FEATURES

2 channels in a small, $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ LFCSP
LFCSP package has no metal pad
More routing room No current leakage to pad
Gain set with 1 external resistor
Gain range: 1 to 1000
Input voltage goes below ground
Inputs protected beyond supplies
Very wide power supply range
Single supply: 2.2 V to 36 V
Dual supply: $\pm 1.35 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
Bandwidth ($\mathrm{G}=1$): 1.5 MHz
CMRR ($\mathbf{G}=1$): $\mathbf{8 0} \mathbf{d B}$ minimum Input noise: $\mathbf{2 2} \mathbf{n V} / \sqrt{ } \mathrm{Hz}$
Typical supply current (per amp): $350 \mu \mathrm{~A}$
Specified temperature range: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

APPLICATIONS

Industrial process controls
Bridge amplifiers
Medical instrumentation
Portable data acquisition
Multichannel systems

PIN CONFIGURATION

Table 1. Instrumentation Amplifiers by Category ${ }^{1}$

General Purpose	Zero Drift	Military Grade	Low Power	High Speed PGA
AD8220	AD8231	AD620	AD627	AD8250
AD8221	AD8290	AD621	AD623	AD8251
AD8222	AD8293	AD524	AD8235	AD8253
AD8224	AD8553	AD526	AD8236	
AD8228	AD8556	AD624	AD8426	
AD8295	AD8557		AD8226	
			AD8227	

${ }^{1}$ See www.analog.com for the latest instrumentation amplifiers.
bias currents are specified to facilitate open-wire detection.
The AD8426 is designed to make PCB routing easy and efficient. The two amplifiers are arranged in a logical way so that typical application circuits have short routes and few vias. Unlike most chip scale packages, the AD8426 does not have an exposed metal pad on the back of the part, which frees additional space for routing and vias. The AD8426 offers two in amps in the equivalent board space of a typical MSOP package.

The AD8426 is ideal for multichannel, space-constrained industrial applications. Unlike other low cost, low power instrumentation amplifiers, the AD8426 is designed with a minimum gain of 1 and can easily handle $\pm 10 \mathrm{~V}$ signals. With its space-saving LFCSP package and $125^{\circ} \mathrm{C}$ temperature rating, the AD8426 thrives in tightly packed, zero airflow designs.

The AD8226 is the single channel version of the AD8426.

Rev. PrD

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

Features .. 1
Applications... 1
Pin Configuration.. 1
General Description ... 1
Specifications.. 3
Dual-Supply Operation ... 3
Single-Supply Operation ... 5
Absolute Maximum Ratings.. 8
Thermal Resistance .. 8
ESD Caution.. 8
Pin Configuration and Function Descriptions............................ 9
Typical Performance Characteristics ... 10
Theory of Operation .. 11
Architecture.. 11
Gain Selection 11
Reference Terminal 11
Input Voltage Range 12
Layout 12
Input Bias Current Return Path 13
Input Protection 13
Radio Frequency Interference (RFI) 14
Applications Information 15
Differential Drive 15
Precision Strain Gage 16
Driving an ADC. 16
Outline Dimensions 17

SPECIFICATIONS

DUAL-SUPPLY OPERATION

$+\mathrm{V}_{\mathrm{S}}=+15 \mathrm{~V},-\mathrm{V}_{\mathrm{S}}=-15 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{G}=1, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$, specifications referred to input, unless otherwise noted.
Table 2.

