Edge detection vectored interrupt input (detection edge is selectable)	With noise elimination circuit/asynch is selectable	Input	-C
INT1		P11	INT0/P10 can select noise elimination circuit.	Asynch		
INT2	Input	P12/TI1/TI2	Rising edge detection testable input	Asynch		
KR0 to KR3	I/O	P60 to P63	Parallel falling edge detection testable in	nput	Input	<f>-A</f>
X1	Input	—	Ceramic/crystal resonator connection fo clock oscillation. If using an external clo		—	-
X2	-		and input inverted phase to X2.			
XT1	Input	—	Crystal resonator connection for subsys If using an external clock, input signal to 2		—	-
XT2	_		phase to XT2. XT1 can be used as a 1-			
RESET	Input	_	System reset input (low-level active)		_	
MD0 to MD3	Input	P30 to P33	Mode selection for program memory (PF	ROM) write/verify	Input	E-B
D0 to D3	I/O	P60/KR0 to P63/KR3	Data bus for program memory (PROM) write/verify		Input	<f>-A</f>
D4 to D7	1	P50 to P53				M-E
VPP Note 2	_	—	Programmable power supply voltage applied for program memory (PROM) write/verify. For normal operation, connect directly to VDD. Apply +12.5 V for PROM write/verify.		-	_
Vdd	_		Positive power supply		_	
Vss	_	_	Ground potential		_	_

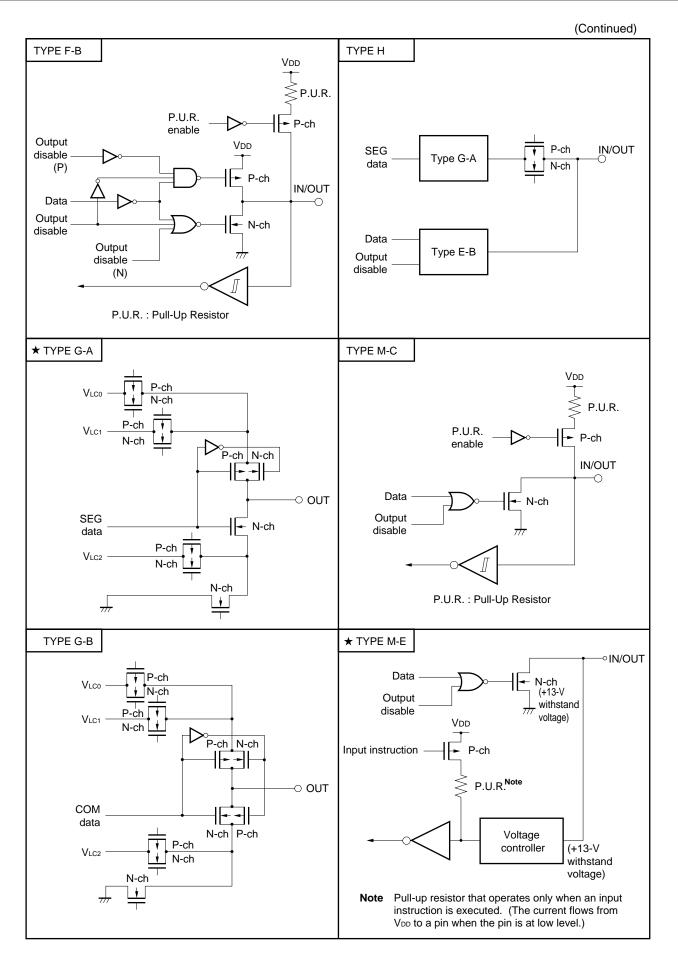
Notes 1. Circuit types enclosed in brackets indicate Schmitt trigger input.

2. The VPP pin does not operate correctly when it is not connected to the VDD pin during normal operation.

 \star \star

3.2 Non-port Pins (2/2)


Pin name	I/O	Alternate function	Function	Status after reset	I/O circuit type
S0 to S15	Output	—	Segment signal output	Note 1	G-A
S16 to S19	Output	P93 to P90	Segment signal output	Input	Н
S20 to S23	Output	P83 to P80	Segment signal output	Input	н
COM0 to COM3	Output	—	Common signal output	Note 1	G-B
VLC0 to VLC2	_	—	Power supply for driving LCD	_	_
BIAS	Output	_	Output for external split resistor cut	Note 2	_
LCDCL Note 3	I/O	P30/MD0	Clock output for driving external expansion driver	Input	E-B
SYNC Note 3	I/O	P31/MD1	Clock output for synchronization of external expansion driver	Input	E-B


Notes 1. The VPP pin does not operate normally if it is not connected with VDD pin when normal operation.

- The VLCX (X = 0, 1, 2) shown below are selected as the input source for the display outputs. S0 to S23: VLC1, COM0 to COM2: VLC2, COM3: VLC0
- **3.** When the split resistor is incorporated : Low level When the split resistor is not incorporated : High impedance
- 4. These pins are provided for future system expansion. Currently, only P30 and P31 are used.

3.3 Equivalent Circuits for Pins

The equivalent circuits for the μ PD75P3116's pins are shown in abbreviated form below.

3.4 Recommended Connection of Unused Pins

		١.
2	,	ſ

Table 3-1. List of Unused Pin Connection

Pin	Recommended connection
P00/INT4	Connect to Vss or VDD
P01/SCK	Individually connect to Vss or Vpp through a resistor.
P02/SO/SB0	
P03/SI/SB1	Connect to Vss
P10/INT0 and P11/INT1	Connect to Vss or VDD
P12/TI1/TI2/INT2	
P13/TI0	
P20/PTO0	Input status : Individually connect to Vss or Vod
P21/PTO1	through a resistor
P22/PTO2/PCL	Output status : Leave open
P23/BUZ	
P30/LCDCL/MD0	
P31/SYNC/MD1	
P32/MD2	
P33/MD3	
P50/D4 to P53/D7	Connect to Vss
P60/KR0/D0 to P63/KR3/D3	Input status : Individually connect to Vss or Vod through a resistor Output status : Leave open
S0 to S15	Leave open
COM0 to COM3	
S16/P93 to S19/P90	Input status : Individually connect to Vss or Vod through a resistor
S20/P83 to S23/P80	Output status : Leave open
VLC0 to VLC2	Connect to Vss
BIAS	Connect to Vss only when neither of VLC0, VLC1 and VLC2 is used. In other cases, leave open.
XT1 Note	Connect to Vss or VDD
XT2 Note	Leave open
Vpp	Always connect to VDD directly

Note In case the subsystem clock is not used, set SOS.0 = 1 (on-chip feedback resistor not used).

4. Mk I AND Mk II MODE SELECTION FUNCTION

Setting a stack bank selection (SBS) register for the μ PD75P3116 enables the program memory to be switched between the Mk I mode and Mk II mode. This function is applicable when using the μ PD75P3116 to evaluate the μ PD753104, 753106, or 753108.

When the SBS bit 3 is set to 1 : sets the Mk I mode (supports the Mk I mode for the μ PD753104, 753106, and 753108) When the SBS bit 3 is set to 0 : sets the Mk II mode (supports the Mk II mode for the μ PD753104, 753106, and 753108)

4.1 Differences between Mk I Mode and Mk II Mode

Table 4-1 lists differences between the Mk I mode and the Mk II mode for the μ PD75P3116.

Item		Mk I mode	Mk II mode
Program count	er	PC13-0	•
Program memo	ory (bytes)	16384	
Data memory (bits)	512 x 4	
Stack	Stack bank	Selectable via memory banks 0, 1	
	No. of stack bytes	2 bytes	3 bytes
Instruction	BRA !addr1 instruction	Not available	Available
	CALLA !addr1 instruction		
Instruction	CALL laddr instruction	3 machine cycles	4 machine cycles
execution time CALLF !faddr instruction		2 machine cycles	3 machine cycles
Supported mask ROMs		When set to Mk I mode: μPD753104, 753106, and 753108	When set to Mk II mode: µPD753104, 753106, and 753108

Table 4-1. Differences between N	Mk I Mode and Mk II Mode
----------------------------------	--------------------------

Caution The Mk II mode supports a program area exceeding 16 Kbytes for the 75X and 75XL Series. Therefore, this mode is effective for enhancing software compatibility with products that have a program area of more than 16 Kbytes.

With regard to the number of stack bytes during execution of subroutine call instructions, the usable area increases by 1 byte per stack compared to the Mk I mode when the Mk II mode is selected.

However, when the CALL !addr and CALLF !faddr instructions are used, the machine cycle becomes longer by 1 machine cycle. Therefore, if more emphasis is placed on RAM use efficiency and processing performance than on software compatibility, the Mk I mode should be used.

4.2 Setting of Stack Bank Selection (SBS) Register

Use the stack bank selection register to switch between the Mk I mode and Mk II mode. **Figure 4-1** shows the format of the stack bank selection register.

The stack bank selection register is set using a 4-bit memory manipulation instruction. When using the Mk I mode, be sure to initialize the stack bank selection register to 100XB ^{Note} at the beginning of the program. When using the Mk II mode, be sure to initialize it to 000XB ^{Note}.

Note Set the desired value for X.

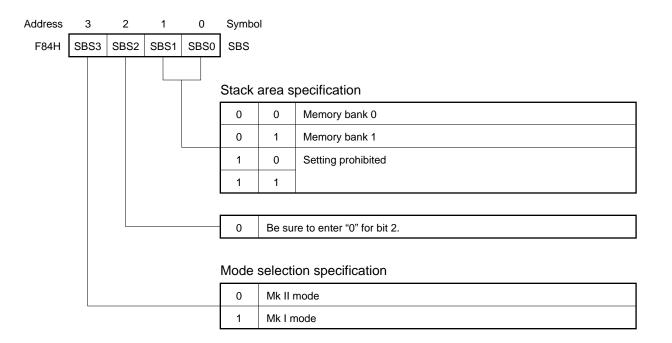


Figure 4-1. Format of Stack Bank Selection Register

Caution SBS3 is set to "1" after RESET input, and consequently the CPU operates in the MkI mode. When using instructions for the Mk II mode, set SBS3 to "0" and set the Mk II mode before using the instructions.

5. DIFFERENCES BETWEEN μ PD75P3116 AND μ PD753104, 753106, 753108

The μ PD75P3116 replaces the internal mask ROM in the μ PD753104, 753106, and 753108 with a one-time PROM and features expanded ROM capacity. The μ PD75P3116's Mk I mode supports the Mk I mode in the μ PD753104, 753106, and 753108 and the μ PD75P3116's Mk II mode supports the Mk II mode in the μ PD753104, 753106, and 753108. **Table 5-1** lists differences among the μ PD75P3116 and the μ PD753104, 753106, and 753108. Be sure to check the differences among these products before using them with PROMs for debugging or prototype testing of application systems or, later, when using them with a mask ROM for full-scale production.

For details on the CPU functions and internal hardware, refer to the User's Manual.

	ltem	μPD753104	μPD753106	μPD753108	μPD75P3116			
Program counter		12 bits	13 bits	·	14 bits			
Program memory (bytes)		Mask ROM 4096	Mask ROM 6144	Mask ROM 8192	One-time PROM 16384			
Data memory (x 4	bits)	512						
Mask options Pull-up resistor for PORT5		Available (On chip/not on chip	o can be specified.)		Not available (Not on chip)			
	Split resistor for LCD driving power supply							
	Wait time after RESET	Available (Selectable betweer	Not available (fixed to 2 ¹⁵ /fx) Note					
	Feedback resistor of subsystem clock	Available (Use/not use can be	Not available (Enable)					
Pin configuration	Pin Nos. 5 to 8	P30 to P33			P30/MD0 to P33/MD3			
	Pin Nos. 10 to 13	P50 to P53	P50/D4 to P53/D7					
	Pin Nos. 14 to 17	P60/KR0 to P63/KR	P60/KR0/D0 to P63/KR3/D3					
	Pin No. 21	IC	Vpp					
Other		Noise resistance and noise radiation may differ due to the different circuit sizes and mask layouts.						

