PERIPHERAL DRIVERS FOR
 HIGH-CURRENT SWITCHING AT VERY HIGH SPEEDS

- Characterized for Use to $\mathbf{3 0 0} \mathrm{mA}$
- High-Voltage Outputs
- No Output Latch-Up at 20 V (After Conducting $\mathbf{3 0 0} \mathrm{mA}$)
- High-Speed Switching
- Circuit Flexibility for Varied Applications
- TTL-Compatible Diode-Clamped Inputs
- Standard Supply Voltages
- Plastic DIP (P) With Copper Lead Frame Provides Cooler Operation and Improved Reliability
- Package Options Include Plastic Small-Outline Packages, Ceramic Chip Carriers, and Standard Plastic and Ceramic 300-mil DIPs

SUMMARY OF DEVICES

DEVICE	LOGIC OF COMPLETE CIRCUIT	PACKAGES
SN55451B	AND	FK, JG
SN55452B	NAND	JG
SN55453B	OR	FK, JG
SN55454B	NOR	JG
SN75451B	AND	D, P
SN75452B	NAND	D, P
SN75453B	OR	D, P
SN75454B	NOR	D, P

SN55451B, SN55452B,
SN55453B, SN55454B . . . JG PACKAGE
SN75451B, SN75452B,
SN75453B, SN75454B . . . D OR P PACKAGE

SN55451B, SN55452B SN55453B, SN55454B . . . FK PACKAGE

NC - No internal connection

description

The SN55451B through SN55454B and SN75451B through SN75454B are dual peripheral drivers designed for use in systems that employ TTL logic. This family is functionally interchangeable with and replaces the SN75450 family and the SN75450A family devices manufactured previously. The speed of the devices is equal to that of the SN75450 family, and the parts are designed to ensure freedom from latch-up. Diode-clamped inputs simplify circuit design. Typical applications include high-speed logic buffers, power drivers, relay drivers, lamp drivers, MOS drivers, line drivers, and memory drivers.

The SN55451B/SN75451B, SN55452B/SN75452B, SN55453B/SN75453B, and SN55454B/SN75454B are dual peripheral AND, NAND, OR, and NOR drivers, respectively (assuming positive logic), with the output of the logic gates internally connected to the bases of the npn output transistors.
The SN55' drivers are characterized for operation over the full military range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN75' drivers are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTES: 1. Voltage values are with respect to network GND, unless otherwise specified.
2. This is the voltage between two emitters of a multiple-emitter transistor.
3. This value applies when the base-emitter resistance ($R_{B E}$) is equal to or less than 500Ω.
4. Both halves of these dual circuits may conduct rated current simultaneously; however, power dissipation averaged over a short time interval must fall within the continuous dissipation rating.

DISSIPATION RATING TABLE

PACKAGE	$\mathbf{T}_{\mathbf{A}} \leq \mathbf{2 5}{ }^{\circ} \mathbf{C}$ POWER RATING	DERATING FACTOR ABOVE TA $=25^{\circ} \mathbf{C}$	$\mathbf{T}_{\mathbf{A}}=\mathbf{7 0}{ }^{\circ} \mathbf{C}$ POWER RATING	$\mathbf{T}_{\mathbf{A}}=\mathbf{1 2 5}^{\circ} \mathbf{C}$ POWER RATING
D	725 mW	$5.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	464 mW	-
FK	1375 mW	$11.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	880 mW	275 mW
JG	1050 mW	$8.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	672 mW	210 mW
P	1000 mW	$8.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	640 mW	-

recommended operating conditions

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC publication 617-12.
Pin numbers shown are for the $D, J G$, and P packages.

logic diagram (positive logic)

schematic (each driver)