Parameter	Test Conditions/ Comments	A Grade			B Grade			Unit
		Min	Typ	Max	Min	Typ	Max	
COMMON-MODE REJECTION RATIO (CMRR) CMRR, DC to 60 Hz $\mathrm{G}=1$ $\mathrm{G}=10$ $\mathrm{G}=100$ $\mathrm{G}=1000$ CMRR at 5 kHz $\begin{aligned} & G=1 \\ & G=10 \\ & G=100 \\ & G=1000 \end{aligned}$	$\mathrm{V}_{\text {CM }}=-10 \mathrm{~V}$ to +10 V	$\begin{aligned} & 80 \\ & 100 \\ & 105 \\ & 105 \\ & 80 \\ & 80 \\ & 90 \\ & 90 \\ & 100 \\ & \hline \end{aligned}$			$\begin{aligned} & 86 \\ & 105 \\ & 110 \\ & 110 \\ & \\ & 80 \\ & 90 \\ & 90 \\ & 100 \end{aligned}$			
NOISE Voltage Noise Input Voltage Noise, e_{N} Output Voltage Noise, eno RTI Noise $\begin{aligned} & G=1 \\ & G=10 \\ & G=100 \text { to } 1000 \end{aligned}$ Current Noise	Total noise: $\begin{aligned} & \mathrm{e}_{\mathrm{N}}=\sqrt{ }\left(\mathrm{e}_{\mathrm{Nl}}{ }^{2}+\left(\mathrm{e}_{\mathrm{NO}} / G\right)^{2}\right) \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$ $\mathrm{f}=0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz}$ $\begin{aligned} & \mathrm{f}=1 \mathrm{kHz} \\ & \mathrm{f}=0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \end{aligned}$		$\begin{aligned} & 22 \\ & 120 \\ & 2 \\ & 0.5 \\ & 0.4 \\ & 100 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 24 \\ & 125 \end{aligned}$		$\begin{aligned} & 22 \\ & 120 \\ & 2 \\ & 0.5 \\ & 0.4 \\ & 100 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 24 \\ & 125 \end{aligned}$	$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ $\mu \mathrm{V}$ p-p $\mu \vee$ p-p $\mu \vee p-p$ fA/VHz pA p-p
VOLTAGE OFFSET Input Offset, Vosı Average Temperature Coefficient Output Offset, Voso Average Temperature Coefficient Offset RTI vs. Supply (PSR) $\begin{aligned} & G=1 \\ & G=10 \\ & G=100 \\ & G=1000 \end{aligned}$	Total offset voltage: Vos $=\mathrm{V}_{\mathrm{osI}}+\left(\mathrm{V}_{\mathrm{oso}} / \mathrm{G}\right)$ $\mathrm{V}_{\mathrm{s}}= \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V} \text { to } \pm 15 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ $\mathrm{V}_{\mathrm{s}}= \pm 5 \mathrm{~V} \text { to } \pm 15 \mathrm{~V}$	80 100 105 105	0.5 2	$\begin{aligned} & 300 \\ & 3 \\ & 1200 \\ & 12 \end{aligned}$	90 105 110 110	0.5	$\begin{aligned} & 150 \\ & 1.5 \\ & 800 \\ & 8 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ dB dB dB dB
INPUT CURRENT Input Bias Current ${ }^{1}$ Average Temperature Coefficient Input Offset Current	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=+125^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=+125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 20 \\ & 15 \\ & 30 \\ & 70 \end{aligned}$	$\begin{aligned} & 27 \\ & 25 \\ & 35 \\ & \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 20 \\ & 15 \\ & 30 \\ & 70 \end{aligned}$	$\begin{aligned} & 27 \\ & 25 \\ & 35 \end{aligned}$	nA nA nA $\mathrm{pA} /{ }^{\circ} \mathrm{C}$ nA nA