Table 5-1. Differences between μ PD75P3116 and μ PD753104, 753106, and 753108

Note 2^{17} /fx : 21.8 ms at 6.0-MHz operation, 31.3 ms at 4.19-MHz operation

2¹⁵/fx : 5.46 ms at 6.0-MHz operation, 7.81 ms at 4.19-MHz operation

Caution Noise resistance and noise radiation are different in PROM and mask ROMs. When changing from PROM versions to mask ROM versions when switching from prototype development to full production, be sure to fully evaluate the mask ROM version's CS (not ES).

6. MEMORY CONFIGURATION

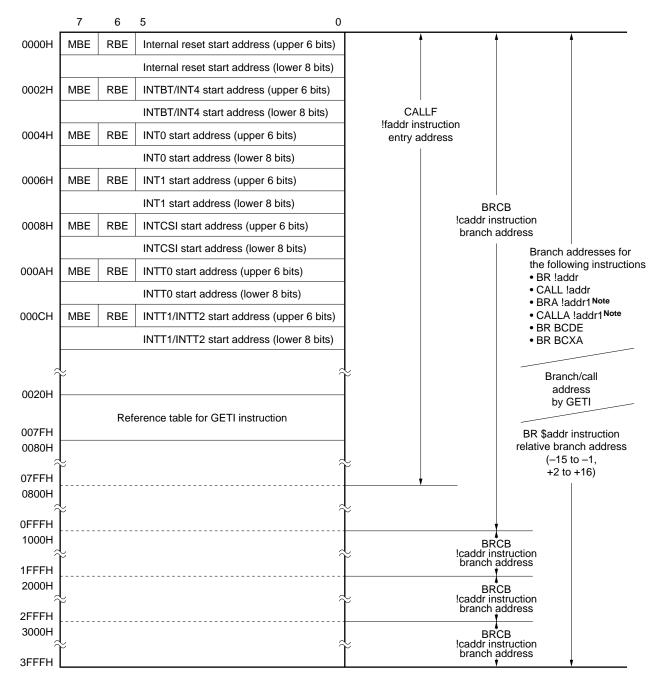


Figure 6-1. Program Memory Map

Note Can be used only in the Mk II mode

Remark For instructions other than those noted above, the BR PCDE and BR PCXA instructions can be used to branch to addresses with changes in the PC's lower 8 bits only.

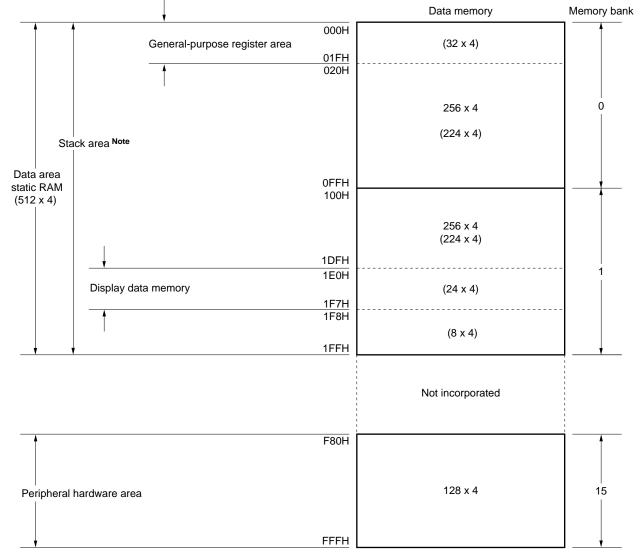


Figure 6-2. Data Memory Map

Note Memory bank 0 or 1 can be selected as the stack area.

7. INSTRUCTION SET

(1) Representation and coding formats for operands

In the instruction's operand area, use the following coding format to describe operands corresponding to the instruction's operand representations (for further description, refer to the **RA75X Assembler Package User's Manual Language (EEU-1363)**). When there are several codes, select and use just one. Codes that consist of upper-case letters and + or – symbols are key words that should be entered as they are.

For immediate data, enter an appropriate numerical value or label.

Enter register flag symbols as label descriptors instead of mem, fmem, pmem, bit, etc. (for further description, refer to the **User's Manual**). The number of labels that can be entered for fmem and pmem are restricted.

Representation	Coding format
reg	X, A, B, C, D, E, H, L
reg1	X, B, C, D, E, H, L
rp	XA, BC, DE, HL
rp1	BC, DE, HL
rp2	BC, DE
rp'	XA, BC, DE, HL, XA', BC', DE', HL'
rp'1	BC, DE, HL, XA', BC', DE', HL'
rpa	HL, HL+, HL–, DE, DL
rpa1	DE, DL
n4	4-bit immediate data or label
n8	8-bit immediate data or label
mem	8-bit immediate data or label ^{Note}
bit	2-bit immediate data or label
fmem	FB0H to FBFH, FF0H to FFFH immediate data or label
pmem	FC0H to FFFH immediate data or label
addr	0000H to 3FFFH immediate data or label
addr1	0000H to 3FFFH immediate data or label (Mk II mode only)
caddr	12-bit immediate data or label
faddr	11-bit immediate data or label
taddr	20H to 7FH immediate data (however, bit0 = 0) or label
PORTn	PORT0 to PORT3, PORT5, PORT6, PORT8, PORT9
IEXXX	IEBT, IECSI, IET0 to IET2, IE0 to IE2, IE4, IEW
RBn	RB0 to RB3
MBn	MB0, MB1, MB15

Note When processing 8-bit data, only even-numbered addresses can be specified.

(2) Operati	on legend
А	: A register; 4-bit accumulator
В	: B register
С	: C register
D	: D register
Е	: E register
Н	: H register
L	: L register
Х	: X register
XA	: Register pair (XA); 8-bit accumulator
BC	: Register pair (BC)
DE	: Register pair (DE)
HL	: Register pair (HL)
XA'	: Expansion register pair (XA')
BC'	: Expansion register pair (BC')
DE'	: Expansion register pair (DE')
HL'	: Expansion register pair (HL')
PC	: Program counter
SP	: Stack pointer
CY	: Carry flag; bit accumulator
PSW	: Program status word
MBE	: Memory bank enable flag
RBE	: Register bank enable flag
PORTn	: Port n (n = 0 to 3, 5, 6, 8, 9)
IME	: Interrupt master enable flag
IPS	: Interrupt priority selection register
IEXXX	: Interrupt enable flag
RBS	: Register bank selection register
MBS	: Memory bank selection register
PCC	: Processor clock control register
	: Delimiter for address and bit
(XX)	: Addressed data with xx
XXH	: Hexadecimal data

(3) Description of symbols used in addressing area

	MB = MBE • MBS	4							
*1	MBS = 0, 1, 15								
*2	MB = 0								
	MBE = 0 : MB = 0 (000H to 07FH)								
*3	MB = 15 (F80H to FFFH)	Data memory addressing							
- 3	MBE = 1 : MB = MBS								
	MBS = 0, 1, 15								
*4	MB = 15, fmem = FB0H to FBFH, FF0H to FFFH								
*5	MB = 15, pmem = FC0H to FFFH								
*6	addr = 0000H to 3FFFH	Å							
*7	addr, addr1 = (Current PC) -15 to (Current PC) -1								
1	(Current PC) +2 to (Current PC) +16								
	caddr = 0000H to 0FFFH (PC13, 12 = 00B) or								
*0	1000H to 1FFFH (PC13, 12 = 01B) or	Program memory							
*8	2000H to 2FFFH (PC13, 12 = 10B) or	addressing							
	3000H to 3FFFH (PC13, 12 = 11B)								
*9	faddr = 0000H to 07FFH								
*10	taddr = 0020H to 007FH								
*11	addr1 = 0000H to 3FFFH (Mk II mode only)	¥							

Remarks 1. MB indicates access-enabled memory banks.

- **2.** In area *2, MB = 0 for both MBE and MBS.
- **3.** In areas *4 and *5, MB = 15 for both MBE and MBS.
- 4. Areas *6 to *11 indicate corresponding address-enabled areas.

(4) Description of machine cycles

S indicates the number of machine cycles required for skipping of skip-specified instructions. The value of S varies as shown below.

- Skipped instruction is 1-byte or 2-byte instruction S = 1
- Skipped instruction is 3-byte instruction^{Note} S = 2

Note 3-byte instructions: BR !addr, BRA !addr1, CALL !addr, and CALLA !addr1

Caution The GETI instruction is skipped for one machine cycle.

One machine cycle equals one cycle (= tcy) of the CPU clock Φ . Use the PCC setting to select among four cycle times.

Instruction group	Mnemonic	Operand	No. of bytes	Machine cycle	Operation	Addressing area	Skip condition
Transfer MOV	A, #n4	1	1	A<-n4		String-effect A	
		reg1, #n4	2	2	reg1<-n4		
		XA, #n8	2	2	XA<-n8		String-effect A
		HL, #n8	2	2	HL<-n8		String-effect B
		rp2, #n8	2	2	rp2<-n8		
		A, @HL	1	1	A<-(HL)	*1	
		A, @HL+	1	2+S	A<-(HL), then L<-L+1	*1	L=0
		A, @HL-	1	2+S	A<-(HL), then L<-L-1	*1	L=FH
		A, @rpa1	1	1	A<-(rpa1)	*2	
		XA, @HL	2	2	XA<-(HL)	*1	
		@HL, A	1	1	(HL)<-A	*1	
		@HL, XA	2	2	(HL)<-XA	*1	
		A, mem	2	2	A<-(mem)	*3	
		XA, mem	2	2	XA<-(mem)	*3	
		mem, A	2	2	(mem)<-A	*3	
		mem, XA	2	2	(mem)<-XA	*3	
		A, reg	2	2	A<-reg		
		XA, rp'	2	2	XA<-rp'		
		reg1, A	2	2	reg1<-A		
		rp'1, XA	2	2	rp'1<-XA		
	ХСН	A, @HL	1	1	A<->(HL)	*1	
		A, @HL+	1	2+S	A<->(HL), then L<-L+1	*1	L=0
		A, @HL-	1	2+S	A<->(HL), then L<-L–1	*1	L=FH
		A, @rpa1	1	1	A<->(rpa1)	*2	
		XA, @HL	2	2	XA<->(HL)	*1	
		A, mem	2	2	A<->(mem)	*3	
		XA, mem	2	2	XA<->(mem)	*3	
		A, reg1	1	1	A<->reg1		
		XA, rp'	2	2	XA<->rp'		
Table	MOVT	XA, @PCDE	1	3	XA<-(PC13-8+DE)ROM		
reference		XA, @PCXA	1	3	ХА<-(РС13-8+ХА)ком		
		XA, @BCDE ^{Note}	1	3	XA<-(BCDE)ROM	*6	
		XA, @BCXA ^{Note}	1	3	ХА<-(ВСХА)ком	*6	

Note Only the lower 3 bits in the B register are valid.

