

COMPLIANT

Low Power, High Voltage SPST Analog Switches

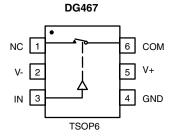
DESCRIPTION

The DG467 and DG468 are dual supply single-pole/single-throw (SPST) switches. On resistance is 10 Ω maximum and flatness is 2 Ω max over the specified analog signal range. These analog switches were designed to provide high speed, low error switching of precision analog signals. The primary application areas are in the routing and switching in telecommunications and test equipment. Combining low power, low leakages, low on-resistance and small physical size, the DG467/468 are also ideally suited for portable and battery powered industrial and military equipment.

The DG467 has one normally closed switch, while the DG468 switch is normally open. They operate either from a single + 7 V to 36 V supply or from dual \pm 4.5 V to \pm 20 V supplies. They are offered in the very popular, small TSOP6 package.

FEATURES

- ± 15 V Analog Signal Range
- On-Resistance r_{DS(on)}: 10 Ω max
- Fast Switching Action T_{ON}: 100 ns
- V_L Logic Supply Not Required
- TTL CMOS Input Compatible
- Rail To Rail Signal Handling
- Dual Or Single Supply Operation


BENEFITS

- Wide Dynamic Range
- · Low Signal Errors and Distortion
- · Break-Before-Make Switching Action
- · Simple Interfacing
- Reduced Board Space
- · Improved Reliability

APPLICATIONS

- Precision Test Equipment
- · Precision Instrumentation
- · Communications Systems
- · PBX, PABX Systems
- Audio Equipment
- Redundant Systems
- PC Multimedia Boards
- Hard Disc Drives

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

NO 1 V- 2 IN 3			654	COM V+ GND
	TSOP6	_		

DG468

TRUTH TABLE						
Logic	DG467	DG468				
0	ON	OFF				
1	OFF	ON				

 $\begin{array}{l} \text{Logic "0"} \leq 0.8 \ V \\ \text{Logic "1"} \geq 2.4 \ V \end{array}$

Device Marking: DG467DV = G7xxx DG468DV = G8xxx

DG467/DG468

Vishay Siliconix

ORDERING INFORMATION					
Temp Range	Package	Part Number			
DG467/DG468					
- 40 to 85 °C	6-Pin TSOP	DG467DV-T1-E3			
	0-FIII 130F	DG468DV-T1-E3			

ABSOLUTE MAXIMUM RATINGS $T_A = 25$ °C, unless otherwise noted						
Parameter Referenced To V-		Symbol	Limit	Unit		
V+			44			
GND			25	V		
Digital Inputs ^a , V _{NO/NC} , V _{COM}			(V-) - 2 V to (V+) + 2 V or 30 mA, whichever occurs first			
Current, (Any Terminal) Continuous			30	mΛ		
Current (NO or NC or COM) Pulsed at 1 ms, 10 % duty cycle			100	mA		
Storage Temperature			- 65 to 150	°C		
Power Dissipation (Package) ^b	6-Pin TSOP ^c		570	mW		

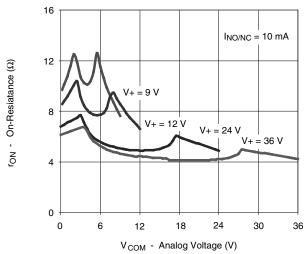
- a. Signals on NO, NC, COM, or IN exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
- b. All leads welded or soldered to PC Board.
- c. Derate 7 mW/°C above 70 °C.