Parameter	Test Conditions/ Comments	A Grade			B Grade			Unit		
		Min	Typ	Max	Min	Typ	Max			
Average Temperature Coefficient	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$		5	3		5	1	nA $\mathrm{pA} /{ }^{\circ} \mathrm{C}$		
REFERENCE INPUT Rin lin Voltage Range Reference Gain to Output Reference Gain Error		- $\mathrm{V}_{\text {s }}$	$\begin{aligned} & 100 \\ & 7 \\ & 1 \\ & 0.01 \end{aligned}$	$+\mathrm{V}_{\mathrm{s}}$	- $\mathrm{V}_{\text {s }}$	$\begin{aligned} & 100 \\ & 7 \\ & 1 \\ & 0.01 \end{aligned}$	+ $\mathrm{V}_{\text {s }}$	$\begin{aligned} & \mathrm{k} \Omega \\ & \mu \mathrm{~A} \\ & \mathrm{~V} \\ & \mathrm{~V} / \mathrm{V} \\ & \% \end{aligned}$		
DYNAMIC RESPONSE Small-Signal -3 dB Bandwidth $\begin{aligned} & G=1 \\ & G=10 \\ & G=100 \\ & G=1000 \end{aligned}$ Settling Time 0.01\% $\begin{aligned} & G=1 \\ & G=10 \\ & G=100 \\ & G=1000 \end{aligned}$ Slew Rate $\begin{aligned} & \mathrm{G}=1 \\ & \mathrm{G}=5 \text { to } 100 \end{aligned}$	10 V step		1500 160 20 2 25 15 40 350 0.4 0.6			1500 160 20 2 25 15 40 350 0.4 0.6		kHz kHz kHz kHz $\mu \mathrm{s}$ $\mu \mathrm{s}$ $\mu \mathrm{s}$ $\mu \mathrm{s}$ $\mathrm{V} / \mu \mathrm{s}$ $\mathrm{V} / \mu \mathrm{s}$		
GAIN Gain Range Gain Error $\begin{aligned} G & =1 \\ G & =5 \text { to } 1000 \end{aligned}$ Gain Nonlinearity $\begin{aligned} & G=1 \text { to } 10 \\ & G=100 \\ & G=1000 \end{aligned}$ Gain vs. Temperature ${ }^{2}$ $\begin{aligned} & G=1 \\ & G>1 \end{aligned}$	$\begin{aligned} & \mathrm{G}=1+\left(49.4 \mathrm{k} \Omega / \mathrm{R}_{\mathrm{G}}\right) \\ & \mathrm{V}_{\text {out }} \pm 10 \mathrm{~V} \\ & \mathrm{~V}_{\text {out }}=-10 \mathrm{~V} \text { to }+10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \\ & \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	1		1000 0.05 0.3 10 75 750 10 10 -100	1		$\begin{aligned} & 1000 \\ & 0.02 \\ & 0.15 \\ & 10 \\ & 75 \\ & 750 \\ & \\ & 2 \\ & 5 \\ & -100 \end{aligned}$	ppm ppm $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$		
INPUT Input Impedance Differential Common Mode Input Operating Voltage Range ${ }^{3}$ Input Overvoltage Range	$\begin{aligned} & \mathrm{V}_{S}= \pm 1.35 \mathrm{~V} \text { to }+36 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=+125^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	$-V_{s}-0.1$ $\begin{aligned} & -V_{s}-0.05 \\ & -V_{s}-0.15 \\ & +V_{s}-40 \end{aligned}$	$\begin{aligned} & 0.8\|\mid 2 \\ & 0.4\|\mid 2 \end{aligned}$	$\begin{aligned} & +V_{s}-0.8 \\ & +V_{s}-0.6 \\ & +V_{s}-0.9 \\ & -V_{s}+40 \end{aligned}$	$-V_{s}-0.1$ $\begin{aligned} & -V_{s}-0.05 \\ & -V_{s}-0.15 \\ & +V_{s}-40 \end{aligned}$	$\begin{aligned} & 0.8\|\mid 2 \\ & 0.4\|\mid 2 \end{aligned}$	$\begin{aligned} & +V_{s}-0.8 \\ & +V_{s}-0.6 \\ & +V_{s}-0.9 \\ & -V_{s}+40 \end{aligned}$	$G \Omega \\| p F$ $G \Omega \\| p F$ V V V V		
OUTPUT Output Swing $R_{L}=2 \mathrm{k} \Omega$ to Ground	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=+125^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -V_{s}+0.4 \\ & -V_{s}+0.4 \\ & -V_{s}+1.2 \end{aligned}$			$\begin{aligned} & -V_{s}+0.4 \\ & -V_{s}+0.4 \\ & -V_{s}+1.2 \end{aligned}$		$\begin{aligned} & +V_{s}-0.7 \\ & +V_{s}-1.0 \\ & +V_{s}-1.1 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$		

Parameter	Test Conditions/ Comments	A Grade			B Grade			Unit
		Min	Typ	Max	Min	Typ	Max	
$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to Ground	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$-\mathrm{V}_{\mathrm{s}}+0.2$		+V $\mathrm{V}_{\text {s }}-0.2$	$-\mathrm{V}_{\mathrm{s}}+0.2$		+V $\mathrm{V}_{\text {S }}-0.2$	V
	$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$	$-\mathrm{V}_{\mathrm{s}}+0.3$		$+\mathrm{V}_{s}-0.3$	$-V_{s}+0.3$		$+\mathrm{V}_{5}-0.3$	V
	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$	$-\mathrm{V}_{s}+0.2$		$+V_{s}-0.2$	$-V_{s}+0.2$		$+\mathrm{V}_{5}-0.2$	V
$\mathrm{RL}=100 \mathrm{k} \Omega$ to Ground	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$-V_{s}+0.1$		$+V_{s}-0.1$	$-V_{s}+0.1$		+ $\mathrm{V}_{\mathrm{s}}-0.1$	V
Short-Circuit Current		13			13			mA
POWER SUPPLY								
Operating Range	Dual-supply operation	± 1.35		± 18	± 1.35		± 18	V
Quiescent Current (Per Amplifier)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		350	425		350	425	$\mu \mathrm{A}$
	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$		250	325		250	325	$\mu \mathrm{A}$
	$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$		450	525		450	525	$\mu \mathrm{A}$
	$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$		525	600		525	600	$\mu \mathrm{A}$
TEMPERATURE RANGE		-40		+125	-40		+125	${ }^{\circ} \mathrm{C}$

${ }^{1}$ The input stage uses pnp transistors; therefore, input bias current always flows into the part.
${ }^{2}$ The values specified for $G>1$ do not include the effects of the external gain-setting resistor, RG.
${ }^{3}$ Input voltage range of the AD8426 input stage. The input range depends on the common-mode voltage, the differential voltage, the gain, and the reference voltage. See the Input Voltage Range section for more information.