Instruction group	Mnemonic	Operand	No. of bytes	Machine cycle	Operation	Addressing area	Skip condition
Bit transfer	MOV1	CY, fmem.bit	2	2	CY<-(fmem.bit)	*4	
		CY, pmem.@L	2	2	CY<-(pmem7-2+L3-2.bit(L1-0))	*5	
		CY, @H+mem.bit	2	2	CY<-(H+mem ₃₋₀ .bit)	*1	
		fmem.bit, CY	2	2	(fmem.bit)<-CY	*4	
		pmem.@L, CY	2	2	(pmem7-2+L3-2.bit(L1-0))<-CY	*5	
		@H+mem.bit, CY	2	2	(H+mem ₃₋₀ .bit)<-CY	*1	
Arithmetic	ADDS	A, #n4	1	1+S	A<-A+n4		carry
		XA, #n8	2	2+S	XA<-XA+n8		carry
		A, @HL	1	1+S	A<-A+(HL)	*1	carry
		XA, rp'	2	2+S	XA<-XA+rp'		carry
		rp'1, XA	2	2+S	rp'1<-rp'1+XA		carry
	ADDC	A, @HL	1	1	A, CY<-A+(HL)+CY	*1	
		XA, rp'	2	2	XA, CY<-XA+rp'+CY		
		rp'1, XA	2	2	rp'1, CY<-rp'1+XA+CY		
	SUBS	A, @HL	1	1+S	A<-A-(HL)	*1	borrow
		XA, rp'	2	2+S	XA<-XA-rp'		borrow
		rp'1, XA	2	2+S	rp'1<-rp'1–XA		borrow
SUBC	SUBC	A, @HL	1	1	A, CY<-A–(HL)–CY	*1	
		XA, rp'	2	2	XA, CY<-XA–rp'–CY		
		rp'1, XA	2	2	rp'1, CY<-rp'1–XA–CY		
	AND	A, #n4	2	2	A<-A ∧ n4		
		A, @HL	1	1	A<-A ^ (HL)	*1	
		XA, rp'	2	2	XA<-XA ∧ rp'		
		rp'1, XA	2	2	rp'1<-rp'1 ^ XA		
	OR	A, #n4	2	2	A<-A v n4		
		A, @HL	1	1	A<-A v (HL)	*1	
		XA, rp'	2	2	XA<-XA v rp'		
		rp'1, XA	2	2	rp'1<-rp'1 v XA		
	XOR	A, #n4	2	2	A<-A v n4		
		A, @HL	1	1	A<-A ∀ (HL)	*1	
		XA, rp'	2	2	XA<-XA v rp'		
		rp'1, XA	2	2	rp'1<-rp'1 ₩ XA		
Accumulator	RORC	A	1	1	CY<-A0, A3<-CY, An-1<-An		
nanipulation	NOT	A	2	2	A<-Ā		
ncrement/	INCS	reg	1	1+S	reg<-reg+1		reg=0
decrement		rp1	1	1+S	rp1<-rp1+1		rp1=00H
		@HL	2	2+S	(HL)<-(HL)+1	*1	(HL)=0
		mem	2	2+S	(mem)<-(mem)+1	*3	(mem)=0
	DECS	reg	1	1+S	reg<-reg-1		reg=FH
		rp'	2	2+S	rp'<-rp'–1		rp'=FFH

Instruction group	Mnemonic	Operand	No. of bytes	Machine cycle	Operation	Addressing area	Skip condition
Comparison	SKE	reg, #n4	2	2+S	Skip if reg=n4		reg=n4
		@HL, #n4	2	2+S	Skip if (HL)=n4	*1	(HL)=n4
		A, @HL	1	1+S	Skip if A=(HL)	*1	A=(HL)
		XA, @HL	2	2+S	Skip if XA=(HL)	*1	XA=(HL)
		A, reg	2	2+S	Skip if A=reg		A=reg
		XA, rp'	2	2+S	Skip if XA=rp'		XA=rp'
Carry flag	SET1	СҮ	1	1	CY<-1		
manipulation	CLR1	СҮ	1	1	CY<-0		
	SKT	CY	1	1+S	Skip if CY=1		CY=1
	NOT1	CY	1	1	CY<-CY		
Memory bit	SET1	mem.bit	2	2	(mem.bit)<-1	*3	
manipulation		fmem.bit	2	2	(fmem.bit)<-1	*4	
		pmem.@L	2	2	(pmem7-2+L3-2.bit(L1-0))<-1	*5	
		@H+mem.bit	2	2	(H+mem ₃₋₀ .bit)<-1	*1	
	CLR1	mem.bit	2	2	(mem.bit)<-0	*3	
		fmem.bit	2	2	(fmem.bit)<-0	*4	
		pmem.@L	2	2	(pmem7-2+L3-2.bit(L1-0))<-0	*5	
		@H+mem.bit	2	2	(H+mem3-0.bit)<-0	*1	
	SKT	mem.bit	2	2+S	Skip if(mem.bit)=1	*3	(mem.bit)=1
		fmem.bit	2	2+S	Skip if(fmem.bit)=1	*4	(fmem.bit)=1
		pmem.@L	2	2+S	Skip if(pmem7-2+L3-2.bit(L1-0))=1	*5	(pmem.@L)=1
		@H+mem.bit	2	2+S	Skip if(H+mem3-0.bit)=1	*1	(@H+mem.bit)=
	SKF	mem.bit	2	2+S	Skip if(mem.bit)=0	*3	(mem.bit)=0
		fmem.bit	2	2+S	Skip if(fmem.bit)=0	*4	(fmem.bit)=0
		pmem.@L	2	2+S	Skip if(pmem7-2+L3-2.bit(L1-0))=0	*5	(pmem.@L)=0
		@H+mem.bit	2	2+S	Skip if(H+mem3-0.bit)=0	*1	(@H+mem.bit)=(
	SKTCLR	fmem.bit	2	2+S	Skip if(fmem.bit)=1 and clear	*4	(fmem.bit)=1
		pmem.@L	2	2+S	Skip if(pmem7-2+L3-2.bit(L1-0))=1 and clear	*5	(pmem.@L)=1
		@H+mem.bit	2	2+S	Skip if(H+mem3-0.bit)=1 and clear	*1	(@H+mem.bit)=
	AND1	CY, fmem.bit	2	2	CY<-CY ∧ (fmem.bit)	*4	
		CY, pmem.@L	2	2	CY<-CY ^ (pmem7-2+L3-2.bit(L1-0))	*5	
		CY, @H+mem.bit	2	2	CY<-CY ∧ (H+mem ₃₋₀ .bit)	*1	
	OR1	CY, fmem.bit	2	2	CY<-CY v (fmem.bit)	*4	
		CY, pmem.@L	2	2	CY<-CY v (pmem7-2+L3-2.bit(L1-0))	*5	
		CY, @H+mem.bit	2	2	CY<-CY v (H+mem3-0.bit)	*1	
	XOR1	CY, fmem.bit	2	2	CY<-CY ↔ (fmem.bit)	*4	
		CY, pmem.@L	2	2	CY<- CY ∀ (mem.bk) CY<- CY ∀ (pmem7-2+L3-2.bit(L1-0))	*5	
		CY, @H+mem.bit	2	2	CY<-CY + (H+mem3-0.bit)	*1	

Instruction group	Mnemonic	Operand	No. of bytes	Machine cycle	Operation	Addressing area	Skip condition
Branch BR ^{Note 1}		addr			PC13-o<-addr Use the assembler to select the most appropriate instruction among the following. • BR !addr • BRCB !caddr • BR \$addr	*6	
		addr1			PC13-o<-addr1 Use the assembler to select the most appropriate instruction among the following. • BRA !addr1 • BR !addr • BRCB !caddr • BR \$addr1	*11	
		!addr	3	3	PC13-0<-addr	*6	
		\$addr	1	2	PC13-0<-addr	*7	
		\$addr1	1	2	PC13-0<-addr1		
		PCDE	2	3	PC13-0<-PC13-8+DE		
		PCXA	2	3	PC13-0<-PC13-8+XA		
		BCDE	2	3	PC13-0<-BCDE ^{Note 2}	*6	
		BCXA	2	3	PC13-0<-BCXA ^{Note 2}	*6	
	BRA ^{Note 1}	!addr1	3	3	PC13-0<-addr1	*11	
	BRCB	!caddr	2	2	PC13-0<-PC13, 12+caddr11-0	*8	

Notes 1. The portion in a double box can be supported only in the Mk II mode. The others can be supported only in the MK I mode.

2. The B register is valid only for the lower two bits.

Instruction group	Mnemonic	Operand	No. of bytes	Machine cycle	Operation	Addressing area	Skip condition
Subroutine	CALLANote	!addr1	3	3	(SP-6)(SP-3)(SP-4)<-PC11-0	*11	
stack control					(SP–5)<-0, 0, PC13, 12		
					(SP–2)<-X, X, MBE, RBE		
					PC13-0<-addr1, SP<-SP–6		
	CALL ^{Note}	!addr	3	3	(SP-4)(SP-1)(SP-2)<-PC11-0	*6	
					(SP–3)<-MBE, RBE, PC13, 12		
					PC13-0<-addr, SP<-SP-4		
				4	(SP-6)(SP-3)(SP-4)<-PC11-0		
					(SP-5)<-0, 0, PC13, 12		
					(SP–2)<-X, X, MBE, RBE		
					PC13-0<-addr, SP<-SP-6		
		!faddr	2	2	(SP-4)(SP-1)(SP-2)<-PC11-0	*9	
					(SP–3)<-MBE, RBE, PC13, 12		
					PC13-0<-000+faddr, SP<-SP-4		
				3	(SP-6)(SP-3)(SP-4)<-PC11-0	1	
					(SP–5)<-0, 0, PC13, 12		
RE					(SP–2)<-X, X, MBE, RBE		
					PC13-0<-000+faddr, SP<-SP-6		
	RET ^{Note}		1	3	MBE, RBE, PC13, 12<-(SP+1)	1	
					PC11-0<-(SP)(SP+3)(SP+2)		
					SP<-SP+4		
					X, X, MBE, RBE<-(SP+4)	1	
					PC11-0<-(SP)(SP+3)(SP+2)		
					0, 0, PC13, 12<-(SP+1)		
					SP<-SP+6		
	RETS ^{Note}		1	3+S	MBE, RBE, PC13, 12<-(SP+1)		Unconditional
					PC11-0<-(SP)(SP+3)(SP+2)		
					SP<-SP+4		
					then skip unconditionally		
					X, X, MBE, RBE<-(SP+4)	1	
					PC11-0<-(SP)(SP+3)(SP+2)		
					0, 0, PC13, 12<-(SP+1)		
					SP<-SP+6		
					then skip unconditionally		
	RETI Note		1	3	MBE, RBE, PC13, 12<-(SP+1)]	
					PC11-0<-(SP)(SP+3)(SP+2)		
					PSW<-(SP+4)(SP+5)		
					SP<-SP+6		
					0, 0, PC13, 12<-(SP+1)	ī	
					PC11-0<-(SP)(SP+3)(SP+2)		
					PSW<-(SP+4)(SP+5), SP<-SP+6		

Instruction group	Mnemonic	Operand	No. of bytes	Machine cycle	Operation	Addressing area	Skip condition
Subroutine	PUSH	rp	1	1	(SP-1)(SP-2)<-rp, SP<-SP-2		
stack control		BS	2	2	(SP-1)<-MBS, (SP-2)<-RBS, SP<-SP-2		
	POP	rp	1	1	rp<-(SP+1)(SP), SP<-SP+2		
		BS	2	2	MBS<-(SP+1), RBS<-(SP), SP<-SP+2		
Interrupt	EI		2	2	IME(IPS.3)<-1		
control		IEXXX	2	2	IEXXX<-1		
	DI		2	2	IME(IPS.3)<-0		
		IEXXX	2	2	IEXXX<-0		
I/O	IN Note 1	A, PORTn	2	2	A<-PORTn (n=0 to 3, 5, 6, 8, 9)		
		XA, PORTn	2	2	XA<-PORTn+1, PORTn (n=8)		
	OUT Note 1	PORTn, A	2	2	PORTn<-A (n=2 to 3, 5, 6, 8, 9)		
		PORTn, XA	2	2	PORTn+1, PORTn<-XA (n=8)		
CPU control	HALT		2	2	Set HALT Mode(PCC.2<-1)		
	STOP		2	2	Set STOP Mode(PCC.3<-1)		
	NOP		1	1	No Operation		
Special	SEL	RBn	2	2	RBS<-n (n=0 to 3)		
		MBn	2	2	MBS<-n (n=0, 1, 15)		
	GETI Note 2, 3	taddr	1	3	When using TBR instruction	*10	
					PC13-0<-(taddr)5-0+(taddr+1)		
					When using TCALL instruction		
					(SP-4)(SP-1)(SP-2)<-PC11-0		
					(SP–3)<-MBE, RBE, PC13, 12		
					PC13-0<-(taddr)5-0+(taddr+1)		
					SP<-SP-4		
					When using instruction other than		Determined by
					TBR or TCALL Execute (taddr)(taddr+1) instructions		referenced
				2		*10	Instruction
			1	3	When using TBR instruction	*10	
				4	PC13-0<-(taddr)5-0+(taddr+1)		
				4	• When using TCALL instruction		
					(SP-6)(SP-3)(SP-4)<-PC11-0		
					(SP-5)<-0, 0, PC13, 12		
					(SP-2)<-X, X, MBE, RBE		
					PC13-0<-(taddr)5-0+(taddr+1)		
					SP<-SP-6		
				3	When using instruction other than TBR or TCALL Execute (taddr)(taddr+1) instructions		Determined by referenced instruction

Notes 1. Setting MBE=0 or MBE=1, MBS=15 is required during the execution of IN or OUT instruction.