		Test Conditions Unless Otherwise Specified V+ = 15 V, V- = - 15 V		D Suffix - 40 to 85 °C			
Parameter	Symbol	$V_{IN} = 2.4 \text{ V}, 0.8 \text{ V}^{f}$	Tempb	Min ^d	Typ ^c	Max ^d	Unit
Analog Switch	<u> </u>						
Analog Signal Range ^e	V _{ANALOG}		Full	- 15		15	V
Drain-Source On-Resistance	r _{ON}	I _{NO/NC} = 10 mA, V _{COM} = 10 V V+ = 13.5 V, V- = - 13.5 V	Room Full		7	9 10	Ω
On-Resistance Flatness	r _{ON} Flatness	$I_{NO/NC} = 10 \text{ mA}, V_{COM} = \pm 5 \text{ V}, 0 \text{ V}$ V+ = 13.5 V, V- = - 13.5 V	Room Full		0.7	1 2	. 52
Switch Off Leakage Current	I _{NO/NC(off)}	V+ = 16.5, V- = - 16.5 V V _{COM} = ± 15.5 V	Room Full	- 1 - 10	- 0.1	1 10	
	I _{COM(off)}	$V_{NO/NC} = -/+ 15.5 V$	Room Full	- 1 - 10	- 0.1	1 10	nA
Channel On Leakage Current	I _{COM(on)}	V+ = 16.5 V, V- = -16.5 $V_{COM} = V_{NO/NC} = \pm 15.5 \text{ V}$	Room Full	- 1 - 10	- 0.1	1 10	
Digital Control							
Input, High Voltage	I _{INH}		Full	2.4			V
Input, Low Voltage	I _{INL}		Full			0.8	v
Input Capacitance ^e	C _{IN}		Room		5		pF
Input Current	I _{IN}	V _{IN} = 0 or 5 V		- 1		1	μΑ
Dynamic Characteristics							
Turn-On Time	t _{ON}	R _L = 300 Ω, C _L = 35 pF	Room Full		100	140 160	ns
Turn-Off Time	t _{OFF}	$V_{NO/NC} = \pm 10 \text{ V}$	Room Full		50	80 100	
Charge Injection ^e	Q	$C_L = 1 \text{ nF, } V_{gen} = 0 \text{ V, } R_{gen} = 0 \Omega$	Room		21		рC
Off-Isolation ^e	OIRR	C_L = 5 pF, R_L = 50 Ω , f = 1 MHz	Room		- 61		dB
Source Off Capacitance ^e	C _{S(off)}	f = 1 MHz	Room		30		
Drain Off Capacitance ^e	C _{D(off)}	I = I IVIMZ	Room		15		pF
Channel On Capacitance ^e	C _{D(on)}	f = 1 MHz	Room		76		
Power Supplies							
Positive Supply Current	l+	V+ = 16.5 V, V- = - 16.5 V	Room Full		5	15 20	μА
Negative Supply Current	I-	$V_{IN} = 0 \text{ or } 5 \text{ V}$	Room Full	- 1 - 10	- 0.02		μA