SINGLE-SUPPLY OPERATION

$+\mathrm{V}_{\mathrm{S}}=2.7 \mathrm{~V},-\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{G}=1, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$, specifications referred to input, unless otherwise noted.
Table 3.

AD8426

Parameter	Test Conditions/ Comments	A Grade			B Grade			Unit			
		Min	Typ	Max	Min	Typ	Max				
INPUT	$-\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V},+\mathrm{V}_{\mathrm{s}}=2.7 \mathrm{~V}$ to 36 V										
Input Impedance Differential Common Mode		0.8\|	2				$0.8\|\mid 2$ $0.4\|\mid 2$		$\begin{aligned} & \mathrm{G} \Omega \\| \mathrm{pF} \\ & \mathrm{G} \Omega \\| \mathrm{pF} \\ & \hline \end{aligned}$		
Input Operating Voltage Range ${ }^{3}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.1		$+\mathrm{V}_{\mathrm{s}}-0.7$	-0.1		$+\mathrm{V}_{\mathrm{s}}-0.7$	V			
	$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$	-0.05		$+\mathrm{V}_{s}-0.6$	-0.05		+ $\mathrm{V}_{5}-0.6$	V			
		-0.15		$+\mathrm{V}_{s}-0.9$	-0.15		$+\mathrm{V}_{5}-0.9$	V			
Input Overvoltage Range	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	$+\mathrm{V}_{s}-40$		$-\mathrm{V}_{\mathrm{s}}+40$	$+\mathrm{V}_{\mathrm{s}}-40$		$-\mathrm{V}_{\mathrm{s}}+40$	V			
OUTPUT	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	0.1	13	$+\mathrm{V}_{s}-0.1$	0.1	13	$+\mathrm{V}_{s}-0.1$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \end{aligned}$			
Output Swing $\mathrm{RL}=10 \mathrm{k} \Omega \text { to } 1.35 \mathrm{~V}$ Short-Circuit Current											
POWER SUPPLY	Single-supply operation$-V_{s}=0 V_{1}+V_{s}=2.7 \mathrm{~V}$		-		2.2						
Operating Range				36			36	V			
Quiescent Current (Per Amplifier)		2.2									
	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		325	400		325	400	$\mu \mathrm{A}$			
	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$		250	325		250	325	$\mu \mathrm{A}$			
	$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$		425	500		425	500	$\mu \mathrm{A}$			
	$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$		475	550		475	550	$\mu \mathrm{A}$			
TEMPERATURE RANGE		-40		+125	-40		+125	${ }^{\circ} \mathrm{C}$			

${ }^{1}$ The input stage uses pnp transistors; therefore, input bias current always flows into the part.
${ }^{2}$ The values specified for $\mathrm{G}>1$ do not include the effects of the external gain-setting resistor, R_{G}.
${ }^{3}$ Input voltage range of the AD8426 input stage. The input range depends on the common-mode voltage, the differential voltage, the gain, and the reference voltage. See the Input Voltage Range section for more information.

ABSOLUTE MAXIMUM RATINGS

Table 4.

Parameter	Rating
Supply Voltage	$\pm 18 \mathrm{~V}$
Output Short-Circuit Current	Indefinite
Maximum Voltage at -INx or +INx	$-\mathrm{V}_{\mathrm{S}}+40 \mathrm{~V}$
Minimum Voltage at -INx or +INx	$+\mathrm{V}_{\mathrm{S}}-40 \mathrm{~V}$
REFx Voltage	$\pm \mathrm{V}_{\mathrm{S}}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Specified Temperature Range	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Maximum Junction Temperature	$130^{\circ} \mathrm{C}$
ESD	
Human Body Model	1.5 kV
Charged Device Model	1.5 kV
Machine Model	100 V

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

The $\theta_{\text {JA }}$ value in Table 5 assumes a 4-layer JEDEC standard board with zero airflow.