2. TBR and TCALL instructions are assembler pseudo-instructions for the GETI instruction table definitions.

3. The portion in a double box can be supported only in the Mk II mode. Other portions can be supported only in the Mk I mode.

8. ONE-TIME PROM (PROGRAM MEMORY) WRITE AND VERIFY

The program memory contained in the μ PD75P3116 is a 16384 x 8-bit one-time PROM that can be electrically written one time only. The pins listed in the table below are used for this PROM's write/verify operations. Clock input from the X1 pin is used instead of address input as a method for updating addresses.

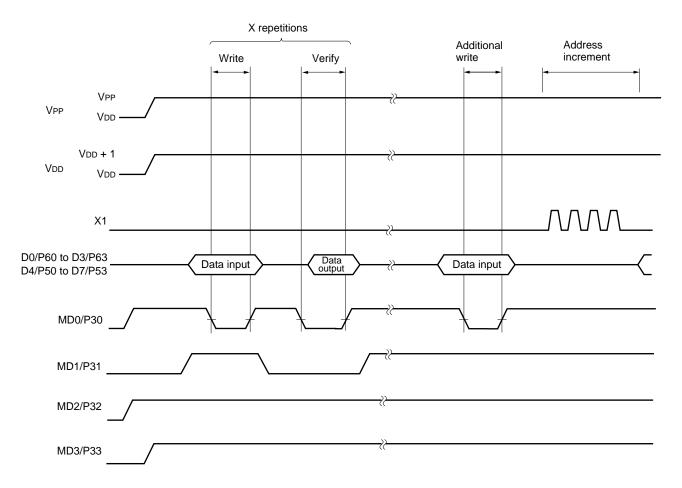
Pin	Function
Vpp	Pin where program voltage is applied during program memory write/verify (usually VDD potential)
X1, X2	Clock input pins for address updating during program memory write/verify. Input the X1 pin's inverted signal to the X2 pin.
MD0 to MD3	Operation mode selection pin for program memory write/verify
D0/P60 to D3/P63 (lower 4 bits) D4/P50 to D7/P53 (upper 4 bits)	8-bit data I/O pins for program memory write/verify
Vdd	Pin where power supply voltage is applied. Applies 1.8 to 5.5 V in normal operation mode and +6 V for program memory write/verify.

Caution Pins not used for program memory write/verify should be connected to Vss.

8.1 Operation Modes for Program Memory Write/Verify

When +6 V is applied to the V_{DD} pin and +12.5 V to the V_{PP} pin, the μ PD75P3116 enters the program memory write/verify mode. The following operation modes can be specified by setting pins MD0 to MD3 as shown below.

Oţ	peration mod	de specif	fication		Operation mode	
Vpp	Vdd	MD0	MD1	MD2	MD3	
+12.5 V	+6 V	Н	L	Н	L	Zero-clear program memory address
		L	н	Н	н	Write mode
		L	L	Н	н	Verify mode
		Н	Х	Н	Н	Program inhibit mode

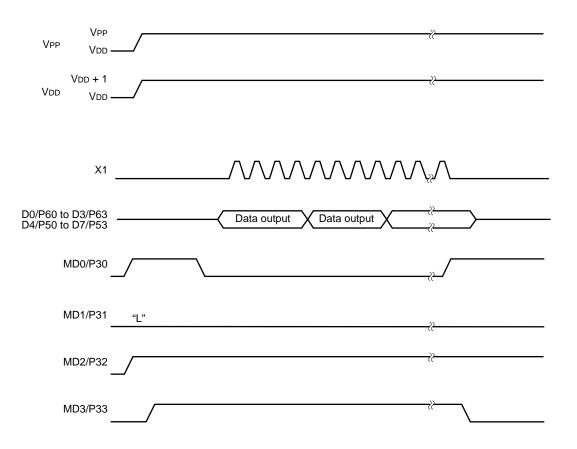

X: L or H

★ 8.2 Program Memory Write Procedure

Program memory can be written at high speed using the following procedure.

- (1) Pull down unused pins to Vss through resistors. Set the X1 pin low.
- (2) Supply 5 V to the VDD and VPP pins.
- (3) Wait 10 μs.
- (4) Select the program memory address zero-clear mode.
- (5) Supply 6 V to V_DD and 12.5 V to V_PP pins.
- (6) Write data in the 1-ms write mode.
- (7) Select the verify mode. If the data is written, go to (8) and if not, repeat (6) and (7).
- (8) Additional write. (X: number of write operations from (6) and (7)) x 1 ms
- (9) Apply four pulses to the X1 pin to increment the program memory address by one.
- (10) Repeat (6) to (9) until the end address is reached.
- (11) Select the program memory address zero-clear mode.
- (12) Return the V_DD- and V_PP-pin voltages to 5 V.
- (13) Turn off the power.

The following figure shows steps (2) to (9).


*

8.3 Program Memory Read Procedure

The μ PD75P3116 can read program memory contents using the following procedure.

- (1) Pull down unused pins to Vss through resistors. Set the X1 pin low.
- (2) Supply 5 V to the VDD and VPP pins.
- (3) Wait 10 μs.
- (4) Select the program memory address zero-clear mode.
- (5) Supply 6 V to the VDD and 12.5 to the VPP pins.
- (6) Select the verify mode. Apply four pulses to the X1 pin. Every four clock pulses will output the data stored in one address.
- (7) Select the program memory address zero-clear mode.
- (8) Return the VDD- and VPP-pin voltages to 5V.
- (9) Turn off the power.

The following figure shows steps (2) to (7).

8.4 One-time PROM Screening

Due to its structure, the one-time PROM cannot be fully tested before shipment by NEC. Therefore, NEC recommends that after the required data is written and the PROM is stored under the temperature and time conditions shown below, the PROM should be verified via a screening.

Storage temperature	Storage time			
125°C	24 hours			

★ NEC offers QTOP microcontrollers for which one-time PROM writing, marking, screening, and verification are provided at additional cost. For more detailed information, contact an NEC sales representative.

9. ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS (TA = 25°C)

Parameter	Symbol	Test Conditions	Rating	Unit
Power supply voltage	Vdd		-0.3 to +7.0	V
PROM power supply voltage	Vpp		-0.3 to +13.5	V
Input voltage	VI1	Except port 5	-0.3 to VDD +0.3	V
	VI2	Port 5 (N-ch open drain)	-0.3 to +14	V
Output voltage	Vo		-0.3 to V _{DD} +0.3	V
Output current high	Іон	Per pin	-10	mA
		Total of all pins	-30	mA
Output current low	lol	Per pin	30	mA
		Total of all pins	220	mA
Operating ambient temperature	TA		-40 to +85 Note	°C
Storage temperature	Tstg		-65 to +150	°C

Note When LCD is driven in normal mode: $T_A = -10$ to $+85^{\circ}C$

Caution If any of the parameters exceeds the absolute maximum ratings, even momentarily, the reliability of the product may be impaired. The absolute maximum ratings are values that may physically damage the products. Be sure to use the products within the ratings.

CAPACITANCE	(TA =	25°C,	$V_{DD} = 0$	√)
-------------	-------	-------	--------------	----

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	CIN	f = 1 MHz			15	рF
Output capacitance	Соит	Unmeasured pins returned to 0 V.			15	pF
I/O capacitance	Сю				15	pF

★

Resonator	Recommended constant	Parameter	Test conditions	MIN.	TYP.	MAX.	Unit
Ceramic	X1 X2	Oscillation		1.0		6.0 Note 2	MHz
resonator		frequency (fx) Note 1					
		Oscillation	After VDD reaches oscil-			4	ms
		stabilization time Note 3	lation voltage range MIN.				
Crystal	X1 X2	Oscillation		1.0		6.0 Note 2	MHz
resonator		frequency (fx) Note 1					
		Oscillation	V _{DD} = 4.5 to 5.5 V			10	ms
	VDD	stabilization time Note 3				30	
External		X1 input		1.0		6.0 Note 2	MHz
clock	X1 X2	frequency (fx) Note 1					
	↓ Å	X1 input high-/low-level width (tхн, tх∟)		83.3		500	ns

MAIN SYSTEM CLOCK OSCILLATOR CHARACTERISTICS (TA = -40 to +85°C, VDD = 1.8 to 5.5 V)

- **Notes 1.** The oscillation frequency and X1 input frequency indicate characteristics of the oscillator only. For the instruction execution time, refer to AC Characteristics.
 - 2. When the power supply voltage is $1.8 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$ and the oscillation frequency is $4.19 \text{ MHz} < \text{fx} \le 6.0 \text{ MHz}$, setting the processor clock control register (PCC) to 0011 results in 1 machine cycle being less than the required 0.95 μ s. Therefore, set PCC to a value other than 0011.
 - 3. The oscillation stabilization time is necessary for oscillation to stabilize after applying VDD or releasing the STOP mode.
- Caution When using the main system clock oscillator, wiring in the area enclosed with the dotted line should be carried out as follows to avoid an adverse effect from wiring capacitance.
 - Wiring should be as short as possible.
 - Wiring should not cross other signal lines.
 - Wiring should not be placed close to a varying high current.
 - The potential of the oscillator capacitor ground should be the same as $V_{\mbox{\scriptsize DD}}.$
 - Do not ground to a ground pattern in which a high current flows.
 - Do not fetch a signal from the oscillator.

Resonator	Recommended constant	Parameter	Test conditions	MIN.	TYP.	MAX.	Unit
Crystal	XT1 XT2	Oscillation		32	32.768	35	kHz
resonator		frequency (fxT) Note 1					
	C3 = 101 = C4	Oscillation	V _{DD} = 4.5 to 5.5 V		1.0	2	s
	VDD	stabilization time Note 2				10	
External	1 1	XT1 input frequency		32		100	kHz
clock	XT1 XT2	(fxT) Note 1					
		XT1 input high-/low-level		5		15	μs
	I	width (txтн, txт∟)					

SUBSYSTEM CLOCK OSCILLATOR CHARACTERISTICS (TA = -40 to +85°C, VDD = 1.8 to 5.5 V)

- Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.
 2. The oscillation stabilization time is necessary for oscillation to stabilize after applying Vod.
- Caution When using the subsystem clock oscillator, wiring in the area enclosed with the dotted line should be carried out as follows to avoid an adverse effect from wiring capacitance.
 - Wiring should be as short as possible.
 - Wiring should not cross other signal lines.
 - Wiring should not be placed close to a varying high current.
 - The potential of the oscillator capacitor ground should be the same as V_{DD} .
 - Do not ground to a ground pattern in which a high current flows.
 - Do not fetch a signal from the oscillator.

The subsystem clock oscillator is designed as a low amplification circuit to provide low consumption current, and is more liable to misoperation by noise than the main system clock oscillation circuit. Special care should therefore be taken regarding the wiring method when the subsystem clock is used.