electrical characteristics over recommended operating free-air temperature range

PARAMETER		TEST CONDITIONS \ddagger		SN55451B			SN75451B			UNIT		
		MIN	TYP§	MAX	MIN	TYP§	MAX					
$\mathrm{V}_{\text {IK }}$	Input clamp voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$\mathrm{I}_{\mathrm{I}}=-12 \mathrm{~mA}$		-1.2	-1.5		-1.2	-1.5	V
VOL	Low-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{IOL}=100 \mathrm{~mA} \end{aligned}$	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V},$		0.25	0.5		0.25	0.4	V		
		$\begin{aligned} & \mathrm{V} \mathrm{CC}=\mathrm{MIN}, \\ & \mathrm{IOL}=300 \mathrm{~mA} \end{aligned}$	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V},$		0.5	0.8		0.5	0.7			
IOH	High-level output current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{OH}}=30 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{IH}}=\mathrm{MIN},$			300			100	$\mu \mathrm{A}$		
1	Input current at maximum input voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	$\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$			1			1	mA		
IIH	High-level input current	$V_{C C}=$ MAX,	$\mathrm{V}_{1}=2.4 \mathrm{~V}$			40			40	$\mu \mathrm{A}$		
IIL	Low-level input current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$,	$\mathrm{V}_{1}=0.4 \mathrm{~V}$		-1	-1.6		-1	-1.6	mA		
ICCH	Supply current, outputs high	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	$\mathrm{V}_{\mathrm{I}}=5 \mathrm{~V}$		7	11		7	11	mA		
ICCL	Supply current, outputs low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	$\mathrm{V}_{\mathrm{l}}=0$		52	65		52	65	mA		

\ddagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
§ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER			TEST CONDITIONS		MIN	TYP	MAX	UNIT
tPLH	Propagation delay time, low-to-high-level output		$\begin{aligned} & \mathrm{l}=200 \mathrm{~mA}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \end{aligned}$	$C_{L}=15 \mathrm{pF},$ See Figure 1		18	25	ns
tPHL	Propagation delay time, high-to-low-level output					18	25	
tTLH	Transition time, low-to-high-level output					5	8	
tTHL	Transition time, high-to-low-level output					7	12	
Vo	High-level output voltage after switching	SN55451B	$V_{S}=20 \mathrm{~V},$ See Figure 2	$10 \sim 300 \mathrm{~mA}$,		S-6.5		mV
		SN75451B			$\mathrm{V}_{\text {S }}-6.5$			

logic symbol \dagger

† This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC publication 617-12.
Pin numbers shown are for the D, JG, and P packages.
FUNCTION TABLE
(each driver)

A	B	Y
L	L	H (off state)
L	H	H (off state)
H	L	H (off state)
H	H	L (on state)

positive logic:
$Y=\overline{A B}$ or $\bar{A}+\bar{B}$

logic diagram (positive logic)

electrical characteristics over recommended operating free-air temperature range

PARAMETER	TEST CONDITIONS \ddagger	SN55452B		SN75452B			UNIT
		MIN	TYP§ MAX	MIN	TYP§	MAX	
VIK Input clamp voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \quad \mathrm{I}=-12 \mathrm{~mA}$		-1.2 -1.5		-1.2	-1.5	V
Low-level output voltage	$\begin{array}{\|ll} \hline \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN}, \\ \mathrm{IOL}=100 \mathrm{~mA} \end{array}$		$0.25 \quad 0.5$		0.25	0.4	V
	$\begin{array}{\|ll} \hline \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN}, \\ \mathrm{l}_{\mathrm{OL}}=300 \mathrm{~mA} & \\ \hline \end{array}$		0.50 .8		0.5	0.7	
IOH High-level output current	$\begin{array}{ll} \hline \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{OH}}=30 \mathrm{~V} & \\ \hline \end{array}$		300			100	$\mu \mathrm{A}$
II Input current at maximum input voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$		1			1	mA
$\mathrm{IIH}^{\text {H }}$ High-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}$		40			40	$\mu \mathrm{A}$
IIL Low-level input current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$		-1.1 -1.6		-1.1	-1.6	mA
ICCH Supply current, outputs high	$V_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{\mathrm{I}}=0$		$11 \quad 14$		11	14	mA
ICCL Supply current, outputs low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{\mathrm{I}}=5 \mathrm{~V}$		$56 \quad 71$		56	71	mA

\ddagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
§ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER			TEST CONDITIONS		MIN	TYP	MAX	UNIT
tPLH	Propagation delay time, low-to-high-level output		$\begin{aligned} & \mathrm{I}=200 \mathrm{~mA}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF},$ See Figure 1		26	35	ns
tPHL	Propagation delay time, high-to-low-level output					24	35	
tTLH	Transition time, low-to-high-level output					5	8	
tTHL	Transition time, high-to-low-level output					7	12	
V_{OH}	High-level output voltage after switching	SN55452B	$\mathrm{V}_{\mathrm{S}}=20 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{O}} \approx 300 \mathrm{~mA},$ See Figure 2			S-6.5		mV
		SN75452B			$\mathrm{V}_{\text {S }}-6.5$			

logic symbol \dagger

† This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC publication 617-12.
Pin numbers shown are for the $D, J G$, and P packages.