Table 5.

Package	$\boldsymbol{\theta}_{\mathrm{JA}}$	Unit
16-Lead LFCSP_VQ	86	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2. Pin Configuration

Table 6. Pin Function Description

Pin No.	Mnemonic	Description
1	- IN1	Negative Input, In-Amp 1
2	RG1	Gain-Setting Resistor Terminal, In-Amp 1
3	RG1	Gain-Setting Resistor Terminal, In-Amp 1
4	+ IN1	Positive Input, In-Amp 1
5	+ VS	Positive Supply
6	REF1	Reference Adjust, In-Amp 1
7	REF2	Reference Adjust, In-Amp 2
8	- VS	Negative Supply
9	+ IN2	Positive Input, In-Amp 2
10	RG2	Gain-Setting Resistor Terminal, In-Amp 2
11	RG2	Gain-Setting Resistor Terminal, In-Amp 2
12	- IN2	Negative Input, In-Amp 2
13	- VS	Negative Supply
14	OUT2	Output, In-Amp 2
15	OUT1	Output, In-Amp 1
16	+ VS	Positive Supply

TYPICAL PERFORMANCE CHARACTERISTICS

$\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{s}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$, unless otherwise noted.

Figure 3. Input Common-Mode Voltage vs. Output Voltage,
Single Supply, Vs $=2.7 \mathrm{~V}, \mathrm{G}=1$

Figure 4. Input Common-Mode Voltage vs. Output Voltage,
Single Supply, Vs $=5$ V, G = 1

Figure 5. Input Common-Mode Voltage vs. Output Voltage, Dual Supply, $V_{s}= \pm 5 \mathrm{~V}, \mathrm{G}=1$

Figure 6. Input Common-Mode Voltage vs. Output Voltage, Dual Supply, Vs $= \pm 15$ V, G $=1$

THEORY OF OPERATION

Figure 7. Simplified Schematic

ARCHITECTURE

The AD8426 is based on the classic three op amp topology. This topology has two stages: a gain stage (preamplifier) to provide differential amplification, followed by a difference amplifier to remove the common-mode voltage. Figure 7 shows a simplified schematic of one of the instrumentation amplifiers in the AD8426.
The first stage works as follows: to maintain a constant voltage across the bias resistor, $\mathrm{R}_{\mathrm{B}}, \mathrm{A} 1$ must keep Node 3 at a constant diode drop above the positive input voltage. Similarly, A2 keeps Node 4 at a constant diode drop above the negative input voltage. Therefore, a replica of the differential input voltage is placed across the gain setting resistor, R_{G}. The current that flows across this resistance must also flow through the R1 and R2 resistors, creating a gained differential signal between the A2 and A1 outputs. Note that, in addition to a gained differential signal, the original common-mode signal, shifted a diode drop up, is also still present.

The second stage is a difference amplifier, composed of A3 and four $50 \mathrm{k} \Omega$ resistors. The purpose of this stage is to remove the common-mode signal from the amplified differential signal.
The transfer function of the AD8426 is

$$
V_{\text {OUT }}=G \times\left(V_{I N+}-V_{I N-}\right)+V_{\text {REF }}
$$

where:

$$
G=1+\frac{49.4 \mathrm{k} \Omega}{R_{G}}
$$

GAIN SELECTION

Placing a resistor across the R_{G} terminals sets the gain of the AD8426, which can be calculated by referring to Table 7 or by using the following gain equation:

$$
R_{G}=\frac{49.4 \mathrm{k} \Omega}{G-1}
$$

Table 7. Gains Achieved Using 1\% Resistors

$\mathbf{1 \%}$ Standard Table Value of $\mathbf{R}_{\mathbf{G}}$	Calculated Gain
$49.9 \mathrm{k} \Omega$	1.990
$12.4 \mathrm{k} \Omega$	4.984
$5.49 \mathrm{k} \Omega$	9.998
$2.61 \mathrm{k} \Omega$	19.93
$1.00 \mathrm{k} \Omega$	50.40
499Ω	100.0
249Ω	199.4
100Ω	495.0
49.9Ω	991.0

The AD8426 defaults to $\mathrm{G}=1$ when no gain resistor is used. The tolerance and gain drift of the R_{G} resistor should be added to the AD8426 specifications to determine the total gain accuracy of the system. When the gain resistor is not used, gain error and gain drift are minimal.