DC CHARACTERISTICS ($T_A = -40$ to $+85^{\circ}C$, $V_{DD} = 1.8$ to 5.5 V)

Parameter	Symbol		Test conditions					MAX.	Unit
Output current low	lol	Per pin						15	mA
		Total of all pins					150	mA	
Input voltage high	VIH1	Ports 2, 3, 8, ar	nd 9	2.7 ≤	$V_{DD} \le 5.5 \text{ V}$	0.7Vdd		Vdd	V
				1.8 ≤	Vdd < 2.7 V	0.9Vdd		Vdd	V
	VIH2	Ports 0, 1, 6, R	ESET	2.7 ≤	$V_{DD} \le 5.5 V$	0.8Vdd		Vdd	V
				1.8 ≤	Vdd < 2.7 V	0.9Vdd		Vdd	V
	Vінз	Port 5		2.7 ≤	$V_{DD} \le 5.5 V$	0.7Vdd		13	V
		(N-ch open-drai	n)	1.8 ≤	Vdd < 2.7 V	0.9Vdd		13	V
	VIH4	X1, XT1				Vdd - 0.1		Vdd	V
Input voltage low	VIL1	Ports 2, 3, 5, 8,	and 9	2.7 ≤	$V_{DD} \le 5.5 V$	0		0.3Vdd	V
				1.8 ≤	Vdd < 2.7 V	0		0.1Vdd	V
	VIL2	Ports 0, 1, 6, R	ESET	2.7 ≤	$V_{DD} \le 5.5 V$	0		0.2Vdd	V
				1.8 ≤	Vdd < 2.7 V	0		0.1Vdd	V
	VIL3	X1, XT1				0		0.1	V
Output voltage high	Vон	<u>SCK</u> , SO, Ports 2, 3, 6, 8, and 9 Іон = -1.0 mA				Vdd - 0.5			V
Output voltage low	Vol1	SCK, SO, Ports	2, 3, 5, 6, 8, and 9	Iol =	15 mA,		0.2	2.0	V
				Vdd =	4.5 to 5.5 V				
				Iol = 1	1.6 mA			0.4	V
	Vol2	SB0, SB1	When N-ch oper					0.2Vdd	V
			pull-up resistor 2						
Input leakage		$V_{IN} = V_{DD}$	Pins other than	X1, XT1				3	μA
current high			X1, XT1					20	μA
	Іцнз	VIN = 13 V	Port 5 (N-ch ope		,			20	μA
Input leakage		$V_{IN} = 0 V$	Pins other than	X1, XT1	, and Port 5			-3	μA
current low			X1, XT1					-20	μA
	Ілііз		When another in	Port 5 (N-ch open-drain) When another instruction than input instruction is executed				-3	μA
			Port 5 (N-ch ope	en-drain)			-30	μA
			When input instr	uction	VDD = 5.0 V		-10	-27	μA
			is executed		VDD = 3.0 V		-3	-8	μA
Output leakage	ILOH1	Vout = Vdd	SCK, SO/SB0, SB1, Ports 2, 3, 6, 8, and 9				3	μA	
current high	ILOH2	Vоит = 13 V	Port 5 (N-ch ope	en-drain)			20	μA
Output leakage current low	Ilol	Vout = 0 V						-3	μA
On-chip pull-up resistor	R∟	Vin = 0 V	Ports 0, 1, 2, 3, (Excluding P00		nd 9	50	100	200	kΩ

 \star

★

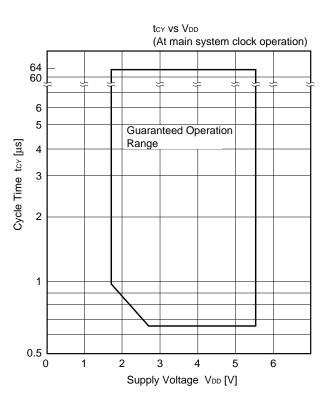
DC CHARACTERISTICS	$(T_A = -40 \text{ to } +85^{\circ}C, V_{DD} = 1.8 \text{ to } 5.5 \text{ V})$
--------------------	--

Parameter	Symbol	Test conditions			MIN.	TYP.	MAX.	Unit	
LCD drive voltage	e voltage V_{LCD} $VAC0 = 0$ $T_A = -40$ to $+85^{\circ}C$			2.7		Vdd	V		
			T _A = −10 to +85°C			2.2		Vdd	V
		VAC0 = 1			1.8		Vdd	V	
VAC current Note 1	Ivac	VAC0 = 1, VDD =	2.0 V ± 10%				1	4	μA
LCD output voltage deviation Note 2 (common)	Vodc	lo = ±1.0 μA	$V_{LCD0} = V_{LCD}$ $V_{LCD1} = V_{LCD} \times 2$	/3		0		±0.2	V
LCD output voltage deviation Note 2 (segment)	Vods	$Io = \pm 0.5 \ \mu A$	$V_{LCD2} = V_{LCD} \times 1$ 1.8 $V \le V_{LCD} \le V_{LCD}$			0		±0.2	V
Supply current Note 3		6.00 MHz Note 4	$V_{\text{DD}} = 5.0 \text{ V} \pm 1$	0% Note 5			3.2	9.5	mA
		Crystal oscillation	V_{DD} = 3.0 V ± 1	0% Note 6			0.55	1.6	mA
	IDD2	C1 = C2 = 22 pF	HALT mode	Vdd = 5	.0 V ± 10%		0.7	2.0	mA
				VDD = 3	.0 V ± 10%		0.25	0.8	mA
	IDD1 4.19 MHz Note 4 VDD = 5.0 V ± 10% Note 5			2.5	7.5	mA			
		Crystal oscillation	$V_{DD} = 3.0 \text{ V} \pm 10\%^{\text{Note 6}}$			0.45	1.35	mA	
	IDD2 C1 = C2 = 22 pF	pF HALT mode	VDD = 5.0 V ± 10%			0.65	1.8	mA	
				VDD = 3	.0 V ± 10%		0.22	0.7	mA
	IDD3 32.768 kHz	32.768 kHz Note 7	Low-voltage	VDD = 3	.0 V ± 10%		45	130	μΑ
		Crystal oscillation	mode Note 8	VDD = 2	.0 V ± 10%		20	55	μΑ
				VDD = 3.0	V, T _A = 25°C		45	90	μA
			Low power	$V_{DD} = 3.0 V \pm 10\%$			42	120	μA
			consumption mode Note 9		V, T _A = 25°C		42	85	μΑ
	DD4		HALT mode	Low-	$V_{\text{DD}} = 3.0 \text{ V} \pm 10\%$		5.5	18	μA
				voltage	$V_{\text{DD}} = 2.0 \text{ V} \pm 10\%$		2.2	7	μA
				mode Note 8	Vdd = 3.0 V, Ta = 25°C		5.5	12	μA
		Low	$V_{\text{DD}} = 3.0 \text{ V} \pm 10\%$		4.0	12	μA		
				power consump- tion mode Note 9			4.0	8	μA
	DD5	$XT1 = 0 V^{Note 10}$				0.05	10	μΑ	
		STOP mode	Vdd = 3.0 V				0.02	5	μΑ
			± 10%	T _A = 25	°C		0.02	3	μA

 \star

 \star

★


Notes 1. Set to VAC0 = 0 when the low power consumption mode and the stop mode are used. If VAC0 = 1 is set, the current increases for approx. 1 μ A.

- The voltage deviation is the difference from the output voltage corresponding to the ideal value of the segment and common outputs (VLCDn; n = 0, 1, 2).
- 3. Not including currents flowing in on-chip pull-up resistors.
- 4. Including oscillation of the subsystem clock.
- 5. When the processor clock control register (PCC) is set to 0011 and the device is operated in the high-speed mode.
- 6. When PCC is set to 0000 and the device is operated in the low-speed mode.
- **7.** When the system clock control register (SCC) is set to 1001 and the device is operated on the subsystem clock, with main system clock oscillation stopped.
- 8. When the sub-oscillation circuit control register (SOS) is set to 0000.
- 9. When SOS is set to 0010.
 - **10.** When SOS is set to 00×1 and the feedback resistor of the sub-oscillation circuit is not used.

Parameter	Symbol	Test co	onditions	MIN.	TYP.	MAX.	Unit
CPU clock cycle	tcy	Operating on	V _{DD} = 2.7 to 5.5 V	0.67		64	μs
time Note 1		main system clock		0.95		64	μs
(Min. instruction execution		Operating on subsystem c	lock	114	122	125	μs
time = 1 machine cycle)							
TI0, TI1, TI2 input	fтı	V _{DD} = 2.7 to 5.5 V		0		1.0	MHz
frequency				0		275	kHz
TI0, TI1, TI2 input	t⊤iн, t⊤i∟	V _{DD} = 2.7 to 5.5 V		0.48			μs
high-/low-level width				1.8			μs
Interrupt input high-/	tinth, tintl	INT0	IM02 = 0	Note 2			μs
low-level width			IM02 = 1	10			μs
		INT1, 2, 4		10			μs
		KR0 to KR7		10			μs
RESET low-level width	trsl			10			μs

AC CHARACTERISTICS (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 1.8 to 5.5 V)

- Notes 1. The cycle time (minimum instruction execution time) of the CPU clock (Φ) is determined by the oscillation frequency of the connected resonator (and external clock), the system clock control register (SCC) and the processor clock control register (PCC). The figure at the right indicates the cycle time tcy versus supply voltage VDD characteristic with the main system clock operating.
 - 2. 2tcy or 128/fx is set by setting the interrupt mode register (IM0).

SERIAL TRANSFER OPERATION

2-Wire and 3-Wire Serial I/O Mode (SCKInternal clock output): (T _A = -40 to +85°C, V _{DD} = 1.8 to 5.5 V)

Parameter	Symbol	Test conditions			TYP.	MAX.	Unit
SCK cycle time	t ксү1	VDD = 2.7 to 5.5 V		1300			ns
				3800			ns
SCK high-/low-level	tк∟1, tкн1	V _{DD} = 2.7 to 5.5 V		tkcy1/2-50			ns
width				tксү1/2–150			ns
SI Note 1 setup time	tsik1	VDD = 2.7 to 5.5 V		150			ns
(to SCK↑)				500			ns
SI Note 1 hold time	tksi1	V _{DD} = 2.7 to 5.5 V		400			ns
(from SCK↑)				600			ns
SCK↓→SO ^{Note 1} output	tkso1	RL = 1 kΩ,	VDD = 2.7 to 5.5 V	0		250	ns
delay time		$C_L = 100 \text{ pF}^{Note 2}$		0		1000	ns

Notes 1. In 2-wire serial I/O mode, read this parameter as SB0 or SB1 instead.

2. R_{L} and C_{L} are the load resistance and load capacitance of the SO output lines, respectively.

2-Wire and 3-Wire Serial I/O Mode	

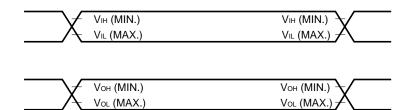
Parameter	Symbol	Test conditions			TYP.	MAX.	Unit
SCK cycle time	tксү2	VDD = 2.7 to 5.5 V		800			ns
				3200			ns
SCK high-/low-level	tк∟2, tкн2	VDD = 2.7 to 5.5 V		400			ns
width				1600			ns
SI Note 1 setup time	tsik2	VDD = 2.7 to 5.5 V		100			ns
(to SCK↑)				150			ns
SI Note 1 hold time	tksi2	V _{DD} = 2.7 to 5.5 V		400			ns
(from SCK↑)				600			ns
SCK↓→SO ^{Note 1} output	tĸso2	R∟ = 1 kΩ,	V _{DD} = 2.7 to 5.5 V	0		300	ns
delay time		CL = 100 pF Note 2		0		1000	ns

Notes 1. In 2-wire serial I/O mode, read this parameter as SB0 or SB1 instead.

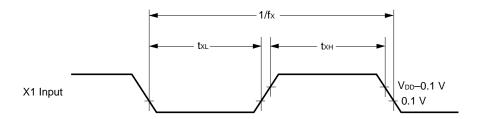
2. R_{L} and C_{L} are the load resistance and load capacitance of the SO output lines, respectively.