logic diagram (positive logic)

FUNCTION TABLE (each driver)

A	B	Y
L	L	L (on state)
L	H	H (off state)
H	L	H (off state)
H	H	H (off state)

positive logic:
$Y=A+B$ or $\bar{A} \bar{B}$

electrical characteristics over recommended operating free-air temperature range

PARAMETER		TEST CONDITIONS \ddagger		SN55453B			SN75453B			UNIT		
		MIN	TYP§	MAX	MIN	TYP§	MAX					
$\mathrm{V}_{\text {IK }}$	Input clamp voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$\boldsymbol{I}=-12 \mathrm{~mA}$		-1.2	-1.5		-1.2	-1.5	V
V_{OL}	Low-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{IOL}=100 \mathrm{~mA} \end{aligned}$	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V},$		0.25	0.5		0.25	0.4	V		
		$\begin{aligned} & \mathrm{VCC}=\mathrm{MIN}, \\ & \mathrm{IOL}=300 \mathrm{~mA} \end{aligned}$	$\overline{\mathrm{V}_{\mathrm{IL}}}=0.8 \mathrm{~V},$		0.5	0.8		0.5	0.7			
${ }^{\mathrm{IOH}}$	High-level output current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{OH}}=30 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{IH}}=\mathrm{MIN},$			300			100	$\mu \mathrm{A}$		
1	Input current at maximum input voltage	$V_{C C}=$ MAX,	$\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$			1			1	mA		
IIH	High-level input current	$V_{C C}=$ MAX,	$\mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}$			40			40	$\mu \mathrm{A}$		
IIL	Low-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	$\mathrm{V}_{1}=0.4 \mathrm{~V}$		-1	-1.6		-1	-1.6	mA		
${ }^{\text {ICCH }}$	Supply current, outputs high	$V_{C C}=$ MAX,	$\mathrm{V}_{\mathrm{I}}=5 \mathrm{~V}$		8	11		8	11	mA		
ICCL	Supply current, outputs low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	$\mathrm{V}_{1}=0$		54	68		54	68	mA		

\ddagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\S All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER			TEST CONDITIONS		MIN	TYP	MAX	UNIT
tPLH	Propagation delay time, low-to-high-level output		$\begin{aligned} & \mathrm{IO}=200 \mathrm{~mA}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \end{aligned}$	$C_{L}=15 \mathrm{pF},$ See Figure 1		18	25	ns
tPHL	Propagation delay time, high-to-low-level output					18	25	
tTLH	Transition time, low-to-high-level output					5	8	
t ${ }_{\text {thL }}$	Transition time, high-to-low-level output					7	12	
V_{OH}	High-level output voltage after switching	SN55453B	$\mathrm{V}_{\mathrm{S}}=20 \mathrm{~V}$ See Figure 2	$\mathrm{I}=300 \mathrm{~mA},$	$\mathrm{V}_{\text {S }}-6.5$			mV
		SN75453B			$\mathrm{V}_{\text {S }}-6.5$			

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC publication 617-12.
Pin numbers shown are for the $D, J G$, and P packages.
FUNCTION TABLE (each driver)

A	B	Y
L	L	H (off state)
L	H	L (on state)
H	L	L (on state)
H	H	L (on state)

positive logic:
$Y=\overline{A+B}$ or $\overline{A B}$
logic diagram (positive logic)

schematic (each driver)

Resistor values shown are nominal.
electrical characteristics over recommended operating free-air temperature range