REFERENCE TERMINAL

The output voltage of the AD8426 is developed with respect to the potential on the reference terminal. This is useful when the output signal needs to be offset to a precise midsupply level. For example, a voltage source can be tied to the REF pin to levelshift the output so that the AD8426 can drive a single-supply ADC. The REF pin is protected with ESD diodes and should not exceed either +Vs or -V s by more than 0.3 V .

For the best performance, source impedance to the REF terminal should be kept below 2Ω. As shown in Figure 8, the reference terminal, REF, is at one end of a $50 \mathrm{k} \Omega$ resistor. Additional impedance at the REF terminal adds to this $50 \mathrm{k} \Omega$ resistor and results in amplification of the signal connected to the positive input. The amplification from the additional $\mathrm{R}_{\text {Ref }}$ can be computed by $2 \times\left(50 \mathrm{k} \Omega+\mathrm{R}_{\mathrm{REF}}\right) / 100 \mathrm{k} \Omega+\mathrm{R}_{\mathrm{REF}}$.

Only the positive signal path is amplified; the negative path is unaffected. This uneven amplification degrades the CMRR of the amplifier.

Figure 8. Driving the Reference Pin

INPUT VOLTAGE RANGE

The three op amp architecture of the AD8426 applies gain in the first stage before removing common-mode voltage in the difference amplifier stage. In addition, the input transistors in the first stage shift the common-mode voltage up one diode drop. Therefore, internal nodes between the first and second stages (Node 1 and Node 2 in Figure 7) experience a combination of gained signal, common-mode signal, and a diode drop. This combined signal can be limited by the voltage supplies even when the individual input and output signals are not.
Equation 1 to Equation 3 can be used to understand how the gain (G), common-mode input voltage (V_{CM}), differential input voltage ($\mathrm{V}_{\mathrm{DIFF}}$), and reference voltage ($\mathrm{V}_{\mathrm{REF}}$) interact. The values for the constants, $\mathrm{V}_{- \text {limit, }} \mathrm{V}_{+ \text {limit, }}$ and $\mathrm{V}_{\text {ref_limit, }}$ at different temperatures are shown in Table 8. These three formulas, along with the input and output range specifications in Table 2 and Table 3, set the operating boundaries of the part.

$$
\begin{align*}
& V_{C M}-\left|\frac{\left(V_{\text {DIFF }}\right)(G)}{2}\right|>-V_{S}+V_{-L I M I T} \tag{1}\\
& V_{C M}+\left|\frac{\left(V_{D I F F}\right)(G)}{2}\right|<+V_{S}-V_{+ \text {LIMIT }} \tag{2}\\
& \frac{\left(V_{D I F F}\right)(G)}{2}+V_{C M}+V_{\text {REF }} \tag{3}\\
& 2
\end{align*}+V_{S}-V_{\text {REF }- \text { LIMIT }}
$$

Table 8. Input Voltage Range Constants for Various Temperatures

Temperature	$\mathbf{V}_{\text {-LIMIT }}$	$\mathbf{V}_{\text {+LIMIT }}$	$\mathbf{V}_{\text {REF_LIMIT }}$
$-40^{\circ} \mathrm{C}$	-0.55	+0.8	+1.3
$+25^{\circ} \mathrm{C}$	-0.35	+0.7	+1.15
$+85^{\circ} \mathrm{C}$	-0.15	+0.65	+1.05
$+125^{\circ} \mathrm{C}$	-0.05	+0.6	+0.9

The common-mode input voltage range shifts upward with temperature. At cold temperatures, the part requires extra headroom from the positive supply, whereas operation near the negative
supply has more margin. Conversely, at hot temperatures, the part requires less headroom from the positive supply but is subject to the worst-case conditions for input voltages near the negative supply.

A typical part functions up to the boundaries described in this section. However, for best performance, designing with a few hundred millivolts extra margin is recommended. As signals approach the boundary, internal transistors begin to saturate, which can affect frequency and linearity performance.

LAYOUT

To ensure optimum performance of the AD8426 at the PCB level, care must be taken in the design of the board layout. The AD8426 pins are arranged in a logical manner to aid in this task.

Package Considerations

The AD8426 is available in a 16 -lead, $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ LFCSP with no exposed paddle. The footprint from another $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ LFCSP part should not be copied because it may not have the correct lead pitch and lead width dimensions. Refer to the Outline Dimensions section for the correct dimensions.