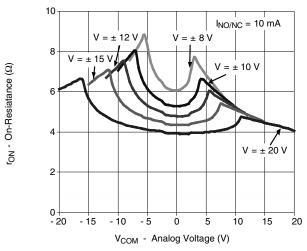
DG467/DG468

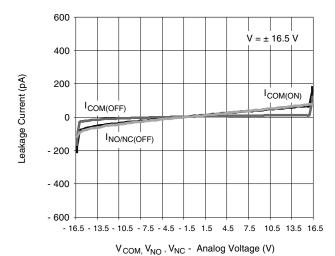
Vishay Siliconix

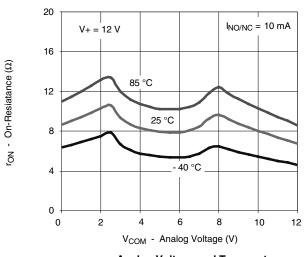
SPECIFICATIONS ^a (V	+ = 12 V)						
		Test Conditions Unless Otherwise Specified		D Suffix - 40 to 85 °C			
Parameter	Symbol	$V_{+} = 12 \text{ V}, V_{-} = 0 \text{ V}$ $V_{1N} = 2.4 \text{ V}, 0.8 \text{ V}^{f}$	Temp ^b	Min ^d	Тур ^с	Max ^d	Unit
Analog Switch							
Analog Signal Range ^e	V _{ANALOG}		Full	0		12	V
Drain-Source On-Resistance	r _{ON}	$I_{NO/NC} = -10 \text{ mA}, V_{COM} = 8 \text{ V}$ V+ = 10.8 V	Room Full		12	16 20	Ω
On-Resistance Flatness	r _{ON} Flatness	I _{NO/NC} = 10 mA, V _{COM} = 2, 6, 8 V V+ = 10.8 V	Room Full		1.5	3 4	Ω
Dynamic Characteristics							•
Turn-On Time	t _{ON}	$V_{NO, NC} = \pm 10 \text{ V}, R_L = 300 \Omega, C_L = 35 \text{ pF}$	Room Full		130	160 200	nS
Turn-Off Time	t _{OFF}	VNO, NC = ± 10 V, NL = 300 22, OL = 33 PI	Room Full		50	80 100	113
Charge Injection ^e	Q	$C_L = 1 \text{ nF, } V_{gen} = 0 \text{ V, } R_{gen} = 0 \Omega$	Room		8		рC
Power Supplies	•						
Positive Supply Current	I+	V+ = 13.2 V, V _{IN} = 0 V, 5 V	Room Full		3	7 10	μА

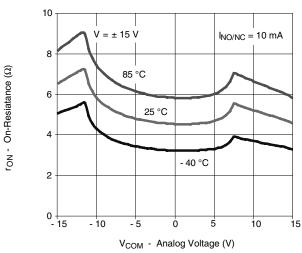

Notes:

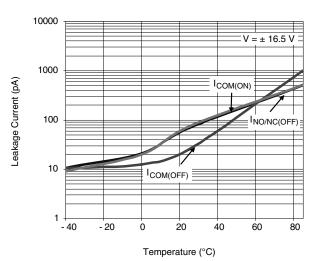
- a. Refer to PROCESS OPTION FLOWCHART.
- b. Room = 25 $^{\circ}$ C, Full = as determined by the operating temperature suffix.
- c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
- d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
- e. Guaranteed by design, not subject to production test.
- f. V_{IN} = input voltage to perform proper function.


Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

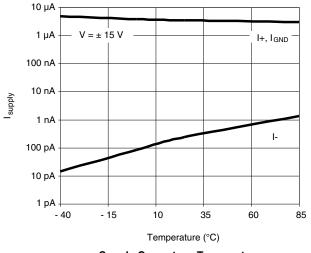

TYPICAL CHARACTERISTICS $T_A = 25$ °C, unless otherwise noted

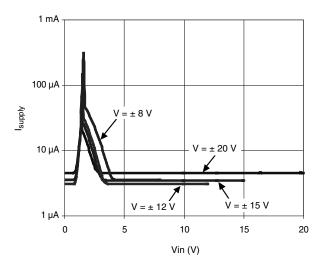

 $r_{\mbox{\scriptsize ON}}$ vs. $V_{\mbox{\scriptsize COM}}$ and Single Supply Voltage


 $r_{\mbox{\scriptsize ON}}$ vs. $V_{\mbox{\scriptsize COM}}$ and Dual Supply Voltage

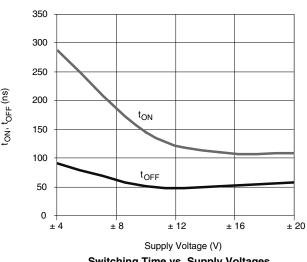

Leakage vs. Analog Voltage

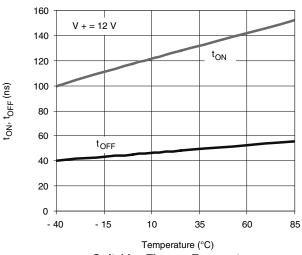
r_{ON} vs. Analog Voltage and Temperature