PARAMETER	TEST CONDITIONS \ddagger		SN55454B			SN75454B			UNIT
			MIN	TYP§	MAX	MIN	TYP§	MAX	
VIK Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$\mathrm{I}_{\mathrm{I}}=-12 \mathrm{~mA}$		-1.2	-1.5		-1.2	-1.5	V
Low-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{IOL}=100 \mathrm{~mA} \end{aligned}$	$\mathrm{V}_{\mathrm{IH}}=\mathrm{MIN},$		0.25	0.5		0.25	0.4	V
	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{IOL}=300 \mathrm{~mA} \end{aligned}$	$\mathrm{V}_{\mathrm{IH}}=\mathrm{MIN},$		0.5	0.8		0.5	0.7	
IOH High-level output current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{OH}}=30 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V},$			300			100	$\mu \mathrm{A}$
II Input current at maximum input voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	$\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$			1			1	mA
$\mathrm{I}_{\mathrm{IH}} \quad$ High-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	$\mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}$			40			40	$\mu \mathrm{A}$
IIL Low-level input current	$V_{C C}=$ MAX,	$\mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$		-1	-1.6		-1	-1.6	mA
ICCH Supply current, outputs high	$V_{C C}=$ MAX,	$\mathrm{V}_{\mathrm{I}}=0$		13	17		13	17	mA
ICCL Supply current, outputs low	$V_{C C}=$ MAX,	$\mathrm{V}_{\mathrm{I}}=5 \mathrm{~V}$		61	79		61	79	mA

\ddagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
§ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER			TEST CONDITIONS		MIN	TYP	MAX	UNIT
tpLH	Propagation delay time, low-to-high-level output		$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF},$ See Figure 1		27	35	ns
tPHL	Propagation delay time, high-to-low-level output					24	35	
tTLH	Transition time, low-to-high-level output					5	8	
tTHL	Transition time, high-to-low-level output					7	12	
V OH	High-level output voltage after switching	SN55454B	$\mathrm{V}_{\mathrm{S}}=20 \mathrm{~V}, \quad \mathrm{I}, \quad 300 \mathrm{~mA},$ See Figure 2		$\mathrm{V}_{\mathrm{S}}-6.5$			mV
		SN75454B			$\mathrm{V}_{\text {S }}-6.5$			

PARAMETER MEASUREMENT INFORMATION

NOTES: A. The pulse generator has the following characteristics: $\mathrm{PRR} \leq 1 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$.
B. C_{L} includes probe and jig capacitance.

Figure 1. Test Circuit and Voltage Waveforms, Complete Drivers

NOTES: A. The pulse generator has the following characteristics: $\mathrm{PRR} \leq 12.5 \mathrm{kHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$.
B. C_{L} includes probe and jig capacitance.

Figure 2. Test Circuit and Voltage Waveforms for Latch-Up Test of Complete Drivers

TYPICAL CHARACTERISTICS

TRANSISTOR
COLLECTOR-EMITTER SATURATION VOLTAGE
vs
COLLECTOR CURRENT

NOTE A: These parameters must be measured using pulse techniques, $t_{w}=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.

Figure 3

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent Tl deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.
Tl assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by Tl for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific Tl products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products	
Amplifiers	amplifier.ti.com
Data Converters	ataconverter.ti.com
DSP	asp.ti.com
Interface	nterface.ti.com
Logic	ogic.ti.com
Power Mgmt	bwer.ti.com
Microcontrollers	microcontroller.ti.com
Low Power	www.ti.com/lpw
Wireless	

Applications	
Audio	www.ti.com/audio
Automotive	www.ti.com/automotive
Broadband	www.ti.com/broadband
Digital Control	www.ti.com/digitalcontro
Military	www.ti.com/military
Optical Networking	ww.ti.com/opticalnetwork
Security	www.ti.com/security
Telephony	
Video \& Imaging	Nww.ti.com/vided
Wireless	Nww.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated

PACKAGING INFORMATION

Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ${ }^{(2)}$	Lead/Ball Finish	MSL Peak Temp ${ }^{(3)}$
5962-9563301Q2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N/ A for Pkg Type
5962-9563301QPA	ACTIVE	CDIP	JG	8	1	TBD	A42 SNPB	N/ A for Pkg Type
77049012A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N/ A for Pkg Type
7704901PA	ACTIVE	CDIP	JG	8	1	TBD	A42 SNPB	N/ A for Pkg Type
77049022A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N/ A for Pkg Type
7704902PA	ACTIVE	CDIP	JG	8	1	TBD	A42 SNPB	N/ A for Pkg Type
JM38510/12902BPA	ACTIVE	CDIP	JG	8	1	TBD	A42 SNPB	N/ A for Pkg Type
JM38510/12903BPA	ACTIVE	CDIP	JG	8	1	TBD	A42 SNPB	N/ A for Pkg Type
JM38510/12905BPA	ACTIVE	CDIP	JG	8	1	TBD	A42 SNPB	N/ A for Pkg Type
SN55451BJG	ACTIVE	CDIP	JG	8	1	TBD	A42 SNPB	N/A for Pkg Type
SN55452BJG	ACTIVE	CDIP	JG	8	1	TBD	A42 SNPB	N/ A for Pkg Type
SN55453BJG	ACTIVE	CDIP	JG	8	1	TBD	A42 SNPB	N/ A for Pkg Type
SN55454BJG	ACTIVE	CDIP	JG	8	1	TBD	A42 SNPB	N / A for Pkg Type
SN75451BD	ACTIVE	SOIC	D	8	75	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN75451BDE4	ACTIVE	SOIC	D	8	75	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN75451BDG4	ACTIVE	SOIC	D	8	75	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN75451BDR	ACTIVE	SOIC	D	8	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN75451BDRE4	ACTIVE	SOIC	D	8	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN75451BDRG4	ACTIVE	SOIC	D	8	2500	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN75451BP	ACTIVE	PDIP	P	8	50	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
SN75451BPE4	ACTIVE	PDIP	P	8	50	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
SN75451BPSR	ACTIVE	SO	PS	8	2000	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN75451BPSRE4	ACTIVE	SO	PS	8	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN75451BPSRG4	ACTIVE	SO	PS	8	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN75452BD	ACTIVE	SOIC	D	8	75	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN75452BDE4	ACTIVE	SOIC	D	8	75	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN75452BDG4	ACTIVE	SOIC	D	8	75	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN75452BDR	ACTIVE	SOIC	D	8	2500	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN75452BDRE4	ACTIVE	SOIC	D	8	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN75452BDRG4	ACTIVE	SOIC	D	8	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM

PACKAGE OPTION ADDENDUM

Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing		Package Qty	$\text { Eco Plan }{ }^{(2)}$	Lead/Ball Finish	MSL Peak Temp ${ }^{(3)}$
SN75452BP	ACTIVE	PDIP	P	8	50	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
SN75452BPE4	ACTIVE	PDIP	P	8	50	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
SN75452BPSR	ACTIVE	SO	PS	8	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN75452BPSRE4	ACTIVE	SO	PS	8	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN75452BPSRG4	ACTIVE	SO	PS	8	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN75453BD	ACTIVE	SOIC	D	8	75	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN75453BDE4	ACTIVE	SOIC	D	8	75	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN75453BDG4	ACTIVE	SOIC	D	8	75	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN75453BDR	ACTIVE	SOIC	D	8	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN75453BDRE4	ACTIVE	SOIC	D	8	2500	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN75453BDRG4	ACTIVE	SOIC	D	8	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN75453BP	ACtive	PDIP	P	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN75453BPE4	ACTIVE	PDIP	P	8	50	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
SN75453BPSR	ACTIVE	So	PS	8	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN75453BPSRE4	ACTIVE	SO	PS	8	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN75453BPSRG4	ACTIVE	SO	PS	8	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN75454BD	ACTIVE	SOIC	D	8	75	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN75454BDE4	ACTIVE	SOIC	D	8	75	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN75454BDG4	ACTIVE	SOIC	D	8	75	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN75454BDR	ACTIVE	SOIC	D	8	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN75454BDRE4	ACTIVE	SOIC	D	8	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN75454BDRG4	ACTIVE	SOIC	D	8	2500	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN75454BP	ACTIVE	PDIP	P	8	50	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
SN75454BPE4	ACTIVE	PDIP	P	8	50	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
SN75454BPSR	ACTIVE	SO	PS	8	2000	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN75454BPSRE4	ACTIVE	SO	PS	8	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM

| Orderable Device | Status ${ }^{(1)}$ | Package
 Type | Package
 Drawing | Pins Package
 Qty | Eco Plan ${ }^{(2)}$ | Lead/Ball Finish | MSL Peak Temp ${ }^{(3)}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SN75454BPSRG4 | ACTIVE | SO | PS | 8 | 2000 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| SNJ55451BFK | ACTIVE | LCCC | FK | 20 | 1 | TBD | POST-PLATE | N/A for Pkg Type |
| SNJ55451BJG | ACTIVE | CDIP | JG | 8 | 1 | TBD | A42 SNPB | N/A for Pkg Type |
| SNJ55452BFK | ACTIVE | LCCC | FK | 20 | 1 | TBD | POST-PLATE | N / A for Pkg Type |
| SNJ55452BJG | ACTIVE | CDIP | JG | 8 | 1 | TBD | A42 SNPB | N/A for Pkg Type |
| SNJ55453BFK | ACTIVE | LCCC | FK | 20 | 1 | TBD | POST-PLATE | N/A for Pkg Type |
| SNJ55453BJG | ACTIVE | CDIP | JG | 8 | 1 | TBD | A42 SNPB | N/A for Pkg Type |
| SNJ55454BFK | ACTIVE | LCCC | FK | 20 | 1 | TBD | POST-PLATE | N/A for Pkg Type |
| SNJ55454BJG | ACTIVE | CDIP | JG | 8 | 1 | TBD | A42 SNPB | N / A for Pkg Type |