Hidden Paddle Package

The AD8426 is available in an LFCSP package with a hidden paddle. Unlike chip scale packages where the pad limits routing capability, this package allows routes and vias directly beneath the chip, so that the full space savings of the small LFCSP can be realized. Although the package has no metal in the center of the part, the manufacturing process leaves a very small section of exposed metal at each of the package corners, as shown in Figure 10 and in Figure 17 in the Outline Dimensions section. This metal is connected to $-V_{s}$ through the part. Because of the possibility of a short, vias should not be placed underneath these exposed metal tabs.

NOTES

1. EXPOSED LEAD FRAME TABS AT THE FOUR CORNERS OF THE PACKAGE ARE INTERNALLY CONNECTED TO $+\mathbf{V}_{\text {S. }}$ REFER TO THE OUTLINE DIMENSIONS PAGE, FOR FURTHER INFORMATION ON PACKAGE AVAILABILITY.

Figure 10. Hidden Paddle Package, Bottom View

Common-Mode Rejection Ratio over Frequency

Poor layout can cause some of the common-mode signals to be converted to differential signals before reaching the in-amp. Such conversions occur when one input path has a frequency response that is different from the other. To keep CMRR across frequency high, the input source impedance and capacitance of each path should be closely matched. Additional source resistance in the input path (for example, for input protection) should be placed close to the in-amp inputs, which minimizes their interaction with parasitic capacitance from the PCB traces.
Parasitic capacitance at the gain setting pins can also affect CMRR over frequency. If the board design has a component at the gain setting pins (for example, a switch or jumper), the component should be chosen so that the parasitic capacitance is as small as possible.

Power Supplies

A stable dc voltage should be used to power the instrumentation amplifier. Noise on the supply pins can adversely affect performance.
A $0.1 \mu \mathrm{~F}$ capacitor should be placed as close as possible to each supply pin. As shown in Figure 11, a $10 \mu \mathrm{~F}$ capacitor can be used farther away from the part. In most cases, it can be shared by other precision integrated circuits.

Figure 11. Supply Decoupling, REF, and Output Referred to Local Ground

References

The output voltage of the AD8426 is developed with respect to the potential on the reference terminal. Care should be taken to tie REF to the appropriate local ground. This should also help minimize crosstalk between the two channels.

INPUT BIAS CURRENT RETURN PATH

The input bias current of the AD8426 must have a return path to ground. When the source, such as a thermocouple, cannot provide a return current path, one should be created, as shown in Figure 12.

Figure 12. Creating an Input Bias Current Return Path

INPUT PROTECTION

The AD8426 has very robust inputs and typically does not need additional input protection. Input voltages can be up to 40 V from the opposite supply rail. For example, with a +5 V positive supply and a -8 V negative supply, the part can safely withstand voltages from -35 V to +32 V . Unlike some other instrumentation amplifiers, the part can handle large differential input voltages even when the part is in high gain.
The rest of the AD8426 terminals should be kept within the supplies. All terminals of the AD8426 are protected against ESD.
limiting resistors and low leakage diode clamps such as the BAV199, the FJH1100s, or the SP720 should be used.

RADIO FREQUENCY INTERFERENCE (RFI)

RF interference is often a problem when amplifiers are used in applications where there are strong RF signals. The precision circuits in the AD8426 can rectify the RF signals so that they appear as a dc offset voltage error. To avoid this rectification, place a low-pass RC filter at the input of the instrumentation amplifier (see Figure 13). The filter limits both the differential and common-mode bandwidth, as shown in the following equations:

$$
\begin{aligned}
& \text { FilterFrequency }_{\text {DIFF }}=\frac{1}{2 \pi R\left(2 C_{D}+C_{C}\right)} \\
& \text { FilterFrequency } y_{C M}=\frac{1}{2 \pi R C_{C}}
\end{aligned}
$$

where $C_{D} \geq 10 C_{C}$.

Figure 13. RFI Suppression
C_{D} affects the differential signal, and C_{C} affects the commonmode signal. Values of R and C_{c} should be chosen to minimize RFI. Any mismatch between the $\mathrm{R} \times \mathrm{C}_{\mathrm{c}}$ at the positive input and the $\mathrm{R} \times \mathrm{C}_{\mathrm{C}}$ at the negative input degrades the CMRR of the AD8426. By using a value of C_{D} one order of magnitude larger than C_{c}, the effect of the mismatch is reduced, and performance is improved.

APPLICATIONS INFORMATION

DIFFERENTIAL DRIVE

Figure 14 shows how to configure the AD8426 for differential output.

RECOMMENDED OP AMPS: AD8515, AD8641, AD820. RECOMMENDED R VALUES: $5 \mathrm{k} \Omega$ to $20 \mathrm{k} \Omega$.