r_{ON} vs. Analog Voltage and Temperature

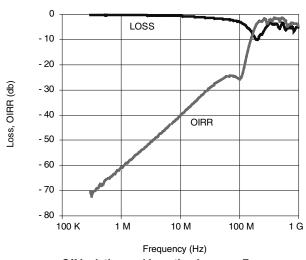

Leakage Current vs. Temperature

Vishay Siliconix


TYPICAL CHARACTERISTICS $T_A = 25$ °C, unless otherwise noted

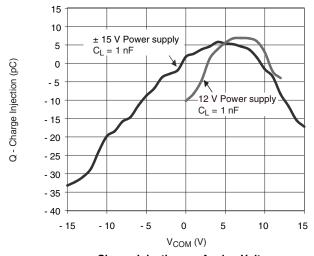

Supply Current vs. Temperature

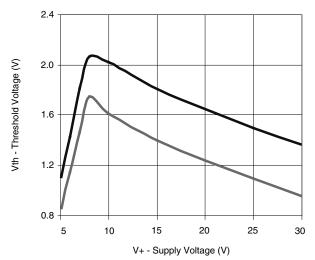
Supply Current vs. V_{IN}



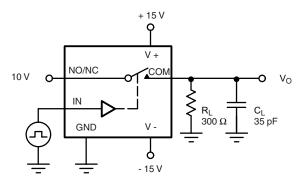
Switching Time vs. Supply Voltages

Switching Time vs. Temperature

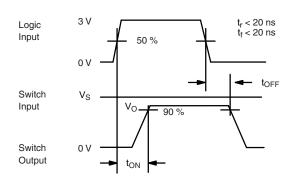



Off Isolation and Insertion Loss vs. Frequency

TYPICAL CHARACTERISTICS $T_A = 25$ °C, unless otherwise noted


Charge Injection vs. Analog Voltage

Input Switching Threshold vs. Supply Voltage


TEST CIRCUITS

 $\ensuremath{V_{\text{O}}}$ is the steady state output with the switch on.

C_L (includes fixture and stray capacitance)

$$V_O = V_S$$

$$\frac{R_L}{R_L + r_{ON}}$$

Note: Logic input waveform is inverted for switches that have the opposite logic sense.

Figure 1. Switching Time

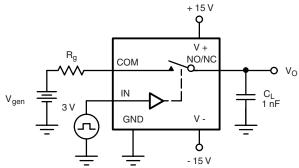
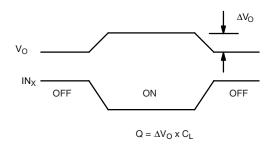
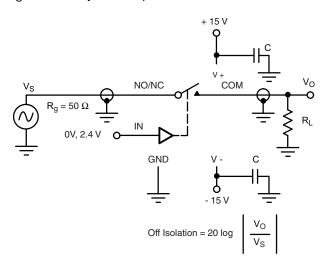



Figure 2. Charge Injection



Vishay Siliconix

TEST CIRCUITS

V_O is the steady state output with the switch on.

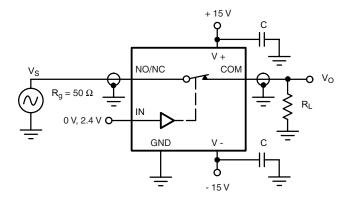


Figure 4. Insertion Loss

Figure 3. Off Isolation

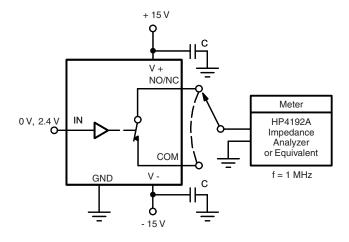


Figure 5. Source/Drain Capacitances

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?74413.

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Revision: 18-Jul-08

Document Number: 91000 www.vishay.com