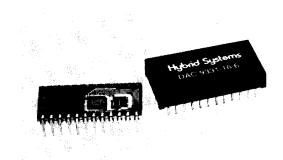


DAC9331-16 Series

14, 15, and 16-Bit Linearity, Latched MDAC's

FEATURES

- Up to 16-Bit Linearity
- **Two Chip Construction**
- Input Registers
- Low Power
- Ceramic 24-Pin DIP
- 2 and 4-quadrant Multiplication
- Single-Supply Operation
- Low-Cost

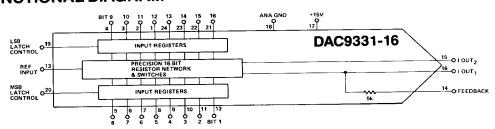


The DAC9331-16 Series are true 16-Bit D/A converters manufactured with advanced proprietary monolithic devices and proven performance packaging technique. A single, unique monolithic chip contains switches, storage registers and other electronics for high resolution and low linearity error. A second, passive chip provides all the needed resistors for these multiplying D/A's. Input storage registers are in two 8-Bit segments with independent latching — a system that is compatible with microprocessor data bus interfaces. It's a truly "byte-sized" D/A input system. Combining 2- and 4-quadrant multiplying capability, TTL/DTL and CMOS compatibility; low power consumption (less than 60 mW) and operation from a single supply, the DAC9331-16 Series offers exceptional performance/cost ratio. Outstanding features include:

True 16-Bit Linearity — 16-Bit (0.0008%) linearity with 16-Bit resolution is now a reality. No other microcircuit converter does better. 14- and 15-Bit linearity versions available at lower cost.

Low Power — CMOS proprietary monolithic devices¹ in a unique circuit configuration¹ yield the lowest power of any 16-Bit converter available.

Two-Chip Construction — An advanced monolithic device, combined with our own resistor networks are all that's needed in this converter. Automatic wirebonding makes the most consistently superior assembly available.



Input Storage Registers — Designed as two 8-Bit segments, the input registers provide data storage when latched, or "transparent" registers when unlatched. Data conversion can now be performed continuously or from stored data — "byte-sized" input segments provide compatibility with most data bus lines.

Reliability — A proven performer, the DAC9331-16 is packaged in a 24-pin ceramic double DIP for the utmost in reliability. Combined with our proprietary monolithic switches and automatic wirebonding, we've made the DAC9331-16 Series the most reliable industrial converter to date. Reliability is further enhanced by batch-processed, precision laser-trimmed resistor networks fabricated in our own facility. Networks are functionally trimmed and glass passivated to assure reliability under adverse environmental conditions.

Advanced designs, proven processes and continuous monitoring during all production operations by our quality control organization are combined with rigorous AQL screening to provide the most dependable, low cost D/A converter possible.

FUNCTIONAL DIAGRAM

SPECIFICATIONS

(Typical @ +25°C and nominal power supply, VREF = +10V,

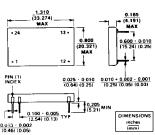
MODEL	DAC9331-1		-4
TYPE	Multiplying, Latched Inputs		
DIGITAL INPUT			
Resolution	16-Bits		
2-Quad, Unipolar Coding	Binary		
4-Quad. Bipotar Coding	Offset Bina		
Logic Compatibility ¹	DTL, TTL,	CIVIOS	
Input Leakage Current	±1μΑ (max 0.4V>V _{LO}	1: >3.2V	
Strobe Width	250nS (mir	IGIC - 3.2 V	
Data Set-up Time 2	500nS (mir		
REFERENCE INPUT		"	
Voltage Range	±25V (max	()	
Input Impedance	5ΚΩ		
ANALOG OUTPUT			
Gain Accuracy 3	0.1%		
Offset (unipolar)4	50µV (max	c)	
Small Signal			
3dB Bandwidth	1 MHz		
Output Capacitance			
Cout ₁	90pF		
Couty	70pF		
STATIC PERFORMANCE			
Integral Linearity (max)	± 0.001%	± 0.002%	± 0.003%
Differential Linearity (max)	± 0.0015%	$\pm 0.003\%$	± 0.006%
Monotonicity Guaranteed	16 bits	15 bits	14 bits
DYNAMIC PERFORMANCE			
Major Code Transition Settling			
to 0.01% F.S.R. (strobed)	2μS		
Reference Feedthrough Error			
(Vref=20Vpp @ 10kHz)	2mVp-p		
STABILITY ³ (Over Specified Te			
Scale Factor 5	2ppm/°C F.S.R. (typ), 6ppm/°C (max) 6ppm/°C (max)		
Linearity		F.Ś.R. (max)	
Differential Linearity	0.5ppm/°C	F.S.R. (max)	
	3ppm F.S.R./1000 hrs.		