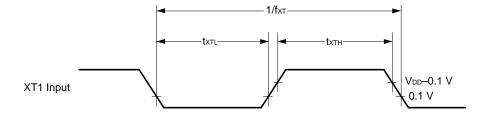
Parameter	Symbol	Test conditions		MIN.	TYP.	MAX.	Unit
SCK cycle time	tксүз	VDD = 2.7 to 5.5 V		1300			ns
				3800			ns
SCK high-/low-level	tkls, tkhs	V _{DD} = 2.7 to 5.5 V		tксүз/2–50			ns
width				tксүз/2–150			ns
SB0, 1 setup time	tsik3	V _{DD} = 2.7 to 5.5 V	V _{DD} = 2.7 to 5.5 V				ns
(to SCK↑)				500			ns
SB0, 1 hold time (from $\overline{\text{SCK}}\uparrow)$	tหรเง			tксүз/2			ns
$\overline{\text{SCK}} \downarrow \rightarrow \text{SB0, 1}$	tкsoз	R∟ = 1 kΩ,	VDD = 2.7 to 5.5 V	0		250	ns
output delay time		C∟ = 100 pF ^{Note}		0		1000	ns
$\overline{SCK} \mathring{\uparrow} \to SB0, \ 1 \downarrow$	tкsв			tксүз			ns
SB0, 1 $\downarrow \rightarrow \overline{\text{SCK}} \downarrow$	tsвк			tксүз			ns
SB0, 1 low-level width	tsв∟			tксүз			ns
SB0, 1 high-level width	tsвн			tксүз			ns

SBI Mode (\overline{SCK} ...Internal clock output (master)): (T_A = -40 to +85°C, V_{DD} = 1.8 to 5.5 V)

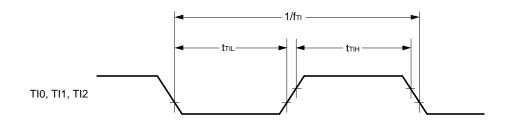

Note RL and CL are the load resistance and load capacitance of the SB0 and SB1 output lines, respectively.

SBI Mode (SCKExternal clock input (slave)):	$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{V}_{DD} = 1.8 \text{ to } 5.5 \text{ V})$
---	--

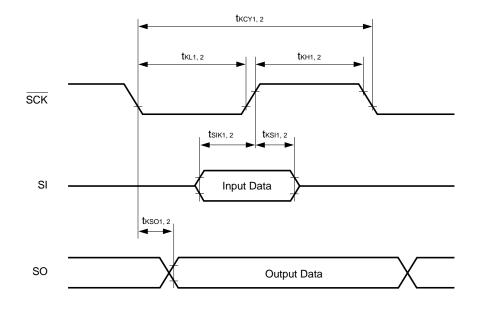

Parameter	Symbol	Test co	onditions	MIN.	TYP.	MAX.	Unit
SCK cycle time	tксү4	V _{DD} = 2.7 to 5.5 V		800			ns
				3200			ns
SCK high-/low-level	tкL4, t кH4	V _{DD} = 2.7 to 5.5 V		400			ns
width				1600			ns
SB0, 1 setup time	tsiĸ4	V _{DD} = 2.7 to 5.5 V		100			ns
(to SCK↑)				150			ns
SB0, 1 hold time (from \overline{SCK})	tksi4			tксү4/2			ns
SCK↓→SB0, 1 output	tĸso4	R∟ = 1 kΩ,	V _{DD} = 2.7 to 5.5 V	0		300	ns
delay time		C∟ = 100 pF ^{Note}		0		1000	ns
$\overline{\operatorname{SCK}} \uparrow \rightarrow \operatorname{SB0}, 1 \downarrow$	tкsв		•	tксү4			ns
SB0, $1 \downarrow \rightarrow \overline{SCK} \downarrow$	tsвк			tксү4			ns
SB0, 1 low-level width	tsвL			tксү4			ns
SB0, 1 high-level width	tsвн			tксү4			ns


Note RL and CL are the load resistance and load capacitance of the SB0 and SB1 output lines, respectively.

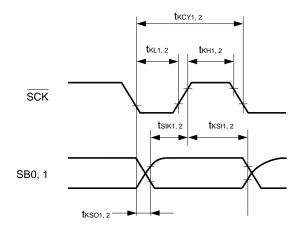
★ AC Timing Test Point (Excluding X1, XT1 Input)



★ Clock Timing

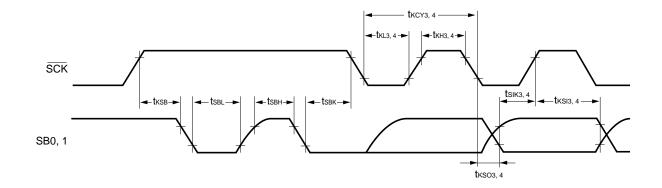


TIO, TI1, TI2 Timing

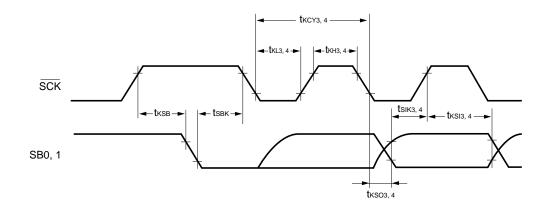


Serial Transfer Timing

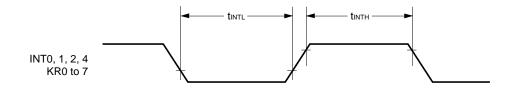
3-wire serial I/O mode

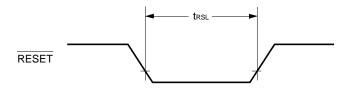


2-wire serial I/O mode



Serial Transfer Timing


Bus release signal transfer

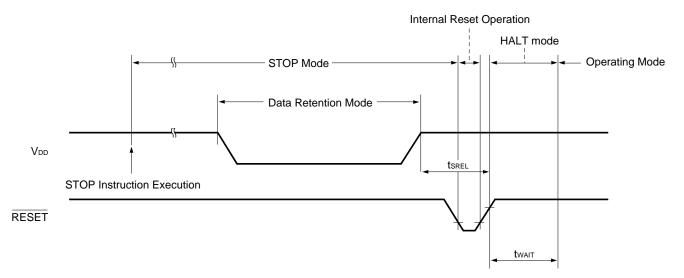

Command signal transfer

Interrupt input timing

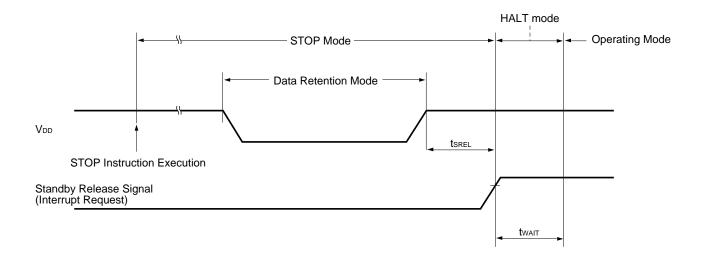
RESET input timing

DATA MEMORY STOP MODE LOW SUPPLY VOLTAGE DATA RETENTION CHARACTERISTICS

$(T_A = -40 \text{ to } +85^{\circ}\text{C})$


Parameter	Symbol	Test conditions	MIN.	TYP.	MAX.	Unit
Release signal set time	tsrel		0			μs
Oscillation stabilization	twait	Release by RESET		215/fx		ms
wait time Note 1		Release by interrupt request		Note 2		ms

Notes 1. The oscillation stabilization wait time is the time during which the CPU operation is stopped to prevent unstable operation at the oscillation start.


BTM3	BTM2	BTM1	BTM0	Wait time		
				fx = at 4.19 MHz	fx = at 6.0 MHz	
—	0	0	0	2 ²⁰ /fx (approx. 250 ms)	220/fx (approx. 175 ms)	
—	0	1	1	217/fx (approx. 31.3 ms)	217/fx (approx. 21.8 ms)	
—	1	0	1	2 ¹⁵ /fx (approx. 7.81 ms)	215/fx (approx. 5.46 ms)	
_	1	1	1	213/fx (approx. 1.95 ms)	2 ¹³ /fx (approx. 1.37 ms)	

2. Depends on the basic interval timer mode register (BTM) settings (See the table below).

Data Retention Timing (STOP Mode Release by RESET)

Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Signal)

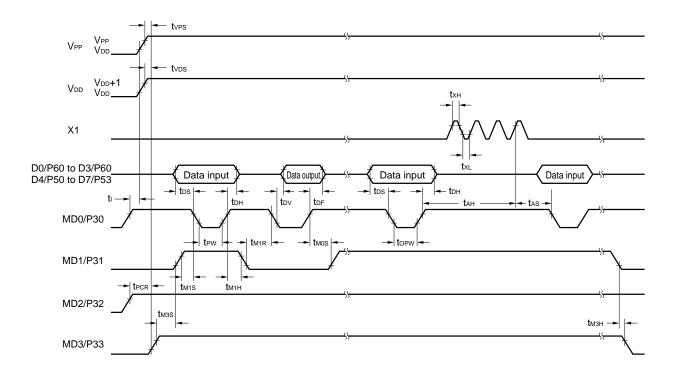
Parameter	Symbol	Test conditions	MIN.	TYP.	MAX.	Unit
Input voltage high	VIH1	Except X1 and X2 pins	0.7Vdd		Vdd	V
	VIH2	X1, X2	Vdd-0.5		Vdd	V
Input voltage low	VIL1	Except X1 and X2 pins	0		0.3Vdd	V
	VIL2	X1, X2	0		0.4	V
Input leakage current	lu	VIN = VIL OF VIH			10	μA
Output voltage high	Vон	Іон = -1 mA	Vdd-1.0			V
Output voltage low	Vol	IoL = 1.6 mA			0.4	V
VDD power supply current	ldd				30	mA
VPP power supply current	IPP	MD0 = VIL, MD1 = VIH			30	mA

DC PROGRAMMING CHARACTERISTICS (TA = 25 \pm 5°C, Vdd = 6.0 \pm 0.25 V, Vpp = 12.5 \pm 0.3 V, Vss = 0 V)

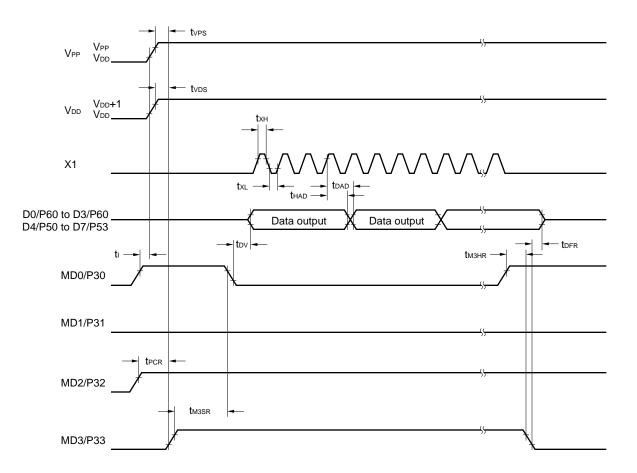
Cautions 1. Avoid exceeding +13.5 V for VPP including the overshoot.