Figure 14. Differential Output Using an Op Amp
The differential output is set by the following equation:

$$
V_{\text {DIFF_OUT }}=V_{\text {out }+}-V_{\text {out- }}=\text { Gain } \times\left(V_{I N+}-V_{\text {IN }-}\right)
$$

The common-mode output is set by the following equation:

$$
V_{C M _ \text {OUT }}=(\text { VoUTt }- \text { Vout- }-) / 2=V_{\text {BIAS }}
$$

The advantage of this circuit is that the dc differential accuracy depends on the AD8426 and not on the op amp or the resistors. This circuit takes advantage of the precise control that the AD8426 has of its output voltage relative to the reference voltage. Op amp dc performance and resistor matching do affect the dc commonmode output accuracy. However, because common-mode errors are likely to be rejected by the next device in the signal chain, these errors typically have little effect on overall system accuracy.

Tips for Best Differential Output Performance

For best ac performance, an op amp with at least 2 MHz gain bandwidth and $1 \mathrm{~V} / \mu \mathrm{s}$ slew rate is recommended. Good choices for op amps are the AD8641, AD8515, or AD820.

Keep trace lengths from resistors to the inverting terminal of the op amp as short as possible. Excessive capacitance at this node can cause the circuit to be unstable. If capacitance cannot be avoided, use lower value resistors.
For best linearity and ac performance, a minimum positive supply voltage $\left(+V_{s}\right)$ is required. Table 9 shows the minimum supply voltage required for optimum performance where $\mathrm{V}_{\text {CM_MAX }}$ indicates the maximum common-mode voltage expected at the input of the AD8426.

Table 9. Minimum Positive Supply Voltage

Temperature	Equation
Less than $-10^{\circ} \mathrm{C}$	$+\mathrm{V}_{\mathrm{S}}>\left(\mathrm{V}_{\text {CM_MAX }}+\mathrm{V}_{\text {BIAS }}\right) / 2+1.4 \mathrm{~V}$
$-10^{\circ} \mathrm{C}$ to $+25^{\circ} \mathrm{C}$	$+\mathrm{V}_{\mathrm{S}}>\left(\mathrm{V}_{\text {CM_MAX }}+\mathrm{V}_{\text {BIAS }}\right) / 2+1.25 \mathrm{~V}$
More than $+25^{\circ} \mathrm{C}$	$+\mathrm{V}_{\mathrm{S}}>\left(\mathrm{V}_{\text {CM_MAX }}+\mathrm{V}_{\text {BIA }}\right) / 2+1.1 \mathrm{~V}$

PRECISION STRAIN GAGE

The low offset and high CMRR over frequency of the AD8426 make it an excellent candidate for bridge measurements. The bridge can be connected directly to the inputs of the amplifier (see Figure 15).

Figure 15. Precision Strain Gage

DRIVING AN ADC

Figure 16 shows several different methods of driving an ADC. The ADC in the ADuC7026 microcontroller was chosen for this example because it has an unbuffered, charge sampling architecture that is typical of most modern ADCs. This type of architecture typically requires an RC buffer stage between the ADC and the amplifier to work correctly.

Option 1 shows the minimum configuration required to drive a charge sampling ADC. The capacitor provides charge to the ADC sampling capacitor, and the resistor shields the AD8426 from the capacitance. To keep the AD8426 stable, the RC time constant of the resistor and capacitor needs to stay above 5μ s. This circuit is mainly useful for lower frequency signals.

Option 2 shows a circuit for driving higher frequency signals. It uses a precision op amp (AD8616) with relatively high bandwidth and output drive. This amplifier can drive a resistor and capacitor with a much higher time constant and is, therefore, suited for higher frequency applications.

Option 3 is useful for applications where the AD8426 needs to run off a large voltage supply, but drives a single supply ADC. In normal operation, the AD8426 output stays within the ADC range, and the AD8616 simply buffers it. However, in a fault condition, the output of the AD8426 may go outside the supply range of both the AD8616 and the ADC. This is not an issue in this circuit, because the $10 \mathrm{k} \Omega$ resistor between the two amplifiers limits the current into the AD8616 to a safe level.

Figure 16. Driving an ADC

OUTLINE DIMENSIONS

Figure 17. 16-Lead Lead Frame Chips Scale Package [LFCSP_VQ] $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ Body, Very Thin Quad, with Hidden Paddle (CP-16-19)
Dimensions shown in millimeters

NOTES

Preliminary Technical Data	AD8426

NOTES

NOTES