POWER SUPPLY(VDD)

+15V (nam); +11.5V to +15.5V @ 1.5mA Voltage Range @ Current Rejection Ratio (14V-16V) +0.002%/% (max) Power Dissipation 60mW (max) (inputs at GND, V_{ref}=0)

TEMPERATURE RANGE

Operating Storage

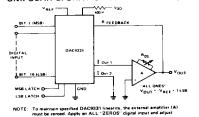

0°C to +70°C -55°C to +85"C

24-pin double-DIP

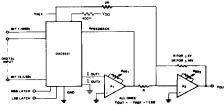
MECHANICAL

Case Style Case Dimensions

PIN	FUNCTION	PIN	FUNCTION
1	BIT 12	24	BIT 13
2	BIT 11	23	B1T 14
3	BIT 10	22	BIT 15
4	BIT 9	21	BIT 16
5	BIT 8	20	MSB LATCH
6	BIT 7	19	LSB LATCH
7	BIT 6	18	ANA GND
8	BIT 5	17	+15V
9	BIT 4	16	LOUT 1
10	BIT 3	15	I OUT 2
11	BIT 2	14	RFEEDBACK
12	BIT 1	13	REF IN


NOTES:

- 1. V_{IH}=2.4V (min); V_{IL}=0.8V (max) Inputs not to exceed -0.5V to +V_{DD}.
- 2. Time data must be stable before Strobe goes to "0".
- 3. Using internal feedback resistor.
- 4. Using the internal Rfeedback with nulled external amplifier in a constant 25°C ambient. (Offset doubles every 10°C).
- 5. The DAC9331-16 Series is designed to be used only in those applications where the current output is virtual ground; i.e., the summing junction of an op amp in the inverting mode. The internal feedback resistor (R Feedback) must be used to achieve temperature tracking. See APPLICATIONS INFORMATION for recommended circuit
- 6. For further information on long term drift refer to HS 9377 Application Notes.


302

APPLICATIONS INFORMATION

UNIPOLAR OPERATION (2-Quadrant Multiplication)

must be zeroed. Apply an ROS for VOUT = 0 *1mV BIPOLAR OPERATION (4-Quadrant Multiplication)

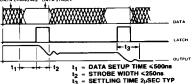
ofied OAC9331 linearity external amplifiers (A₁ and A₂ VREF Set to 2

- al Set ROS1 for Va1 = 0
- b) Set R_{OS2} for V_{OUT} = 0 c) Set V_{REF} to +10V and adjust R_B for V_{OUT} to be 0 Volts

UNIPOLAR OPERATION Transfer Characteristics

BINARY INPUT	ANALDG OUTPUT
111, , , 111	-VREF (1-2-N)
100,001	-VREF (% + 2-N)
100000	-VHEF
011111	-VAEF (% -2-N)
	12-N1

BIPOLAR OPERATION Transfer Characteristics


OFFSET BINARY INPUT	ANALOG OUTPUT
111111	-VREF (1-2+(N-1
100001	-VREF (2-(N-1)
100000	0
011111	VREF (2-(N-1)
000001	VREF (1-2-(N-1)
000000	VREF

STROBE LOGIC

000...000

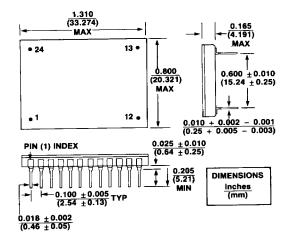
Strobe	Function
0	data latched (held) data changing (transfer)
1	data changing (transfer)

TIMING DIAGRAM

PRECAUTIONARY NOTES:

In order to realize the ultimate resolution which this unit is capable of delivering,

- several precautions must be taken. 1. Amplifiers must be balanced so the summing junction is as close to zero volts as can be achieved. Usually less than 100µV.
- Amplifiers must have a large enough open loop gain to be consistent with the required linearity. To obtain optimum performance this should be in excess of
- 3. All grounds should be of low resistance
- Reference should be as high as possible to minimize errors due to offset at outputs.
 To maintain accuracy over temperature amplifiers should have low bias current and
- offset voltage temperature coefficients.


ORDERING INFORMATION

MODEL NUMBER	DESCRIPTION
DAC9331-16-4	14-BIT Linearity MDAC
DAC9331-16-5	15-BIT Linearity MDAC
DAC9331-16-6	16-BIT Linearity MDAC

CAUTION: ESD (Electro-Static Discharge) sensitive device. Permanent damage may occur when unconnected devices are subjected to high energy electro-static fields. Unless otherwise noted, the voltage at any digital input should never exceed the supply voltage by more than 0.5 volts or go below = 0.5 volts.

Specifications subject to change without notice.

BULLETIN DAC9331-16 SERIES/4-88/Printed in U.S.A.