2. VDD must be applied before VPP, and cut after VPP.

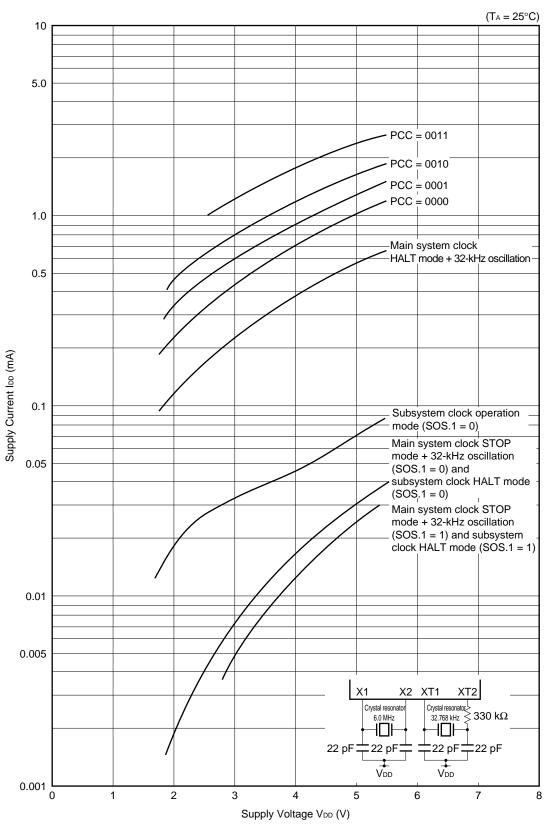
AC PROGRAMMING CHARACTERISTICS (T_A = 25 \pm 5°C, V_{DD} = 6.0 \pm 0.25 V, V_{PP} = 12.5 \pm 0.3 V, V_{SS} = 0 V)

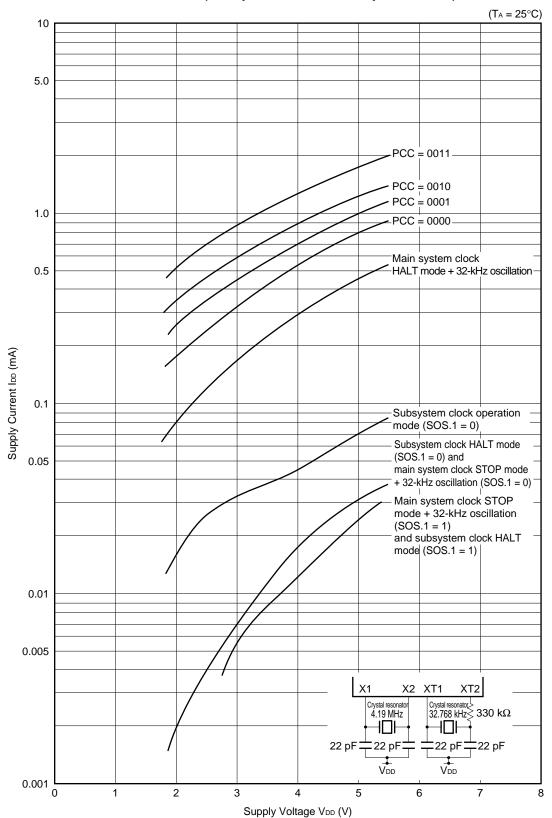

Parameter	Symbol	Note 1	Test conditions	MIN.	TYP.	MAX.	Unit
Address setup time Note 2 (to MD0 \downarrow)	tas	tas		2			μs
MD1 setup time (to MD0↓)	t _{M1S}	toes		2			μs
Data setup time (to MD0↓)	tos	tos		2			μs
Address hold time Note 2 (from MD0 [↑])	tан	tан		2			μs
Data hold time (from MD0↑)	tон	tон		2			μs
MD0 \uparrow \rightarrow data output float delay time	tdF	tdf		0		130	ns
V _{PP} setup time (to MD3 [↑])	tvps	tvps		2			μs
V _{DD} setup time (to MD3 [↑])	tvds	tvcs		2			μs
Initial program pulse width	tew	tew		0.95	1.0	1.05	ms
Additional program pulse width	topw	topw		0.95		21.0	ms
MD0 setup time (to MD1↑)	tмos	tces		2			μs
MD0↓→data output delay time	tov	tov	MD0 = MD1 = VIL			1	μs
MD1 hold time (from MD0 [↑])	tм1н	tоен	t _{M1H} +t _{M1R} ≥ 50 μs	2			μs
MD1 recovery time (from MD0 \downarrow)	t _{M1R}	tor		2			μs
Program counter reset time	t PCR	-		10			μs
X1 input high-/low-level width	txн, tx∟	-		0.125			μs
X1 input frequency	fx	-				4.19	MHz
Initial mode set time	tı	-		2			μs
MD3 setup time (to MD1↑)	tмзs	_		2			μs
MD3 hold time (from MD1 \downarrow)	tмзн	_		2			μs
MD3 setup time (to MD0 \downarrow)	tмзsr	_	During program memory read	2			μs
Address ^{Note 2} →data output delay time	t dad	tacc	During program memory read			2	μs
Address Note 2 →data output hold time	thad	toн	During program memory read	0		130	ns
MD3 hold time (from MD0 [↑])	tмзнк	_	During program memory read	2			μs
MD3↓→data output float delay time	t dfr	_	During program memory read			2	μs

Notes1. Corresponding symbol of μ PD27C256A

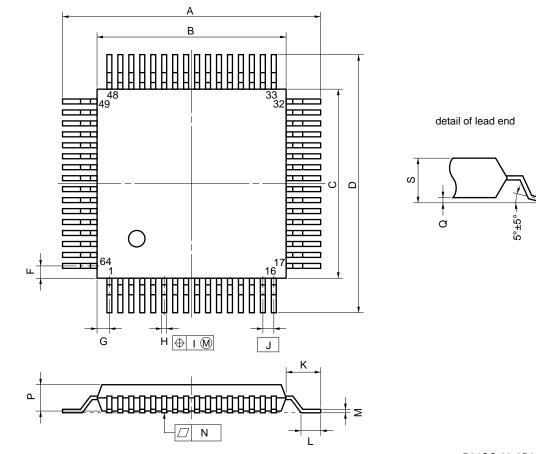

 \star

^{2.} The internal address signal is incremented by 1 at the rising edge of the fourth X1 input and is not connected to a pin.


Program Memory Write Timing


Program Memory Read Timing

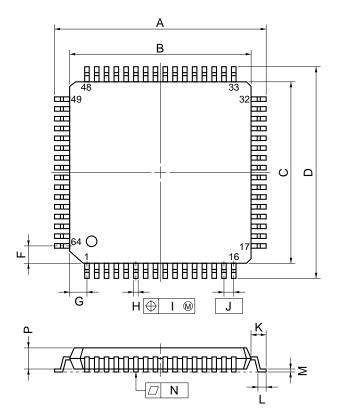
10. CHARACTERISTIC CURVES (REFERENCE VALUES)


IDD VS VDD (Main System Clock: 6.0-MHz Crystal Resonator)

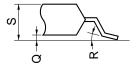
IDD VS VDD (Main System Clock: 4.19-MHz Crystal Resonator)

11. PACKAGE DRAWINGS

64 PIN PLASTIC QFP (□14)



NOTE


Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.

		P64GC-80-AB8-3
ITEM	MILLIMETERS	INCHES
Α	17.6±0.4	0.693±0.016
В	14.0±0.2	$0.551^{+0.009}_{-0.008}$
С	14.0±0.2	$0.551^{+0.009}_{-0.008}$
D	17.6±0.4	0.693±0.016
F	1.0	0.039
G	1.0	0.039
Н	0.35±0.10	$0.014^{+0.004}_{-0.005}$
Ι	0.15	0.006
J	0.8 (T.P.)	0.031 (T.P.)
К	1.8±0.2	0.071±0.008
L	0.8±0.2	$0.031^{+0.009}_{-0.008}$
М	$0.15_{-0.05}^{+0.10}$	$0.006^{+0.004}_{-0.003}$
N	0.10	0.004
Р	2.55	0.100
Q	0.1±0.1	0.004±0.004
S	2.85 MAX.	0.112 MAX.

64 PIN PLASTIC LQFP (□12)

detail of lead end

NOTE

Each lead centerline is located within 0.13 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	14.8±0.4	0.583±0.016
В	12.0±0.2	$0.472^{+0.009}_{-0.008}$
С	12.0±0.2	$0.472^{+0.009}_{-0.008}$
D	14.8±0.4	0.583±0.016
F	1.125	0.044
G	1.125	0.044
н	0.30±0.10	$0.012^{+0.004}_{-0.005}$
1	0.13	0.005
J	0.65 (T.P.)	0.026 (T.P.)
K	1.4±0.2	0.055 ± 0.008
L	0.6±0.2	$0.024^{+0.008}_{-0.009}$
М	0.15+0.10 -0.05	$0.006^{+0.004}_{-0.003}$
N	0.10	0.004
Р	1.4	0.055
Q	0.125±0.075	0.005±0.003
R	5°±5°	5°±5°
S	1.7 MAX.	0.067 MAX.
		P64GK-65-8A8-1

12. RECOMMENDED SOLDERING CONDITIONS

The μPD75P3116 should be soldered and mounted under the conditions recommended in the table below. For details of recommended soldering conditions, refer to the information document **Semiconductor Device Mounting Technology Manual (C10535E).**

For soldering methods and conditions other than those recommended below, contact an NEC Sales representative.

 \star

Table 12-1. Surface Mounting Type Soldering Conditions

(1) µPD75P3116GC-AB8: 64-pin plastic QFP (14 x 14 mm, 0.8-mm pitch)

Soldering Method	Soldering Conditions	Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C min.), Number of times: Three times max.	IR35-00-3
VPS	Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C min.), Number of times: Three times max.	VP15-00-3
Wave soldering	Solder temperature: 260°C max., Flow time: 10 seconds max., Number of times: Once, Preheating temperature: 120°C max. (Package surface temperature)	WS60-00-1
Partial heating	Pin temperature: 300°C max., Time : 3 seconds max. (per device)	_

Caution Use of more than one soldering method should be avoided (except for partial heating).

(2) µPD75P3116GK-8A8: 64-pin plastic QFP (12 x 12 mm, 0.65-mm pitch)

Soldering Method	Soldering Conditions	Recommended Conditions Reference Code
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C min.), Number of times: Twice max., Number of days: 7 ^{Note} (after that, prebaking is necessary at 125°C for 10 hours) <precaution> Products other than those supplied in thermal-resistant tray (magazine, taping, and non-thermal-resistant tray) cannot be baked in their packs.</precaution>	IR35-107-2
VPS	Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C min.), Number of times: Twice max., Number of days: 7 ^{Note} (after that, prebaking is necessary at 125°C for 10 hours) <precaution> Products other than those supplied in thermal-resistant tray (magazine, taping, and non-thermal-resistant tray) cannot be baked in their packs.</precaution>	VP15-107-2
Wave soldering	Soldering bath temperature: 260°C max., Time: 10 seconds max., Number of times: Once Preheating temperature: 120°C max. (package surface temperature) Number of days: 7 ^{Note} (after that, prebaking is necessary at 125°C for 10 hours)	WS 60-107-1
Partial heating	Pin temperature: 300°C max., Time: 3 seconds max. (per pin row)	_

Note Number of days after unpacking the dry pack. Storage conditions are 25°C and 65%RH max.

Caution Do not use different soldering methods together (however, partial heating can be performed with other soldering methods.)

APPENDIX A. FUNCTION LIST OF μ PD75308B, 753108 AND 75P3116

	Parameter	μPD75308B	μPD753108	μPD75P3116
Program men	nory	Mask ROM 0000H to 1F7FH (8064 x 8 bits)	Mask ROM 0000H to 1FFFH (8192 x 8 bits)	One-time PROM 0000H to 3FFFH (16384 x 8 bits)
Data memory			000H to 1FFH (512 x 4 bits)	
CPU		75X Standard	75XL CPU	
Instruction When main system clock is selected		0.95, 1.91, 15.3 μs (during 4.19-MHz operation)	 0.95, 1.91, 3.81, 15.3 μs (α 0.67, 1.33, 2.67, 10.7 μs (α 	
time	When subsystem clock is selected	122 μ s (during 32.768-kHz c	peration)	
Stack	SBS register	None	SBS.3 = 1: Mk I mode select SBS.3 = 0: Mk II mode select	
	Stack area	000H to 0FFH	000H to 1FFH	
	Subroutine call instruc- tion stack operation	2-byte stack	When Mk I mode : 2-byte stac When Mk II mode : 3-byte stac	
Instruction BRA !addr1 CALLA !addr1		Unavailable	When Mk I mode : unavailable When Mk II mode : available	
	MOVT XA, @BCDE MOVT XA, @BCXA BR BCDE BR BCXA		Available	
	CALL !addr	3 machine cycles	Mk I mode : 3 machine cyc Mk II mode : 4 machine cyc	
	CALLF !faddr	2 machine cycles	Mk I mode : 2 machine cycles Mk II mode : 3 machine cycles	
I/O port	CMOS input	8	8	
	CMOS input/output	16	20	
	Bit port output	8	0	
	N-ch open-drain input/output	8	4	
	Total	40	32	
LCD controller/driver		Segment selection: 24/28/32 (can be changed to CMOS input/output port in 4-unit; max. 8)	Segment selection: 16/20/24 segments (can be changed to CMOS input/output port in 4-unit; max. 8)	
		Display mode selection: static, 1/2 duty (1/2 bias), 1/3 duty (1/2 bi (1/3 bias), 1/4 duty (1/3 bias)		ty (1/2 bias), 1/3 duty
		On-chip split resistor for LCD driver can be specified by using mask option.		No on-chip split resistor for LCD driver
Timer		 3 channels Basic interval timer: channel 8-bit timer/event counter: channel Watch timer: 1 channel 	 5 channels Basic interval timer/watchdog timer: 1 channel 8-bit timer/event counter: 3 channels (can be used as 16-bit timer/event counter) Watch timer: 1 channel 	

F	Parameter	μPD75308B	μPD753108	μPD75P3116	
Clock output (PCL)		 Φ, 524, 262, 65.5 kHz (Main system clock: during 4.19-MHz operation) 	 Φ, 524, 262, 65.5 kHz (Main system clock: during 4.19-MHz operation) Φ, 750, 375, 93.8 kHz (Main system clock: during 6.0-MHz operation) 		
BUZ output (BUZ)		2 kHz (Main system clock: during 4.19-MHz operation)	 2, 4, 32 kHz (Main system clock: during 4.19-MHz operation or subsystem clock: during 32.768-kHz operation) 2.93, 5.86, 46.9 kHz (Main system clock: 6.0-MHz operation) 		
Serial interface		3 modes are available • 3-wire serial I/O mode MSB/LSB can be selected for transfer first bit • 2-wire serial I/O mode • SBI mode		ransfer first bit	
SOS register Feedback resistor cut flag (SOS.0)		None	Contained		
	Sub-oscillation circuit current cut flag (SOS.1)	None	Contained		
Register bank s	election register (RBS)	None	Yes		
Standby release	e by INT0	No	Yes		
Vectored interru	ipt	External: 3, Internal: 3	External: 3, Internal: 5		
Supply voltage		V _{DD} = 2.0 to 6.0 V	V _{DD} = 1.8 to 5.5 V		
Operating ambi	ent temperature	$T_{A} = -40 \text{ to } +85^{\circ}\text{C}$			
Operating ambient temperature Package		 80-pin plastic QFP (14 x 20 mm) 80-pin plastic QFP (14 x 14 mm) 80-pin plastic TQFP (Fine pitch) (12 x 12 mm) 	 84-pin plastic QFP (14 x 14 mm, 0.8-mm pitch) 64-pin plastic QFP (12 x 12 mm, 0.65-mm pitch) 		

APPENDIX B. DEVELOPMENT TOOLS

The following development tools have been provided for system development using the μ PD75P3116. In the 75XL series, a common relocatable assembler is used in combination with a device file dedicated to each model.

RA75X relocatable assembler	Host machine	Part No. (name)		
		OS	Supply medium	
	PC-9800 Series	MS-DOS™	3.5" 2HD	μS5A13RA75X
		$\left(\begin{array}{c} \text{Ver.3.30 to} \\ \text{Ver.6.2} \end{array} \right)$	5" 2HD	μS5A10RA75X
	IBM PC/AT™	Refer to OS for	3.5" 2HC	μS7B13RA75X
	or compatibles	IBM PCs	5" 2HC	μS7B10RA75X

Device file	Host machine	Part No. (name)		
		OS	Supply medium	
	PC-9800 Series	MS-DOS	3.5" 2HD	μS5A13DF753108
		(Ver.3.30 to Ver.6.2 Note	5" 2HD	μS5A10DF753108
	IBM PC/AT	Refer to OS for	3.5" 2HC	μS7B13DF753108
	or compatibles	IBM PCs	5" 2HC	μS7B10DF753108

Note Ver. 5.00 and later include a task swapping function, but this function cannot be used in this software.

Remark Operation of the assembler and device file is guaranteed only when using the host machine and OS described above.

PROM Write Tools

Hardware	PG-1500	This is a PROM writer that can program single-chip microcontroller with PROM in stand-alone mode or under control of host machine when connected with supplied accessory board and optional programmer adapter. It can also program typical PROMs in capacities ranging from 256 K to 4 M bits.					
	PA-75P3116BGC	This is a PROM programmer adapter for the μ PD75P3116GC. It can be used when connected to a PG-1500.					
	PA-75P3116BGK		ammer adapter for the μ onnected to a PG-1500.				
Software	PG-1500 controller	Connects PG-1500 to host machine.	host machine with serial	and parallel interface an	d controls PG-1500 on		
		Host machine			Part No. (name)		
			OS	Supply medium			
		PC-9800 Series	MS-DOS	3.5" 2HD	μS5A13PG1500		
		(Ver.3.30 to Ver.6.2 Note) 5" 2HD μS5A10					
		IBM PC/AT Refer to OS for 3.5" 2HD μ S7B13PG					
		or compatible	IBM PCs	5" 2HC	μS7B10PG1500		

Note Ver. 5.00 and later include a task swapping function, but this function cannot be used in this software.

Remark Operation of the PG-1500 controller is guaranteed only when using the host machine and OS described above.

Debugging Tools

In-circuit emulators (IE-75000-R and IE-75001-R) are provided as program debugging tools for the μ PD75P3116. Various system configurations using these in-circuit emulators are listed below.

Hardware	E-75000-R ^{Note 1}		The IE-75000-R is an in-circuit emulator to be used for hardware and software debugging during development of application systems using the 75X or 75XL Series products. For development of the μ PD753108 Subseries, the IE-75000-R is used with optional emulation board (IE-75300-R-EM) and emulation probe (EP-753108GC-R or EP-753108GK-R). Highly efficient debugging can be performed when connected to host machine and PROM programmer. The IE-75000-R includes a connected emulation board (IE-75000-R-EM).			
IE-75001-R		The IE-75001-R is an in-circuit emulator to be used for hardware and software debugging during development of application systems using the 75X or 75XL Series products. The IE-75001-R is used in combination with optional emulation board (IE-75300-R-EM) and emulation probe (EP-753108GC-R or EP-753108GK-R). Highly efficient debugging can be performed when connected to host machine and PROM programmer.				
	IE-7	75300-R-EM	This is an emulation board for evaluating application systems using the μ PD75P3116. It is used in combination with the IE-75000-R or IE-75001-R.			
	EP-	753108GC-R	This is an emulation probe for the μ PD75P3116GC. When being used, it is connected with the IE-75000-R or IE-75001-R and the IE-75300-R-EM.			
		EV-9200GC-64	It includes a 64-pin con with target system.	nversion socket (EV-920	00GC-64) to facilitate cor	nnections
	EP-	753108GK-R	This is an emulation probe for the μ PD75P3116GK. When being used, it is connected with the IE-75000-R or IE-75001-R and the IE-75300-R-EM.			
		TGK-064SBW Note 2	It includes a 64-pin conversion adapter (TGK-064SBW) to facilitate connections with tar system.			onnections with target
Software	IE c	ontrol program	This program can control the IE-75000-R or IE-75001-R on a host machine when connected to the IE-75000-R or IE-75001-R via an RS-232C or Centronics interface.			
			Host machine			Part No. (name)
				OS	Supply medium	
			PC-9800 Series	MS-DOS	3.5" 2HD	μS5A13IE75X
				$\left(\begin{array}{c} \text{Ver.3.30 to} \\ \text{Ver.6.2} \end{array} \right)$	5" 2HD	μ\$5A10IE75X
			IBM PC/AT	Refer to OS for	3.5" 2HC	μS7B13IE75X
1			or compatible	IBM PCs	5" 2HC	μS7B10IE75X

Notes 1. This is a maintenance product.

- Made by TOKYO ELETECH Corporation (Tokyo, 03-5295-1661). Contact to an NEC sales representative for detailed information.
- 3. Ver. 5.00 and later include a task swapping function, but this function cannot be used in this software.
- **Remarks 1.** Operation of the IE control program is guaranteed only when using the host machine and OS described above.
 - **2.** The μ PD753104, 753106, 753108, and 75P3116 are generically called the μ PD753108 Subseries.

*

╈

OS for IBM PCs

The following operating systems for the IBM PC are supported.

OS	Version
PC DOS™	Ver.3.1 to 6.3, J6.1/V $^{\rm Note}$ to J6.3/V $^{\rm Note}$
MS-DOS	Ver.5.0 to 6.2
	5.0/V Note to 6.2/V Note
IBM DOS™	J5.02/V Note

Note Only English mode is supported.

Caution Ver. 5.0 and later include a task swapping function, but this function cannot be used in this software.

APPENDIX C. RELATED DOCUMENTS

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Device Related Documents

Document Name	Document No.		
	English	Japanese	
μPD753104, 753106, and 753108 Data Sheet	U10086E	U10086J	
μPD75P3116 Data Sheet	U11369E (This document)	U11369J	
μPD753108 User's Manual	U10890E	U10890J	
µPD753108 Instruction Table	_	IEM-5600	
75XL Series Selection Guide	U10453E	U10453J	

Development Tool Related Documents

	Document Name			ent No.
				Japanese
Hardware	IE-75000-R/IE-75001-R User's Manual		EEU-1416	EEU-846
	IE-75300-R-EM User's Manual		U11354E	U11354J
	EP-753108GC/GK-R User's Manual PG-1500 User's Manual		EEU-1495	EEU-968
			EEU-1335	U11940J
Software	RA75X Assembler Package	Operation	EEU-1346	EEU-731
	User's Manual	Language	EEU-1363	EEU-730
	PG-1500 Controller User's Manual	PC-9800 series (MS-DOS) base	EEU-1291	EEU-704
		IBM PC series (PC DOS) base	U10540E	EEU-5008

Other Related Documents

Document Name	Document No.	
	English	Japanese
IC Package Manual	C10943X	
Semiconductor Device Mounting Technology Manual	C10535E	C10535J
Quality Grades on NEC Semiconductor Devices	C11531E	C11531J
NEC Semiconductor Device Reliability/Quality Control System	C10983E	C10983J
Electrostatic Discharge (ESD) Test	-	MEM-539
Guide to Quality Assurance for Semiconductor Devices	MEI-1202	C11893J
Microcontroller-related Product Guide Third Party's Product	-	U11416J

Caution The above related documents are subject to change without notice. For design purposes, etc., be sure to use the latest versions.

NOTES FOR CMOS DEVICES

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.) Santa Clara, California Tel: 800-366-9782 Fax: 800-729-9288

NEC Electronics (Germany) GmbH

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.1.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99 NEC Electronics (Germany) GmbH Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A. Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

NEC Electronics (France) S.A. Spain Office Madrid, Spain Tel: 01-504-2787 Fax: 01-504-2860

NEC Electronics (Germany) GmbH

Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388 NEC Electronics Hong Kong Ltd. Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd. Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd. United Square, Singapore 1130 Tel: 253-8311 Fax: 250-3583

NEC Electronics Taiwan Ltd. Taipei, Taiwan Tel: 02-719-2377 Fax: 02-719-5951

NEC do Brasil S.A. Sao Paulo-SP, Brasil Tel: 011-889-1680 Fax: 011-889-1689

QTOP is a trademark of NEC Corporation.

MS-DOS is a trademark of Microsoft Corporation.

IBM DOS, PC/AT, and PC DOS are trademarks of International Business Machines Corporation.

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or reexport of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

- Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
- Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
- Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.