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb -Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb -Free products are suitable for use in specified lead-free processes.
Pb -Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS \& no $\mathbf{S b} / \mathrm{Br}$): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Device	Package Type	Package Drawing	Pins	SPQ	$\begin{array}{\|c\|} \hline \text { Reel } \\ \text { Diameter } \\ (\mathrm{mm}) \end{array}$	$\begin{array}{\|c\|} \hline \text { Reel } \\ \text { Width } \\ \text { W1 }(\mathrm{mm}) \end{array}$	A0 (mm)	B0 (mm)	K0 (mm)	$\begin{gathered} \text { P1 } \\ (\mathrm{mm}) \end{gathered}$	$\underset{(\mathrm{mm})}{\mathrm{W}}$	Pin1 Quadrant
SN75451BDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
SN75451BPSR	SO	PS	8	2000	330.0	16.4	8.2	6.6	2.5	12.0	16.0	Q1
SN75452BDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
SN75452BPSR	SO	PS	8	2000	330.0	16.4	8.2	6.6	2.5	12.0	16.0	Q1
SN75453BDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
SN75453BPSR	SO	PS	8	2000	330.0	16.4	8.2	6.6	2.5	12.0	16.0	Q1
SN75454BDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
SN75454BPSR	SO	PS	8	2000	330.0	16.4	8.2	6.6	2.5	12.0	16.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN75451BDR	SOIC	D	8	2500	340.5	338.1	20.6
SN75451BPSR	SO	PS	8	2000	346.0	346.0	33.0
SN75452BDR	SOIC	D	8	2500	340.5	338.1	20.6
SN75452BPSR	SO	PS	8	2000	346.0	346.0	33.0
SN75453BDR	SOIC	D	8	2500	340.5	338.1	20.6
SN75453BPSR	SO	PS	8	2000	346.0	346.0	33.0
SN75454BDR	SOIC	D	8	2500	340.5	338.1	20.6
SN75454BPSR	SO	PS	8	2000	346.0	346.0	33.0

D (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed $.006(0,15)$ per end.
D Body width does not include interlead flash. Interlead flash shall not exceed $.017(0,43)$ per side.
E. Reference JEDEC MS-012 variation AA.

FK (S-CQCC-N**)

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a metal lid.
D. The terminals are gold plated.
E. Falls within JEDEC MS-004

MECHANICAL DATA

PS (R-PDSO-G8)
PLASTIC SMALL-OUTLINE PACKAGE
(
NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 .

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001

JG (R-GDIP-T8)

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification.
E. Falls within MIL STD 1835 GDIP1-T8

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from Tl under the patents or other intellectual property of TI .
Reproduction of Tl information in Tl data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated Tl product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify Tl and its representatives against any damages arising out of the use of Tl products in such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific Tl products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products	
Amplifiers	
Data Converters	amplifier.ti.com
DSP	dataconverter.ti.com
Clocks and Timers	dsp.ti.com
Interface	www.ti.com/cocks
Logic	nterace.ti.com
Power Mgmt	ogic.ti.com
Microcontrollers	Dowe.ti.com
RFID	nicrocontroler.ti.com
RF/IF and ZigBee® Solutions	NWw.ti-rfid.com

Applications	
Audio	www.ti.com/audio
Automotive	www.ticom/automotive
Broadband	www.ti.com/broadband
Digital Control	www.ti.com/digitalcontrol
Medical	www.ti.com/medica
Military	www.ti.com/military
Optical Networking	www.ticom/opticalnetwork
Security	www.ti.com/security
Telephony	www.ti.com/telephony
Video \& Imaging	www.ticom/vided
Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated

